• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Li Zhonghao, Li Xianjun, Zhang Xiaomeng, Lü Jianxiong, Zhou Chuanling, Xu Kang. Effects of moisture content on curing characteristics of low molecular mass melamine-urea-formaldehyde (MUF) resin by differential scanning calorimetry (DSC) method[J]. Journal of Beijing Forestry University, 2021, 43(1): 119-126. DOI: 10.12171/j.1000-1522.20200317
Citation: Li Zhonghao, Li Xianjun, Zhang Xiaomeng, Lü Jianxiong, Zhou Chuanling, Xu Kang. Effects of moisture content on curing characteristics of low molecular mass melamine-urea-formaldehyde (MUF) resin by differential scanning calorimetry (DSC) method[J]. Journal of Beijing Forestry University, 2021, 43(1): 119-126. DOI: 10.12171/j.1000-1522.20200317

Effects of moisture content on curing characteristics of low molecular mass melamine-urea-formaldehyde (MUF) resin by differential scanning calorimetry (DSC) method

More Information
  • Received Date: October 19, 2020
  • Revised Date: October 28, 2020
  • Available Online: December 01, 2020
  • Published Date: February 04, 2021
  •   Objective  In order to clarify the resin curing characteristics of the resin impregnated wood in different spatial layers during different drying stages, the effects of moisture content on resin solution curing process were studied.
      Method  The melamine-urea-formaldehyde (MUF) resin solution prepared in the laboratory was diluted to 20%, 30%, 40% and 50%, respectively. Then, they were analyzed by differential scanning calorimetry (DSC) method. Without the effect of heating rate, the optimum curing temperature was obtained by extrapolation method to clarify the effect of moisture on MUF resin curing characteristics qualitatively. The apparent activation energy of resin solution, which was diluted to 20%, 30%, 40% and 50%, was calculated by the Kissinger differential method and Flynn-Wall-Ozawa integral method, to quantify the effect of moisture on resin curing process.
      Result  The peak temperature (Tp) tended to shift to the higher temperature with the decrease of mass fraction of MUF resin solution. Under the heating rate of 15 and 20 ℃/min, the Tp of 20% resin solution shifted to the lower temperature region. The optimum curing temperatures of 20%, 30%, 40% and 50% MUF resin solution were 93.99, 90.71, 85.46 and 79.71 ℃, respectively. And their apparent activation energies calculated by Kissinger differential method were 92.94, 82.37, 65.93 and 50.68 kJ/mol, respectively, which were similar to those of the Flynn-Wall-Ozawa integral method.
      Conclusion  Generally, the moisture hinders the resin solution curing reaction in the absence of heating rate effect, and the blocking effect increases with the increase of moisture content. However, in the condition of higher heating rate (15 and 20 ℃/min), the DSC result of 20% resin solution shows that the moisture promotes the resin curing process, which might due to the drastic molecular movement.
  • [1]
    Hill C A S. Wood modification: an update[J]. Bioresources, 2011, 6(2): 918−919.
    [2]
    Furuno T, Imamura Y, Kajita H. The modification of wood by treatment with low molecular weight phenol-formaldehyde resin: a properties enhancement with neutralized phenolic-resin and resin penetration into wood cell walls[J]. Wood Science & Technology, 2004, 37(5): 349−361.
    [3]
    刘君良, 江泽慧, 孙家杰. 酚醛树脂处理杨树木材物理力学性能测试[J]. 林业科学, 2002, 38(4):176−180. doi: 10.3321/j.issn:1001-7488.2002.04.028.

    Liu J L, Jiang Z H, Sun J J. Measurement the physical-mechanical properties of poplar lumber by PF resin treatment[J]. Scientia Silvae Sinicae, 2002, 38(4): 176−180. doi: 10.3321/j.issn:1001-7488.2002.04.028.
    [4]
    谢延军, 符启良, 王清文, 等. 木材化学功能改良技术进展与产业现状[J]. 林业科学, 2012, 48(9):154−163. doi: 10.11707/j.1001-7488.20120924.

    Xie Y J, Fu Q L, Wang Q W, et al. Wood chemical modification: the state of the art of technologies and commercialization[J]. Scientia Silvae Sinicae, 2012, 48(9): 154−163. doi: 10.11707/j.1001-7488.20120924.
    [5]
    徐康, 吕建雄, 刘君良, 等. 浸渍后处理及干燥处理对木材树脂浸渍改性效果的影响[J]. 林业科学, 2018, 54(4):84−92. doi: 10.11707/j.1001-7488.20180410.

    Xu K, Lü J X, Liu J L, et al. Influence of post-treatment and drying process on the modification of wood with resin-impregnation[J]. Scientia Silvae Sinicae, 2018, 54(4): 84−92. doi: 10.11707/j.1001-7488.20180410.
    [6]
    周永东. 低分子量酚醛树脂强化毛白杨木材干燥特性及其机理研究[D]. 北京: 中国林业科学研究院, 2009.

