Advanced search
    Tian Zengzhi, He Zihang, Wang Zhibo, Zhang Qun, Wang Chao, Ji Xiaoyu. Expression patterns and salt tolerance analysis of BpPAT1 gene in Betula platyphylla[J]. Journal of Beijing Forestry University, 2021, 43(10): 18-27. DOI: 10.12171/j.1000-1522.20200302
    Citation: Tian Zengzhi, He Zihang, Wang Zhibo, Zhang Qun, Wang Chao, Ji Xiaoyu. Expression patterns and salt tolerance analysis of BpPAT1 gene in Betula platyphylla[J]. Journal of Beijing Forestry University, 2021, 43(10): 18-27. DOI: 10.12171/j.1000-1522.20200302

    Expression patterns and salt tolerance analysis of BpPAT1 gene in Betula platyphylla

    More Information
    • Received Date: October 05, 2020
    • Revised Date: November 03, 2020
    • Available Online: July 30, 2021
    • Published Date: October 29, 2021
    •   Objective  GRAS family is a plant-specific transcription factor family, characterized by a highly conserved carboxyl terminus domain. Previous studies have shown that GRAS transcription factor is one of the key transcriptional regulators in plant stress response. The purpose of this study is to analyze the salt tolerance of GRAS transcription factor gene BpPAT1 gene in Betula platyphylla, so as to lay a foundation for elucidating the molecular regulation mechanism of GRAS transcription factor in response to salt stress. Our work enriched the research on the molecular mechanism of the GRAS transcription factors of woody plant in response to stress.
        Method  In this study, one GRAS transcription factor gene was screened from the transcriptome data of B. platyphylla under salt stress and named as BpPAT1. Multiple sequence alignment and phylogenetic tree were used to analyze the genetic relationship between BpPAT1 and other organism’s GRAS family genes. Real-time fluorescence quantitative PCR (qRT-PCR) method was used to analyze the expression pattern of BpPAT1 in root, stem and leaf tissues of B. platyphylla under salt stress and normal condition, to identify whether it responded to salt stress or not. In order to further analyze the stress tolerance function of BpPAT1, plant overexpression vector (pROKII-BpPAT1) and inhibitory expression vector (pFGC5941-BpPAT1) were constructed. Transient overexpression and inhibitory expression of BpPAT1 gene and control B. platyphylla plants were obtained by Agrobacterium tumefaciens-mediated transient genetic transformation system. The physiological indexes related to salt tolerance were measured to identify whether the BpPAT1 was associated with salt tolerance in transient expression of BpPAT1 and control plants under salt stress.
        Result  The results of multiple sequence alignment and phylogenetic tree analysis showed that BpPAT1 protein had the sequence characteristics of GRAS family and was closely related to AtPAT1 protein in A. thaliana. The result level of qRT-PCR showed that the expression of BpPAT increased significantly in B. platyphylla plants after 6 hours of salt stress, indicating that BpPAT1 could respond to salt stress signal. The measurement results of the physiological indexes of stress resistance showed that the overexpression of BpPAT1 in B. platyphylla could significantly increase the activity of peroxidase (POD) and superoxide dismutase (SOD), increased the content of proline, and decreased electrolyte leakage and malondialdehyde (MDA) content.
        Conclusion  The BpPAT1 gene can respond to salt stress, overexpression of BpPAT1 significantly enhances POD, SOD enzyme activities and proline content, decreases electrolyte leakage and MDA content under salt stress, thus improves ROS scavenging ability and salt tolerance of B. platyphylla.
    • [1]
      刘中原, 刘峥, 徐颖, 等. 白桦HSFA4转录因子的克隆及耐盐功能分析[J]. 林业科学, 2020, 56(5):69−79. doi: 10.11707/j.1001-7488.20200508

