• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Li Xiarong, Chen Yixin, Chen Jingfei, Zhu Jiyou, Sun Guangpeng, Wei Liuduan, Zhang Xinna, Xu Chengyang. Comparative study on the effects of climate change on radial growth of Pinus tabuliformis in near and outer suburbs of Beijing[J]. Journal of Beijing Forestry University, 2022, 44(1): 19-28. DOI: 10.12171/j.1000-1522.20200329
Citation: Li Xiarong, Chen Yixin, Chen Jingfei, Zhu Jiyou, Sun Guangpeng, Wei Liuduan, Zhang Xinna, Xu Chengyang. Comparative study on the effects of climate change on radial growth of Pinus tabuliformis in near and outer suburbs of Beijing[J]. Journal of Beijing Forestry University, 2022, 44(1): 19-28. DOI: 10.12171/j.1000-1522.20200329

Comparative study on the effects of climate change on radial growth of Pinus tabuliformis in near and outer suburbs of Beijing

More Information
  • Received Date: October 29, 2020
  • Revised Date: January 25, 2021
  • Accepted Date: December 27, 2021
  • Available Online: November 29, 2021
  • Published Date: January 24, 2022
  •   Objective  Climate change dominated by climate warming has had a profound impact on tree health and ecosystem stability. By studying the impact of climate change on the radial growth of Chinese pine (Pinus tabuliformis) natural forest in the outer suburbs and Chinese pine plantation in the near suburbs, this paper reveals the difference of radial growth sensitivity of natural ecosystem in the outer suburbs and mountain trees in the near suburbs.
      Method  The standard chronology and residual chronology of Chinese pine in the outer suburb forest and near suburb plantation were established, and their relationship with climate indicators was conducted. R software was applied to construct an optimum model for the response of tree ring index to climate indicators. The response of radial growth of Chinese pine to drought was also analyzed based on four resilience indexes.
      Result  Both sites showed climatic warming and drying trend, which was more significant in the suburban area. The results from both chronologies showed that the radial growth of Chinese pine in suburban area was more sensitive to climate indicators. The radial growth of Chinese pine at the outer suburban site was significantly and positively related to the minimum temperature in fall and winter, also the standardized precipitation evapotranspiration index (SPEI) in the last summer and fall. The radial growth of Chinese pine at the near suburban site was significantly and negatively correlated with the daily maximum ground temperature of summer in the last and current years, and was significantly and positively correlated with SPEI of summer and autumn in the last and current years. It was also significantly and positively correlated with the annual mean Palmer drought severity index (PDSI), and was more sensitive to changes in PDSI during severe drought events.
      Conclusion  There is a “lag effect” of the growth response to climate change at both the outer suburb forest site and near suburb plantation site. During the process of urbanization, the radial growth of Chinese pine is more sensitive to climate change, and more vulnerable to summer heat and drought stress. However, within the tolerance threshold, the Chinese pine plantation at near suburb site has the ability to recover from long-term drought events.
  • [1]
    王姮, 李明诗. 气候变化对森林生态系统的主要影响述评[J]. 南京林业大学学报(自然科学版), 2016, 40(6):167−173.

    Wang Y, Li M S. A review of the major impacts of climate change on forest ecosystems[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2016, 40(6): 167−173.
    [2]
    徐雨晴, 周波涛, 於琍, 等. 气候变化背景下中国未来森林生态系统服务价值的时空特征[J]. 生态学报, 2018, 38(6):1952−1963.

    Xu Y Q, Zhou B T, Yu L, et al. Space and temporal characteristics of future forest ecosystem service values in China under climate change[J]. Acta Ecologica Sinica, 2018, 38(6): 1952−1963.
    [3]
    Thompson I, Mackey B, Mcnulty S, et al. Forest resilience, biodiversity, and climate change: a synthesis of the biodiversity/resilience/stability relationship in forest ecosystems[J]. CBD Technical, 2009, 43: 1−67.
    [4]
    Ali A. Forest stand structure and functioning: current knowledge and future challenges[J]. Ecological Indicators, 2019, 98: 665−677. doi: 10.1016/j.ecolind.2018.11.017
    [5]
    O’Connor C D, Falk D A, Lynch A M, et al. Disturbance and productivity interactions mediate stability of forest composition and structure[J]. Ecological Applications, 2017, 27(3): 900−915. doi: 10.1002/eap.1492
    [6]
    罗鑫玥, 陈明星. 城镇化对气候变化影响的研究进展[J]. 地球科学进展, 2019, 34(9):984−997.

