• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Li Zhonghao, Li Xianjun, Zhang Xiaomeng, Lü Jianxiong, Zhou Chuanling, Xu Kang. Effects of moisture content on curing characteristics of low molecular mass melamine-urea-formaldehyde (MUF) resin by differential scanning calorimetry (DSC) method[J]. Journal of Beijing Forestry University, 2021, 43(1): 119-126. DOI: 10.12171/j.1000-1522.20200317
Citation: Li Zhonghao, Li Xianjun, Zhang Xiaomeng, Lü Jianxiong, Zhou Chuanling, Xu Kang. Effects of moisture content on curing characteristics of low molecular mass melamine-urea-formaldehyde (MUF) resin by differential scanning calorimetry (DSC) method[J]. Journal of Beijing Forestry University, 2021, 43(1): 119-126. DOI: 10.12171/j.1000-1522.20200317

Effects of moisture content on curing characteristics of low molecular mass melamine-urea-formaldehyde (MUF) resin by differential scanning calorimetry (DSC) method

More Information
  • Received Date: October 19, 2020
  • Revised Date: October 28, 2020
  • Available Online: December 01, 2020
  • Published Date: February 04, 2021
  •   Objective  In order to clarify the resin curing characteristics of the resin impregnated wood in different spatial layers during different drying stages, the effects of moisture content on resin solution curing process were studied.
      Method  The melamine-urea-formaldehyde (MUF) resin solution prepared in the laboratory was diluted to 20%, 30%, 40% and 50%, respectively. Then, they were analyzed by differential scanning calorimetry (DSC) method. Without the effect of heating rate, the optimum curing temperature was obtained by extrapolation method to clarify the effect of moisture on MUF resin curing characteristics qualitatively. The apparent activation energy of resin solution, which was diluted to 20%, 30%, 40% and 50%, was calculated by the Kissinger differential method and Flynn-Wall-Ozawa integral method, to quantify the effect of moisture on resin curing process.
      Result  The peak temperature (Tp) tended to shift to the higher temperature with the decrease of mass fraction of MUF resin solution. Under the heating rate of 15 and 20 ℃/min, the Tp of 20% resin solution shifted to the lower temperature region. The optimum curing temperatures of 20%, 30%, 40% and 50% MUF resin solution were 93.99, 90.71, 85.46 and 79.71 ℃, respectively. And their apparent activation energies calculated by Kissinger differential method were 92.94, 82.37, 65.93 and 50.68 kJ/mol, respectively, which were similar to those of the Flynn-Wall-Ozawa integral method.
      Conclusion  Generally, the moisture hinders the resin solution curing reaction in the absence of heating rate effect, and the blocking effect increases with the increase of moisture content. However, in the condition of higher heating rate (15 and 20 ℃/min), the DSC result of 20% resin solution shows that the moisture promotes the resin curing process, which might due to the drastic molecular movement.
  • [1]
    Hill C A S. Wood modification: an update[J]. Bioresources, 2011, 6(2): 918−919.
    [2]
    Furuno T, Imamura Y, Kajita H. The modification of wood by treatment with low molecular weight phenol-formaldehyde resin: a properties enhancement with neutralized phenolic-resin and resin penetration into wood cell walls[J]. Wood Science & Technology, 2004, 37(5): 349−361.
    [3]
    刘君良, 江泽慧, 孙家杰. 酚醛树脂处理杨树木材物理力学性能测试[J]. 林业科学, 2002, 38(4):176−180. doi: 10.3321/j.issn:1001-7488.2002.04.028.

    Liu J L, Jiang Z H, Sun J J. Measurement the physical-mechanical properties of poplar lumber by PF resin treatment[J]. Scientia Silvae Sinicae, 2002, 38(4): 176−180. doi: 10.3321/j.issn:1001-7488.2002.04.028.
    [4]
    谢延军, 符启良, 王清文, 等. 木材化学功能改良技术进展与产业现状[J]. 林业科学, 2012, 48(9):154−163. doi: 10.11707/j.1001-7488.20120924.

