• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Liang Ruiting, Sun Yujun, Zhou Lai. Modeling variable exponential taper function for Cunninghamia lanceolata based on quantile regression[J]. Journal of Beijing Forestry University, 2021, 43(7): 70-78. DOI: 10.12171/j.1000-1522.20200253
Citation: Liang Ruiting, Sun Yujun, Zhou Lai. Modeling variable exponential taper function for Cunninghamia lanceolata based on quantile regression[J]. Journal of Beijing Forestry University, 2021, 43(7): 70-78. DOI: 10.12171/j.1000-1522.20200253

Modeling variable exponential taper function for Cunninghamia lanceolata based on quantile regression

More Information
  • Received Date: August 15, 2020
  • Revised Date: October 04, 2020
  • Available Online: June 06, 2021
  • Published Date: July 24, 2021
  •   Objective  In order to improve prediction accuracy of Chinese fir stem profile, we used nonlinear quantile regression to establish variable exponential taper equations at different quantile points, and compared their fitting and prediction accuracy with nonlinear regression model.
      Method  This study took 73 Chinese fir (Cunninghamia lanceolata) stem data from the Jiangle Forest Farm in Fujian Province of eastern China. Then we selected 4 variable exponential taper equations, and based on 5-fold cross-validation, used nonlinear quantile regression and nonlinear regression to establish taper equations, respectively. Five model evaluation indicators were selected, including the adjusted coefficient of determination (R2), root mean square error (RMSE), average error (ME), relative error (RE) and average absolute error (MAE), combined with graphs to evaluate the fitting and prediction results.
      Result  The research results showed: (1) the 4 variable exponential taper equations converged at all quantile points (t = 0.1, 0.3, 0.5, 0.7, 0.9), indicating that quantile regression can develop different models at different quantiles. So this method can describe the change of Chinese fir stem shape more comprehensively. (2) The accuracy of four taper equations at the quantile point of 0.5 was all higher than others, with R2 about 0.97. For taper equations M1 and M3, the fitting and prediction accuracy based on the median regression (t = 0.5) were both higher than those of nonlinear regression. And the prediction values of the M1 equation were more concentrated. (3) At different quantile points, models had different prediction accuracies for varied stem positions. Models with quantile values of 0.9 and 0.3 had the highest prediction accuracy for the stem top part and the base part, respectively.
      Conclusion  The variable exponential taper equations developed by quantile regression can not only accurately predict stem diameters under average condition, but also predict the changing trend of stem shape under arbitrary quantile conditions. Quantile models have different prediction accuracies for varied stem positions. The multi-quantile regression model of M1 can further improve the prediction accuracy of the Chinese fir stem profile.
  • [1]
    曾伟生, 廖志云. 削度方程的研究[J]. 林业科学, 1997, 33(2):32−37.

    Zeng W S, Liao Z Y. A study on taper equation[J]. Scientia Silvae Sinicae, 1997, 33(2): 32−37.
    [2]
    梁子瑜, 孙圆, 梁欣廉, 等. 基于地面激光扫描仪的树干削度方程提取[J]. 南京林业大学学报(自然科学版), 2014, 38(5):6−10.

    Liang Z Y, Sun Y, Liang X L, et al. The extraction of stem taper equation based on terrestrial laser scanning[J]. Journal of Nanjing Forestry University (Natural Science), 2014, 38(5): 6−10.
    [3]
    胥辉, 孟宪宇. 天山云杉削度方程与材种出材率表的研究[J]. 北京林业大学学报, 1996, 18(3): 21−30.

    Xu H, Meng X Y. Study on taper function and merchantable volumn yielding rate table of Picea sehrenkiana var. tianshaca[J]. Journal of Beijing Forestry University, 1996, 18(3): 21−30.
    [4]
    庞丽峰, 贾宏炎, 陆元昌, 等. 分段削度方程2种估计方法比较[J]. 林业科学, 2015, 51(12):141−148.

    Pang L F, Jia H Y, Lu Y C, et al. Comparison of two parameters estimation methods for segmented taper equations[J]. Scientia Silvae Sinicae, 2015, 51(12): 141−148.
    [5]
    Lanssanova L R, Machado S D A, Garrett A T D A, et al. Mixed-effect non-linear modelling for diameter estimation along the stem of Tectona grandis in mid-western Brazil[J]. Southern Forests: a Journal of Forest Science, 2019, 81(2): 167−173. doi: 10.2989/20702620.2018.1531279
    [6]
    Pukkala T, Hanssen K H, Andreassen K. Stem taper and bark functions for Norway spruce in Norway[J/OL]. Silva Fennica, 2019, 53(3): 10187 [2020−03−15]. https://doi.org/10.14214/sf.10187.
    [7]
    韩飞. 落叶松人工林削度方程的研究[D]. 哈尔滨: 东北林业大学, 2010.