      Liu Z Y, Liu Z, Xu Y, et al. Cloning and salt tolerance analysis of transcription factor HSFA4 from Betula platyphylla[J]. Scientia Silvae Sinicae, 2020, 56(5): 69−79. doi: 10.11707/j.1001-7488.20200508
      [2]
      刘强, 张贵友, 陈受宜. 植物转录因子的结构与调控作用[J]. 科学通报, 2000, 45(14):1465−1474. doi: 10.3321/j.issn:0023-074X.2000.14.002

      Liu Q, Zhang G Y, Chen S Y. The structure and regulation of plant transcription factors[J]. Chinese Science Bulletin, 2000, 45(14): 1465−1474. doi: 10.3321/j.issn:0023-074X.2000.14.002
      [3]
      唐瑞, 韩妮, 虎亚静, 等. 黄瓜GRAS家族全基因组鉴定与表达分析[J/OL]. 分子植物育种, 2021, 19(13): 4242−4251 [2020−07−23]. http://kns.cnki.net/kcms/detail/46.1068.S.20200526.1639.012.html.

      Tang R, Han N, Hu Y J, et al. Genome-wide identification and expression analysis of GRAS genes in Cucumber[J/OL]. Molecular Plant Breeding, 2021, 19(13): 4242−4251 [2020−07−23]. http://kns.cnki.net/kcms/detail/46.1068.S.20200526.1639.012.html.
      [4]
      Lee M H, Kim B, Song S K, et al. Large-scale analysis of the GRAS gene family in Arabidopsis thaliana[J]. Plant Molecular Biology, 2008, 67(6): 659−670. doi: 10.1007/s11103-008-9345-1
      [5]
      Tian C, Wan P, Sun S, et al. Genome-wide analysis of the GRAS gene family in rice and Arabidopsis[J]. Plant Molecular Biology, 2004, 54(4): 519−532. doi: 10.1023/B:PLAN.0000038256.89809.57
      [6]
      Song X M, Liu T K, Duan W K, et al. Genome-wide analysis of the GRAS gene family in Chinese cabbage (Brassica rapa ssp. pekinensis)[J]. Genomics, 2013, 103(1): 135−146.
      [7]
      Cordelia B. The role of GRAS proteins in plant signal transduction and development[J]. Planta, 2004, 218(5): 683−692. doi: 10.1007/s00425-004-1203-z
      [8]
      Liu Y D, Huang W, Xian Z Q, et al. Overexpression of SlGRAS40 in tomato enhances tolerance to abiotic stresses and influences auxin and gibberellin signaling[J/OL]. Frontiers in Plant Science, 2017, 8: 1659 [2020−09−23]. https://doi.org/10.3389/fpls.2017.01659.
      [9]
      Kim Y J, Yang D H, Park M Y, et al. Overexpression of zoysia ZjCIGR1 gene confers cold stress resistance to zoysiagrass[J]. Plant Biotechnology Reports, 2020, 14(1): 21−31. doi: 10.1007/s11816-019-00570-z
      [10]
      Laura D L, Joanna W D, Jocelyn E M, et al. The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root[J]. Cell, 1996, 86(3): 423. doi: 10.1016/S0092-8674(00)80115-4
      [11]
      Helariutta Y, Fukaki H, Wysocka D J, et al. The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling[J]. Cell, 2000, 101(5): 555−567. doi: 10.1016/S0092-8674(00)80865-X
      [12]
      Chen K M, Li H W, Chen Y F, et al. TaSCL14, a novel wheat (Triticum aestivum L.) GRAS gene, regulates plant growth, photosynthesis, tolerance to photooxidative stress, and senescence[J]. Journal of Genetics and Genomics, 2015, 42(1): 21−32. doi: 10.1016/j.jgg.2014.11.002
      [13]
      Torres-Galea P, Huang L F, Chua N H, et al. The GRAS protein SCL13 is a positive regulator of phytochrome-dependent red light signaling, but can also modulate phytochrome a responses[J]. Molecular Genetics & Genomics, 2006, 276(1): 13−30.
      [14]
      吴捷, 兰士波, 宁晓光. 东北白桦种质资源生态耦合性分析及可持续利用策略[J]. 林业勘查设计, 2017(4):62−64. doi: 10.3969/j.issn.1673-4505.2017.04.029