    Xie Y J, Fu Q L, Wang Q W, et al. Wood chemical modification: the state of the art of technologies and commercialization[J]. Scientia Silvae Sinicae, 2012, 48(9): 154−163. doi: 10.11707/j.1001-7488.20120924.
    [5]
    徐康, 吕建雄, 刘君良, 等. 浸渍后处理及干燥处理对木材树脂浸渍改性效果的影响[J]. 林业科学, 2018, 54(4):84−92. doi: 10.11707/j.1001-7488.20180410.

    Xu K, Lü J X, Liu J L, et al. Influence of post-treatment and drying process on the modification of wood with resin-impregnation[J]. Scientia Silvae Sinicae, 2018, 54(4): 84−92. doi: 10.11707/j.1001-7488.20180410.
    [6]
    周永东. 低分子量酚醛树脂强化毛白杨木材干燥特性及其机理研究[D]. 北京: 中国林业科学研究院, 2009.

    Zhou Y D. Study on drying characteristics and mechanism of poplar lumber strengthened with low molecular weight phenol-formaldehyde resin[D]. Beijing: Chinese Academy of Forestry, 2009.
    [7]
    Militz H, Lande S. Challenges in wood modification technology on the way to practical applications[J]. Wood Material Science & Engineering, 2009, 4(1−2): 23−29.
    [8]
    王舒. 浸渍处理人工林杉木干燥特性的研究[D]. 北京: 北京林业大学, 2009.

    Wang S. Study on the drying characteristic of resin-impregnated Chinese fir[D]. Beijing: Beijing Forestry Universty, 2009.
    [9]
    彭冲, 张振伟, 夏朝彦, 等. 浸渍毛白杨锯材的干燥工艺[J]. 福建农林大学学报(自然科学版), 2015, 44(3):329−332.

    Peng C, Zhang Z W, Xia C Y, et al. Optimized drying process for resin impregnated Aspen wood[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2015, 44(3): 329−332.
    [10]
    Li Y, Li X, Quan P, et al. Investigation of drying characteristics in superheated steam drying of UF-impregnated Chinese fir[J]. European Journal of Wood & Wood Products, 2018, 76(2): 583−589.
    [11]
    钱俊, 叶良明, 余肖红, 等. 速生杉木的改性研究—UF树脂浸渍后热压法改性[J]. 木材工业, 2001, 15(2):14−16. doi: 10.3969/j.issn.1001-8654.2001.02.005.

    Qian J, Ye L M, Yu X H, et al. Modification on fast-growing Chinese fir by hot-pressing after impregnated with UF resin[J]. China Wood Industry, 2001, 15(2): 14−16. doi: 10.3969/j.issn.1001-8654.2001.02.005.
    [12]
    Wu G F, Lang Q A, Qu P, et al. Eeffect of chemical modification and hot-press dring on poplar wood[J]. BioResources, 2010, 5(4): 2581−2590.
    [13]
    Li W, Zhang L, Peng J, et al. Effects of microwave irradiation on the basic properties of woodceramics made from carbonized tobacco stems impregnated with phenolic resin[J]. Industrial Crops & Products, 2008, 28(2): 143−154.
    [14]
    Shams M I, Yano H, Endou K. Compressive deformation of wood impregnated with low molecular weight phenol formaldehyde (PF) resin (I): effects of pressing pressure and pressure holding[J]. Journal of Wood Science, 2004, 50(4): 337−342. doi: 10.1007/s10086-003-0570-6.
    [15]
    Gibson L J. The hierarchical structure and mechanics of plant materials[J]. Journal of the Royal Society Interface, 2012, 9(76): 2749−2766. doi: 10.1098/rsif.2012.0341.
    [16]
    Engelund E T, Thygesen L G, Svensson S, et al. A critical discussion of the physics of wood-water interactions[J]. Wood Science and Technology, 2013, 47(1): 141−161. doi: 10.1007/s00226-012-0514-7.
    [17]
    王哲, 王喜明. 木材多尺度孔隙结构及表征方法研究进展[J]. 林业科学, 2014, 50(10):123−133.