    Zhou Y D. Study on drying characteristics and mechanism of poplar lumber strengthened with low molecular weight phenol-formaldehyde resin[D]. Beijing: Chinese Academy of Forestry, 2009.
    [7]
    Militz H, Lande S. Challenges in wood modification technology on the way to practical applications[J]. Wood Material Science & Engineering, 2009, 4(1−2): 23−29.
    [8]
    王舒. 浸渍处理人工林杉木干燥特性的研究[D]. 北京: 北京林业大学, 2009.

    Wang S. Study on the drying characteristic of resin-impregnated Chinese fir[D]. Beijing: Beijing Forestry Universty, 2009.
    [9]
    彭冲, 张振伟, 夏朝彦, 等. 浸渍毛白杨锯材的干燥工艺[J]. 福建农林大学学报(自然科学版), 2015, 44(3):329−332.

    Peng C, Zhang Z W, Xia C Y, et al. Optimized drying process for resin impregnated Aspen wood[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2015, 44(3): 329−332.
    [10]
    Li Y, Li X, Quan P, et al. Investigation of drying characteristics in superheated steam drying of UF-impregnated Chinese fir[J]. European Journal of Wood & Wood Products, 2018, 76(2): 583−589.
    [11]
    钱俊, 叶良明, 余肖红, 等. 速生杉木的改性研究—UF树脂浸渍后热压法改性[J]. 木材工业, 2001, 15(2):14−16. doi: 10.3969/j.issn.1001-8654.2001.02.005.

    Qian J, Ye L M, Yu X H, et al. Modification on fast-growing Chinese fir by hot-pressing after impregnated with UF resin[J]. China Wood Industry, 2001, 15(2): 14−16. doi: 10.3969/j.issn.1001-8654.2001.02.005.
    [12]
    Wu G F, Lang Q A, Qu P, et al. Eeffect of chemical modification and hot-press dring on poplar wood[J]. BioResources, 2010, 5(4): 2581−2590.
    [13]
    Li W, Zhang L, Peng J, et al. Effects of microwave irradiation on the basic properties of woodceramics made from carbonized tobacco stems impregnated with phenolic resin[J]. Industrial Crops & Products, 2008, 28(2): 143−154.
    [14]
    Shams M I, Yano H, Endou K. Compressive deformation of wood impregnated with low molecular weight phenol formaldehyde (PF) resin (I): effects of pressing pressure and pressure holding[J]. Journal of Wood Science, 2004, 50(4): 337−342. doi: 10.1007/s10086-003-0570-6.
    [15]
    Gibson L J. The hierarchical structure and mechanics of plant materials[J]. Journal of the Royal Society Interface, 2012, 9(76): 2749−2766. doi: 10.1098/rsif.2012.0341.
    [16]
    Engelund E T, Thygesen L G, Svensson S, et al. A critical discussion of the physics of wood-water interactions[J]. Wood Science and Technology, 2013, 47(1): 141−161. doi: 10.1007/s00226-012-0514-7.
    [17]
    王哲, 王喜明. 木材多尺度孔隙结构及表征方法研究进展[J]. 林业科学, 2014, 50(10):123−133.

    Wang Z, Wang X M. Research progress of multi-scale pore structure and characterization methods of wood[J]. Scientia Silvae Sinicae, 2014, 50(10): 123−133.
    [18]
    Siimer K, Kaljuvee T, Christjanson P, et al. Changes in curing behaviour of aminoresins during storage[J]. Journal of Thermal Analysis & Calorimetry, 2005, 80(1): 123−130.
    [19]
    He G, Yan N. Effect of wood on the curing behavior of commercial phenolic resin systems[J]. Journal of Applied Polymer Science, 2005, 95(2): 185−192. doi: 10.1002/app.21115.
    [20]
    徐康. MUF树脂浸渍杨木干燥过程中水分迁移和树脂固化特性研究[D]. 北京: 中国林业科学研究院, 2017.

    Xu K. Moisture transfer and resin curing characteristics of MUF impregnated poplar wood during drying process[D]. Beijing: Chinese Academy of Forestry, 2017.
    [21]
    Xu K, Yuan S F, Gao Y L, et al. Characterization of moisture states and transport in MUF resin impregnated poplar wood using low field nuclear magnetic resonance[J/OL]. Drying Technology, 2020 [2020−08−23]. http://doi.org/10.1080/07373937.2020.1719503.
    [22]
    Kamal M R, Sourour S. Kinetics and thermal characterization of thermoset cure[J]. Polymer Engineering and Science, 2010, 13(1): 59−64.
    [23]
    何平笙. 热固性树脂及树脂基复合材料的固化[M]. 合肥: 中国科技大学出版社, 2011.

    He P S. Curing of thermosetting resins and resin matrix composites[M]. Hefei: Press of University of Science and Technology of China, 2011.
    [24]
    吴晓青, 李嘉禄, 康庄, 等. TDE-85环氧树脂固化动力学的DSC和DMA研究[J]. 固体火箭技术, 2007, 30(3):264−268. doi: 10.3969/j.issn.1006-2793.2007.03.020.