      Wu J, Lan S B, Ning X G. Ecology coupling analysis and sustainable utilization strategy of Betula platyphylla germplasm resource[J]. Forest Investigation Design, 2017(4): 62−64. doi: 10.3969/j.issn.1673-4505.2017.04.029
      [15]
      Liu X, Widmer A. Genome-wide comparative analysis of the GRAS gene family in Populus, Arabidopsis and rice[J]. Plant Molecular Biology Reporter, 2014, 32(6): 1129−1145. doi: 10.1007/s11105-014-0721-5
      [16]
      Li Z, Lu H, He Z, et al. Selection of appropriate reference genes for quantitative real-time reverse transcription PCR in Betula platyphylla under salt and osmotic stress conditions[J/OL]. PLoS One, 2019, 14(12): e0225926 [2020−08−03]. https://doi.org/10.1371/journal.pone.0225926.
      [17]
      Livak K, Schmittgen T. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method[J]. Methods, 2001, 25(4): 402−408. doi: 10.1006/meth.2001.1262
      [18]
      郭勇, 王玉成, 王智博. 一种基于农杆菌介导的拟南芥瞬时转化技术优化[J]. 东北林业大学学报, 2016, 44(6):41−44, 83. doi: 10.3969/j.issn.1000-5382.2016.06.011

      Guo Y, Wang Y C, Wang Z B. Optimizing transient genetic transformation method on Arabidopsis plants mediated by Agrobacterium tumefaciens[J]. Journal of Northeast Forestry University, 2016, 44(6): 41−44, 83. doi: 10.3969/j.issn.1000-5382.2016.06.011
      [19]
      王关林, 方宏筠. 植物基因工程实验技术指南[M]. 北京: 科学出版社, 2016.

      Wang G L, Fang H J. Laboratory guide for plant genetic engineering[M]. Beijing: Science Press, 2016.
      [20]
      聂显光. 柽柳ThbHLH1基因调控抗逆响应的分子机理研究[D]. 哈尔滨: 东北林业大学, 2014.

      Nie X G. Functional characterization of the abiotic stress response mechanisms of ThbHLH1 transcript factor from Tamarix hispida[D]. Harbin: Northeast Forestry University, 2014.
      [21]
      卢惠君, 李子义, 梁瀚予, 等. 刚毛柽柳NAC24基因的表达及抗逆功能分析[J]. 林业科学, 2019, 55(3): 54−63.

      Lu H J, Li Z Y, Liang H Y, et al. Expression and stress tolerance analysis of NAC24 from Tamarix hispida[J]. Scientia Silvae Sinicae, 2019, 55(3): 54−63.
      [22]
      刘羽佳. 拟南芥AtbHLH112基因调控植物抗逆机制的研究[D]. 哈尔滨: 东北林业大学, 2013.

      Liu Y J. Study on stress tolerance mechanism mediated by AtbHLH112 from Arabidopsis thaliana[D]. Harbin: Northeast Forestry University, 2013.
      [23]
      国会艳. 白桦BplMYB46基因调控抗旱耐盐和次生壁形成的分子机理[D]. 哈尔滨: 东北林业大学, 2014.