    Luo X Y, Chen M X. Research progress on the impact of urbanization on climate change[J]. Advances in Earth Science, 2019, 34(9): 984−997.
    [7]
    Fu Y C, Li J F, Weng Q H, et al. Characterizing the spatial pattern of annual urban growth by using time series landsat imagery[J]. Science of the Total Environment, 2019, 666: 274−284. doi: 10.1016/j.scitotenv.2019.02.178
    [8]
    王婷, 于丹, 李江风, 等. 树木年轮宽度与气候变化关系研究进展[J]. 植物生态学报, 2003, 27(1):23−33. doi: 10.3321/j.issn:1005-264X.2003.01.004

    Wang T, Yu D, Li J F, et al. Advances in research on the relationship between climatic change and tree-ring width[J]. Acta Phytoecologica Sinica, 2003, 27(1): 23−33. doi: 10.3321/j.issn:1005-264X.2003.01.004
    [9]
    魏本勇, 方修琦. 树轮气候学中树木年轮密度分析方法的研究进展[J]. 古地理学报, 2008, 10(2):193−202. doi: 10.7605/gdlxb.2008.02.009

    Wei B Y, Fang X Q. Advances on the methodology of tree-ring density analysis in dendroclimatology[J]. Journal of Palaeogeography, 2008, 10(2): 193−202. doi: 10.7605/gdlxb.2008.02.009
    [10]
    郑淑霞, 上官周平. 树木年轮与气候变化关系研究[J]. 林业科学, 2006, 42(6):100−107. doi: 10.3321/j.issn:1001-7488.2006.06.017

    Zheng S X, Shangguan Z P. Study on relationship between tree-ring and climatic change[J]. Scientia Silvae Sinicae, 2006, 42(6): 100−107. doi: 10.3321/j.issn:1001-7488.2006.06.017
    [11]
    高露双. 长白山典型树种径向生长与气候因子的关系研究[D]. 北京: 北京林业大学, 2011.

    Gao L S. Relationship between radial growth and climatic factors of typical tree species in Changbai Mountain [D]. Beijing: Beijing Forestry University, 2011.
    [12]
    Romagnoli M, Moroni S, Recanatesi F, et al. Climate factors and oak decline based on tree-ring analysis: a case study of peri-urban forest in the Mediterranean area[J]. Urban Forestry & Urban Greening, 2018, 34: 17−28.
    [13]
    Vasconcellos T J D, Tomazello-Filho M, Callado C H. Dendrochronology and dendroclimatology of Ceiba speciosa (A. St.-Hil.) Ravenna (Malvaceae) exposed to urban pollution in Rio de Janeiro City, Brazil[J]. Dendrochronologia, 2019, 53: 104−113. doi: 10.1016/j.dendro.2018.12.004
    [14]
    成泽虎. 基于树轮宽度的北京松山油松林生长—气候关系研究[D]. 北京: 北京林业大学, 2016.

    Cheng Z H. Response of Pinus tabulaeformis forests to climate change based on tree-ring data in Songshan, Beijing, China[D]. Beijing: Beijing Forestry University, 2016.
    [15]
    高佳妮, 杨保, 秦春. 树木年内径向生长对干旱事件的响应:以贺兰山油松为例[J]. 应用生态学报, 2021, 32(10):3505−3511.

    Gao J N, Yang B, Qin C. Response of intra-annual stem radial growth to drought events: a case study of Pinus tabuliformis in the Helan Mountains, China[J]. Chinese Journal of Applied Ecology, 2021, 32(10): 3505−3511.
    [16]
    冯娟, 华亚伟, 张志成, 等. 秦岭南坡镇安油松径向生长−气候因子关系对气温突变的响应[J]. 植物科学学报, 2021, 39(3):268−277. doi: 10.11913/PSJ.2095-0837.2021.30268

    Feng J, Hua Y W, Zhang Z C, et al. Response of the relationship between Pinus tabuliformis Carr. radial growth and climatic factors to abrupt changes in temperature in Qinling Zhen’an[J]. Plant Science Journal, 2021, 39(3): 268−277. doi: 10.11913/PSJ.2095-0837.2021.30268
    [17]
    赵莹, 蔡立新, 靳雨婷, 等. 暖干化加剧东北半干旱地区油松人工林径向生长的水分限制[J]. 应用生态学报, 2021, 32(10):3459−3467.

    Zhao Y, Cai L X, Jin Y T, et al. Warming-drying climate intensifies the restriction of moisture on radial growth of Pinus tabuliformis plantation in semi-arid area of northeast China[J]. Chinese Journal of Applied Ecology, 2021, 32(10): 3459−3467.
    [18]
    姜庆彪, 赵秀海, 高露双, 等. 不同径级油松径向生长对气候的响应[J]. 生态学报, 2012, 32(12):3859−3865. doi: 10.5846/stxb201109091323

    Jiang Q B, Zhao X H, Gao L S, et al. Growth response to climate in Chinese pine as a function of tree diameter[J]. Acta Ecologica Sinica, 2012, 32(12): 3859−3865. doi: 10.5846/stxb201109091323
    [19]
    张更喜, 粟晓玲, 郝丽娜, 等. 基于NDVI和scPDSI研究1982—2015年中国植被对干旱的响应[J]. 农业工程学报, 2019, 35(20):145−151. doi: 10.11975/j.issn.1002-6819.2019.20.018

    Zhang G X, Li X L, Hao L N, et al. Response of vegetation to drought based on NDVI and scPDSI data sets from 1982 to 2015 across China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(20): 145−151. doi: 10.11975/j.issn.1002-6819.2019.20.018
    [20]
    崔诗梦, 向玮. 间伐与气候对长白落叶松树轮宽度的影响[J]. 林业科学, 2017, 53(12): 1−11.