    Wu X Q, Li J L, Kang Z, et al. Study on curing kinetics of TDE-85 epoxy resin by means of DSC and DMA[J]. Journal of Solid Rocket Technology, 2007, 30(3): 264−268. doi: 10.3969/j.issn.1006-2793.2007.03.020.
    [25]
    王辉, 杜官本, 雷洪. 高性能三聚氰胺–尿素–甲醛共缩聚树脂研制(1):缩聚反应后期尿素的影响[J]. 化学与粘合, 2010, 32(2):45−49. doi: 10.3969/j.issn.1001-0017.2010.02.014.

    Wang H, Du G B, Lei H. Development of high-performance melamine-urea-formaldehyde co-condensation resin (1): influence of urea addition at later condensation reaction[J]. Chemistry and Adhesion, 2010, 32(2): 45−49. doi: 10.3969/j.issn.1001-0017.2010.02.014.
    [26]
    Pizzi A, Panamgama L A. Diffusion hindrance vs. wood-induced catalytic activation of MUF adhesive polycondensation[J]. Journal of Applied Polymer Science, 1995, 58(1): 109−115. doi: 10.1002/app.1995.070580112.
    [27]
    Jones F N, Chu G, Samaraweera U. Recent studies of self-condensation and co-condensation of melamine-formaldehyde resins; cure at low temperatures[J]. Progress in Organic Coatings, 1994, 24(1−4): 189−208. doi: 10.1016/0033-0655(94)85014-3.
    [28]
    潘祖仁. 高分子化学[M]. 北京: 化学工业出版社, 2011.

    Pan Z R. Polymer chemistry[M]. Beijing: Chemical Industry Press, 2011.
    [29]
    刘乃亮, 齐暑华, 理莎莎, 等. 高固含量聚醚醚酮改性酚醛树脂固化动力学研究[J]. 中国胶粘剂, 2011, 20(3):16−20. doi: 10.3969/j.issn.1004-2849.2011.03.005.

    Liu N L, Qi S H, Li S S, et al. Study on curing kinetics of high solid content polyetheretherketone modified phenolic resin[J]. China Adhesives, 2011, 20(3): 16−20. doi: 10.3969/j.issn.1004-2849.2011.03.005.
    [30]
    陈玉竹. 脲醛树脂预固化特性及控制机理研究[D]. 北京: 中国林业科学研究院, 2015.

    Chen Y Z. Pre-curing characters and regulating mechanism of uea-frmaldehyde resin[D]. Beijing: Chinese Academy of Forestry, 2015.
    [31]
    Kissinger H E. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry, 1957, 29(11): 1702−1706. doi: 10.1021/ac60131a045.
    [32]
    Ozawa T. A new method of analyzing thermogravimetric data[J]. Bulletin of the Chemical Society of Japan, 1965, 38(11): 1881−1886.
    [33]
    郝朝瑜, 王鑫阳, 赵庆彪, 等. 低变质程度煤自燃特性的改进着火活化能方法研究[J]. 中国安全科学学报, 2013, 23(10):27−32. doi: 10.3969/j.issn.1003-3033.2013.10.005.

    Hao C Y, Wang X Y, Zhao Q B, et al. Study on an improved ignition activation energy method for evaluating spontaneous combustion characteristics of low metamorphic coal[J]. China Safety Science Journal, 2013, 23(10): 27−32. doi: 10.3969/j.issn.1003-3033.2013.10.005.
  • Cited by

    Periodical cited type(7)

    1. 王佳庆. 北京市白皮松栽培技术优化研究. 现代园艺. 2025(04): 13-14+18 .
    2. 赵娜,吕建魁,李少宁,徐晓天,李斌,赵加辉,鲁绍伟. 不同干旱处理刺槐、侧柏光合特性与内源脱落酸含量的相关关系. 生态学报. 2024(05): 2100-2114 .
    3. 党毅,王维,张永娥,王渝淞,丁兵兵,樊登星,贾国栋,余新晓,董俊杰. 坝上高原不同植被类型覆盖下土壤水分含量对降雨的动态响应. 北京林业大学学报. 2023(05): 106-118 . 本站查看
    4. 刘诗莹,鲁绍伟,李少宁,徐晓天,孙芷郁,赵娜. 北京市七种园林树种叶水势动态特征及其影响因素分析. 北方园艺. 2022(07): 75-82 .
    5. 岳军伟,张美妮,赵培. 秦岭南麓油松林水分利用效率的边缘效应研究. 商洛学院学报. 2022(02): 1-6 .
    6. 于丰源,张金鑫,孙一荣,宋立宁. 科尔沁沙地主要造林树种叶片δ~(13)C比较研究. 林业科学研究. 2022(04): 179-187 .
    7. 韩璐 ,杨菲 ,吴应明 ,牛云明 ,曾祎明 ,陈立欣 . 晋西黄土区典型乔灌木短期水分利用效率对环境因子的响应. 植物生态学报. 2021(12): 1350-1364 .

    Other cited types(8)

Catalog

    Article views (1728) PDF downloads (105) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return