    Han F. The study of taper equation for Larix olgensis plantation[D]. Harbin: Northeast Forestry University, 2010.
    [8]
    Fonweban J, Gardiner B, Macdonald E, et al. Taper functions for Scots pine (Pinus sylvestris L.) and Sitka spruce (Picea sitchensis (Bong.) Carr.) in northern Britain[J]. Forestry, 2011, 84(1): 49−60. doi: 10.1093/forestry/cpq043
    [9]
    Rojo A, Perales X, Sánchez-Rodríguez F, et al. Stem taper functions for maritime pine (Pinus pinaster Ait.) in Galicia (Northwestern Spain)[J]. European Journal of Forest Research, 2005, 124(3): 177−186. doi: 10.1007/s10342-005-0066-6
    [10]
    马岩岩, 姜立春. 基于非线性分位数回归的落叶松树干削度方程[J]. 林业科学, 2019, 55(10):68−75.

    Ma Y Y, Jiang L C. Stem taper function for Larix gmelinii based on nonlinear quantile regression[J]. Scientia Silvae Sinicae, 2019, 55(10): 68−75.
    [11]
    Zang H, Lei X, Zeng W. Height-diameter equations for larch plantations in northern and northeastern China: a comparison of the mixed-effects, quantile regression and generalized additive models[J]. Forestry, 2016, 89(4): 434−445. doi: 10.1093/forestry/cpw022
    [12]
    Cao Q V, Wang J. Evaluation of methods for calibrating a tree taper equation[J]. Forest Science, 2015, 61(2): 213−219. doi: 10.5849/forsci.14-008
    [13]
    Zhang B, Sajjad S, Chen K, et al. Predicting tree height-diameter relationship from relative competition levels using quantile regression models for Chinese fir (Cunninghamia lanceolata) in Fujian Province, China[J]. Forests, 2020, 11(2): 183−185. doi: 10.3390/f11020183
    [14]
    谢晶晶. 非参数分位数回归模型估计方法的比较研究[D]. 厦门: 厦门大学, 2019.

    Xie J J. A comparative of nonparametric conditional quantile estimation[D]. Xiamen: Xiamen University, 2019.
    [15]
    高慧淋, 董利虎, 李凤日. 基于分位数回归的长白落叶松人工林最大密度线[J]. 应用生态学报, 2016, 27(11):3420−3426.

    Gao H L, Dong L H, Li F R. Maximum density-size line for Larix olgensis based on quantile regression[J]. Chinese Journal of Applied Ecology, 2016, 27(11): 3420−3426.
    [16]
    赵梦草, 顾海燕. 用分位数回归建立的混交林树高生长模型[J]. 东北林业大学学报, 2020, 48(2):24−28.

    Zhao M C, Gu H Y. Growth model of mixed forest tree height based on quantile regression[J]. Journal of Northeast Forestry University, 2020, 48(2): 24−28.
    [17]
    张冬燕, 王冬至, 李晓, 等. 基于分位数回归的针阔混交林树高与胸径的关系[J]. 浙江农林大学学报, 2020, 37(3):424−431.

    Zhang D Y, Wang D Z, Li X, et al. Relationship between height and diameter at breast height (DBH) in minxed coniferous and broadleaved forest based on quantile regression[J]. Journal of Zhejiang A&F University, 2020, 37(3): 424−431.
    [18]
    付立华, 侯金潮, 孙赫, 等. 基于分位数回归的华北落叶松干形曲线模拟[J]. 林业资源管理, 2020(1):151−157.

    Fu L H, Hou J C, Sun H, et al. Stem shape simulation for Larix principis-rupprechtii using quantile regression[J]. Forestry Resources Management, 2020(1): 151−157.
    [19]
    张森森. 基于混合效应模型的可变密度可变指数削度方程构建研究[D]. 北京: 中国林业科学研究院, 2017.

    Zhang S S. Nonlinear mixed-effects modeling of variable exponent taper equations with density for Chinese fir[D]. Beijing: Chinese Academy of Forestry, 2017.
    [20]
    梅光义, 孙玉军. 国内外削度方程研究进展[J]. 世界林业研究, 2015, 28(4):44−49.

    Mei G Y, Sun Y J. Research progress in stem taper equation[J]. World Forestry Research, 2015, 28(4): 44−49.
    [21]
    梅光义. 杉木人工林生长模型与多功能经营模拟研究[D]. 北京: 北京林业大学, 2017.

    Mei G Y. Study on growth model and multi-functional simulation of chinese fir plantation [D]. Beijing: Beijing Forestry University, 2017.
    [22]
    李婷婷. 浙江开化县林场杉木理论出材率表编制方法研究[D]. 北京: 北京林业大学, 2011.

    Li T T. Research on compiling method of theoretical yield rate table of Chinese fir in the forest farm of Kaihua County, Zhejiang [D]. Beijing: Beijing Forestry University, 2011.
    [23]
    陈萍. 福建省主要用材树种杉木削度方程的研究[J]. 华东森林经理, 2005, 19(1):58−63.

    Chen P. Research on the taper equation of the main timber species Chinese fir in Fujian Province[J]. East China Forestry Manager, 2005, 19(1): 58−63.
    [24]
    段爱国, 张建国, 童书振. 6种生长方程在杉木人工林林分直径结构上的应用[J]. 林业科学研究, 2003, 16(4):423−429.