      Guo H Y. The molecular mechanism of BplMYB46 from Betula platyphylla in mediating drought and salt tolerance and formation of secondary wall[D]. Harbin: Northeast Forestry University, 2014.
      [24]
      Lu X, Liu W, Xiang C, et al. Genome-wide characterization of GRAS family and their potential roles in cold tolerance of Cucumber (Cucumis sativus L.)[J/OL]. International Journal of Molecular Sciences, 2020, 21(11): 3857 [2020−08−29]. https://doi.org/10.3390/ijms21113857.
      [25]
      Sidhu N S, Pruthi G, Singh S, et al. Genome-wide identification and analysis of GRAS transcription factors in the bottle gourd genome[J]. Scientific Reports, 2020, 10(1): 2367−2372. doi: 10.1038/s41598-020-59417-1
      [26]
      Ma H S, Liang D, Shuai P, et al. The salt- and drought-inducible poplar GRAS protein SCL7 confers salt and drought tolerance in Arabidopsis thaliana[J]. Journal of Experimental Botany, 2010, 61(14): 4011−4019. doi: 10.1093/jxb/erq217
      [27]
      周莲洁, 杨中敏, 张富春, 等. 新疆盐穗木GRAS转录因子基因克隆及表达分析[J]. 西北植物学报, 2013, 33(6):1091−1097. doi: 10.3969/j.issn.1000-4025.2013.06.004

      Zhou L J, Yang Z M, Zhang F C, et al. Expression analysis and cloning of GRAS transcription factor gene from Halostachys capsica[J]. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(6): 1091−1097. doi: 10.3969/j.issn.1000-4025.2013.06.004
      [28]
      Liu Z Y, Wang P L, Zhang T Q, et al. Comprehensive analysis of BpHSP genes and their expression under heat stresses in Betula platyphylla[J]. Environmental and Experimental Botany, 2018, 152: 167−176. doi: 10.1016/j.envexpbot.2018.04.011
      [29]
      Zang D D, Wang C, Ji X Y, et al. Tamarix hispida zinc finger protein ThZFP1 participates in salt and osmotic stress tolerance by increasing proline content and SOD and POD activities[J]. Plant Science, 2015, 235: 111−121. doi: 10.1016/j.plantsci.2015.02.016
      [30]
      Yang G Y, Yu L L, Zhang K M, et al. A ThDREB gene from Tamarix hispida improved the salt and drought tolerance of transgenic tobacco and T. hispida[J]. Plant Physiology & Biochemistry, 2017, 113: 187−197.
      [31]
      Li P, Zhang B, Su T B, et al. BrLAS, a GRAS transcription factor from Brassica rapa, is involved in drought stress tolerance in transgenic Arabidopsis[J/OL]. Frontiers in Plant Science, 2018(9): 1792 [2020−08−06]. https://doi.org/10.3389/fpls.2018.01792.
      [32]
      Guo H Y, Wang Y C, Wang L Q, et al. Expression of the MYB transcription factor gene BplMYB46 affects abiotic stress tolerance and secondary cell wall deposition in Betula platyphylla[J]. Plant Biotechnology Journal, 2017, 15(1): 107−121. doi: 10.1111/pbi.12595
      [33]
      He Z H, Li Z Y, Lu H J, et al. The NAC protein from Tamarix hispida, ThNAC7, confers salt and osmotic stress tolerance by increasing reactive oxygen species scavenging capability[J/OL]. Plants, 2019, 8(7): 221 [2020−07−12]. https://doi.org/10.3390/plants8070221.
      [34]
      Yuan Y Y, Fang L C, Sospeter K K, et al. Overexpression of VaPAT1, a GRAS transcription factor from Vitis amurensis, confers abiotic stress tolerance in Arabidopsis[J]. Plant Cell Reports, 2016, 35(3): 655−666. doi: 10.1007/s00299-015-1910-x
      [35]
      Zhang S, Li X, Fan S, et al. Overexpression of HcSCL13, a Halostachys caspica GRAS transcription factor, enhances plant growth and salt stress tolerance in transgenic Arabidopsis[J]. Plant Physiology and Biochemistry, 2020, 151: 243−254. doi: 10.1016/j.plaphy.2020.03.020
    • Cited by

      Periodical cited type(1)

      1. 陈铭,郭琳,郑笑,姜明云,王茹,丁雨龙,高志民,魏强. 中国15个主产区毛竹纤维形态比较. 南京林业大学学报(自然科学版). 2018(06): 7-12 .

      Other cited types(2)

    Catalog

      Article views (918) PDF downloads (89) Cited by(3)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return