    Wang Z, Wang X M. Research progress of multi-scale pore structure and characterization methods of wood[J]. Scientia Silvae Sinicae, 2014, 50(10): 123−133.
    [18]
    Siimer K, Kaljuvee T, Christjanson P, et al. Changes in curing behaviour of aminoresins during storage[J]. Journal of Thermal Analysis & Calorimetry, 2005, 80(1): 123−130.
    [19]
    He G, Yan N. Effect of wood on the curing behavior of commercial phenolic resin systems[J]. Journal of Applied Polymer Science, 2005, 95(2): 185−192. doi: 10.1002/app.21115.
    [20]
    徐康. MUF树脂浸渍杨木干燥过程中水分迁移和树脂固化特性研究[D]. 北京: 中国林业科学研究院, 2017.

    Xu K. Moisture transfer and resin curing characteristics of MUF impregnated poplar wood during drying process[D]. Beijing: Chinese Academy of Forestry, 2017.
    [21]
    Xu K, Yuan S F, Gao Y L, et al. Characterization of moisture states and transport in MUF resin impregnated poplar wood using low field nuclear magnetic resonance[J/OL]. Drying Technology, 2020 [2020−08−23]. http://doi.org/10.1080/07373937.2020.1719503.
    [22]
    Kamal M R, Sourour S. Kinetics and thermal characterization of thermoset cure[J]. Polymer Engineering and Science, 2010, 13(1): 59−64.
    [23]
    何平笙. 热固性树脂及树脂基复合材料的固化[M]. 合肥: 中国科技大学出版社, 2011.

    He P S. Curing of thermosetting resins and resin matrix composites[M]. Hefei: Press of University of Science and Technology of China, 2011.
    [24]
    吴晓青, 李嘉禄, 康庄, 等. TDE-85环氧树脂固化动力学的DSC和DMA研究[J]. 固体火箭技术, 2007, 30(3):264−268. doi: 10.3969/j.issn.1006-2793.2007.03.020.

    Wu X Q, Li J L, Kang Z, et al. Study on curing kinetics of TDE-85 epoxy resin by means of DSC and DMA[J]. Journal of Solid Rocket Technology, 2007, 30(3): 264−268. doi: 10.3969/j.issn.1006-2793.2007.03.020.
    [25]
    王辉, 杜官本, 雷洪. 高性能三聚氰胺–尿素–甲醛共缩聚树脂研制(1):缩聚反应后期尿素的影响[J]. 化学与粘合, 2010, 32(2):45−49. doi: 10.3969/j.issn.1001-0017.2010.02.014.

    Wang H, Du G B, Lei H. Development of high-performance melamine-urea-formaldehyde co-condensation resin (1): influence of urea addition at later condensation reaction[J]. Chemistry and Adhesion, 2010, 32(2): 45−49. doi: 10.3969/j.issn.1001-0017.2010.02.014.
    [26]
    Pizzi A, Panamgama L A. Diffusion hindrance vs. wood-induced catalytic activation of MUF adhesive polycondensation[J]. Journal of Applied Polymer Science, 1995, 58(1): 109−115. doi: 10.1002/app.1995.070580112.
    [27]
    Jones F N, Chu G, Samaraweera U. Recent studies of self-condensation and co-condensation of melamine-formaldehyde resins; cure at low temperatures[J]. Progress in Organic Coatings, 1994, 24(1−4): 189−208. doi: 10.1016/0033-0655(94)85014-3.
    [28]
    潘祖仁. 高分子化学[M]. 北京: 化学工业出版社, 2011.