    Duan A G, Zhang J G, Tong S Z. Application of six growth equations on stands diameter structure of Chinese fir plantations[J]. Forestry Science Research, 2003, 16(4): 423−429.
    [25]
    王明亮. 理论造材: 削度方程和出材率表的编制[J]. 林业科学研究, 1998, 11(3):271−276.

    Wang M L. Theoretical bucking taper equations and merchantable volume tables[J]. Forestry Science Research, 1998, 11(3): 271−276.
    [26]
    辛士冬, 姜立春. 利用分位数回归模拟人工樟子松树干干形[J]. 北京林业大学学报, 2020, 42(2):1−8.

    Xin S D, Jiang L C. Modeling stem taper profile for Pinus sylvestris plantations using nonlinear quantile regression[J]. Journal of Beijing Forestry University, 2020, 42(2): 1−8.
  • Related Articles

    [1]Bai Haifeng, Liu Xiaodong, Niu Shukui, He Yadong. Construction of forest fire prediction model based on Bayesian model averaging method: taking Dali Prefecture, Yunnan Province of southwestern China as an example[J]. Journal of Beijing Forestry University, 2021, 43(5): 44-52. DOI: 10.12171/j.1000-1522.20200173
    [2]Zeng Aicong, Guo Xinbin, Zheng Wenxia, Wei Mao, Jin Quanfeng, Guo Futao. Temporal and spatial dynamic characteristics of forest fire in Zhejiang Province of eastern China based on MODIS satellite hot spot data[J]. Journal of Beijing Forestry University, 2020, 42(11): 39-46. DOI: 10.12171/j.1000-1522.20190483
    [3]Zhu Yakun, Qin Shugao, Zhang Yuqing, Zhang Jutao, Shao Yanying, Gao Yan. Vegetation phenology dynamic and its responses to meteorological factor changes in the Mu Us Desert of northern China[J]. Journal of Beijing Forestry University, 2018, 40(9): 98-106. DOI: 10.13332/j.1000-1522.20180020
    [4]DUAN Wen-jun, WANG Cheng, ZHANG Chang, SONG Yang, HAO Ze-zhou, XU Xin-hui, JIN Yi-bo, WANG Zi-yan. Variation of particle matters in three forests under different habitats in summer[J]. Journal of Beijing Forestry University, 2017, 39(5): 73-81. DOI: 10.13332/j.1000-1522.20160358
    [5]JIA Xu, GAO Yong, WEI Bao-cheng, YANG Guang, DANG Xiao-hong, REN Yu, LIANG Chao. Impact of topographic features on the distribution of fire based on MODIS data in Inner Mongolia, northern China[J]. Journal of Beijing Forestry University, 2017, 39(5): 34-40. DOI: 10.13332/j.1000-1522.20170006
    [6]ZHANG Xuan, ZHANG Hui-lan, WANG Yu-jie, WANG Yun-qi, LIU Chun-xia, YANG Ping-ping, PAN Sheng-lei. Characteristics of daily sap flow for typical species in Jinyun Mountain of Chongqing in relation to meteorological factors[J]. Journal of Beijing Forestry University, 2016, 38(3): 11-20. DOI: 10.13332/j.1000-1522.20150389
    [7]YANG Lu-ming, QIN Shu-gao, LIU Zhen, ZHU Lin-feng, LIU Feng. Forming process of soil condensation water on different types of underlying surface in Mu Us Desert, northern China[J]. Journal of Beijing Forestry University, 2016, 38(2): 90-95. DOI: 10.13332/j.1000-1522.20150375
    [8]ZHANG Xiao-wu, QI Jian-dong, HUANG Xin-yuan. Application of wireless sensor network in forest micro-meteorology monitoring.[J]. Journal of Beijing Forestry University, 2014, 36(1): 83-87.
    [9]PAN Qiang, FAN Wen-yi, YU Hai-qun, ZHANG Feng, ZHANG Yang-jian. Temporal and spatial variation of normalized difference vegetation index and its influencing factors in Beijing[J]. Journal of Beijing Forestry University, 2012, 34(2): 26-33.
    [10]GAO Jun, WU Bin, MENG Ping. Transpiration of apricot trees and their relationship with rainfall and canopy micrometeorological factors.[J]. Journal of Beijing Forestry University, 2010, 32(3): 14-20.
  • Cited by

    Periodical cited type(3)

    1. 种雨丝,何培,张兹鹏,姜立春. 应用地基激光雷达三维点云数据构建长白落叶松树干削度方程. 东北林业大学学报. 2024(03): 69-75 .
    2. 陈奕辰,黄翔,张晓萍,严洪,孙梦莲,陈翔宇,刘健,余坤勇. 基于地基激光雷达的杉木哑变量削度方程研究. 西南林业大学学报(自然科学). 2024(04): 157-165 .
    3. 潘昕,李骏,孙帅超,陈明华,华伟平,江希钿. 杉木主伐林分材种结构及其出材率模型研建. 北京林业大学学报. 2023(08): 84-93 . 本站查看

    Other cited types(1)

Catalog

    Article views (1153) PDF downloads (69) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return