    Pan Z R. Polymer chemistry[M]. Beijing: Chemical Industry Press, 2011.
    [29]
    刘乃亮, 齐暑华, 理莎莎, 等. 高固含量聚醚醚酮改性酚醛树脂固化动力学研究[J]. 中国胶粘剂, 2011, 20(3):16−20. doi: 10.3969/j.issn.1004-2849.2011.03.005.

    Liu N L, Qi S H, Li S S, et al. Study on curing kinetics of high solid content polyetheretherketone modified phenolic resin[J]. China Adhesives, 2011, 20(3): 16−20. doi: 10.3969/j.issn.1004-2849.2011.03.005.
    [30]
    陈玉竹. 脲醛树脂预固化特性及控制机理研究[D]. 北京: 中国林业科学研究院, 2015.

    Chen Y Z. Pre-curing characters and regulating mechanism of uea-frmaldehyde resin[D]. Beijing: Chinese Academy of Forestry, 2015.
    [31]
    Kissinger H E. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry, 1957, 29(11): 1702−1706. doi: 10.1021/ac60131a045.
    [32]
    Ozawa T. A new method of analyzing thermogravimetric data[J]. Bulletin of the Chemical Society of Japan, 1965, 38(11): 1881−1886.
    [33]
    郝朝瑜, 王鑫阳, 赵庆彪, 等. 低变质程度煤自燃特性的改进着火活化能方法研究[J]. 中国安全科学学报, 2013, 23(10):27−32. doi: 10.3969/j.issn.1003-3033.2013.10.005.

    Hao C Y, Wang X Y, Zhao Q B, et al. Study on an improved ignition activation energy method for evaluating spontaneous combustion characteristics of low metamorphic coal[J]. China Safety Science Journal, 2013, 23(10): 27−32. doi: 10.3969/j.issn.1003-3033.2013.10.005.
  • Cited by

    Periodical cited type(10)

    1. 邹玉珍,曾庆伟,武红敢,郑仁高. 变色立木卫星影像样本特征分析及应用. 中国森林病虫. 2023(03): 1-8 .
    2. 焦全军,郑焰锋,黄文江,张兵,张鹤译,史宜梦,吴发云,付安民. 陆地生态系统碳监测卫星松材线虫病变色木识别指数研究. 林业资源管理. 2023(04): 123-131 .
    3. 曾庆伟,武红敢,张静,杨雅菲. 碳卫星在变色立木遥感监测中的应用潜力分析. 卫星应用. 2023(11): 20-25 .
    4. 李炜浩,张硕,刘梓航,苏旻,高浩然,刘善军. 基于光谱指数法的本溪市域红叶提取方法研究. 测绘与空间地理信息. 2022(04): 47-50 .
    5. 戴丽,周席华,罗治建,武红敢,陈亮. 湖北松材线虫病卫星遥感监管技术初探. 湖北林业科技. 2022(04): 60-64 .
    6. 孙红,曾庆伟. “高分七号”数据在松材线虫病松树样木监测中的应用. 林业科技通讯. 2022(09): 27-29 .
    7. 陶欢,李存军,程成,蒋丽雅,胡海棠. 松材线虫病变色松树遥感监测研究进展. 林业科学研究. 2020(03): 172-183 .
    8. 陶欢,李存军,谢春春,周静平,淮贺举,蒋丽雅,李凤涛. 基于HSV阈值法的无人机影像变色松树识别. 南京林业大学学报(自然科学版). 2019(03): 99-106 .
    9. 武红敢,牟晓伟,杨清钰,王成波. 无人机遥感技术在重庆市沙坪坝区松材线虫病监测中的应用. 林业资源管理. 2019(02): 109-115 .
    10. 武红敢,王成波,常原飞. 变色立木的无人机遥感监测技术. 中国森林病虫. 2019(04): 29-32+37 .

    Other cited types(4)

Catalog

    Article views (1728) PDF downloads (105) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return