    Cui S M, Xiang W. Effects of thinning and climate factors on Larix olgensis tree-ring width[J]. Scientia Silvae Sinicae, 2017, 53(12): 1−11.
    [21]
    申佳艳, 李帅锋, 黄小波, 等. 南盘江流域云南松径向生长对气候暖干化的响应[J]. 植物生态学报, 2019, 43(11):946−958. doi: 10.17521/cjpe.2019.0169

    Shen J Y, Li S F, Huang X B, et al. Radial growth responses to climate warming and drying in Pinus yunnanensis in Nanpan River Basin[J]. Chinese Journal of Plant Ecology, 2019, 43(11): 946−958. doi: 10.17521/cjpe.2019.0169
    [22]
    张同文, 袁玉江, 魏文寿, 等. 开都河流域天山桦树轮宽度年表的建立及其气候响应[J]. 生态学报, 2015, 35(9): 3034−3042.

    Zhang T W, Yuan Y J, Wei W S, et al. Development of the tree-ring width chronology of Betula tianschanica for the Kaiduhe River Watershed and its climate response[J]. Acta Ecologica Sinica, 2015, 35(9) : 3034−3042.
    [23]
    Lloret F, Keeling E G, Sala A. Components of tree resilience: effects of successive low-growth episodes in old ponderosa pine forests[J]. Oikos, 2011, 120(12): 1909−1920. doi: 10.1111/j.1600-0706.2011.19372.x
    [24]
    高露双, 赵秀海, 张赟. 温度、降水与树木径向生长关系研究现状[J]. 浙江林业科技, 2007, 27(4):76−79. doi: 10.3969/j.issn.1001-3776.2007.04.019

    Gao L S, Zhao X H, Zhang Y. Research status of relationship between temperature, precipitation and radial growth of trees[J]. Zhejiang Forestry Science and Technology, 2007, 27(4): 76−79. doi: 10.3969/j.issn.1001-3776.2007.04.019
    [25]
    Ögren E, Nilsson T, Sundblad L G. Relationship between respiratory depletion of sugars and loss of cold hardiness in coniferous seedlings over-wintering at raised temperatures: indications of different sensitivities of spruce and pine[J]. Plant, Cell and Environment, 1997, 20(2): 247−253. doi: 10.1046/j.1365-3040.1997.d01-56.x
    [26]
    Nitschke C R, Nichols S, Allen K, et al. The influence of climate and drought on urban tree growth in southeast Australia and the implications for future growth under climate change[J]. Landscape and Urban Planning, 2017, 167: 275−287. doi: 10.1016/j.landurbplan.2017.06.012
    [27]
    Galiano L, Martínez-Vilalta J, Lloret F. Carbon reserves and canopy defoliation determine the recovery of Scots pine 4 yr after a drought episode[J]. New Phytologist, 2011, 190(3): 750−759. doi: 10.1111/j.1469-8137.2010.03628.x
    [28]
    程瑞梅, 刘泽彬, 封晓辉, 等. 气候变化对树木木质部生长影响的研究进展[J]. 林业科学, 2015,51(6):147−154.

    Cheng R M, Liu Z B, Feng X H, et al. Advances in research on the effect of climatic change on xylem growth of trees[J]. Scientia Silvae Sinicae, 2015,51(6): 147−154.
    [29]
    Dahlhausen J, Rötzer T, Biber P, et al. Urban climate modifies tree growth in Berlin[J]. International Journal of Biometeorology, 2018, 62(5): 795−808. doi: 10.1007/s00484-017-1481-3
    [30]
    李金航, 周玫, 朱济友, 等. 黄栌幼苗根系构型对土壤养分胁迫环境的适应性研究[J]. 北京林业大学学报, 2020, 42(3):65−77. doi: 10.12171/j.1000-1522.20190218

    Li J H, Zhou M, Zhou J Y, et al. Adaptability response of root architecture of Cotinus coggygria seedlings to soil nutrient stress[J]. Journal of Beijing Forestry University, 2020, 42(3): 65−77. doi: 10.12171/j.1000-1522.20190218
    [31]
    刘敏, 毛子军, 厉悦, 等. 不同径级红松径向生长对气候变化的响应[J]. 应用生态学报, 2018, 29(11):3530−3540.

    Liu M, Mao Z J, Li Y, et al. Response of radial growth to climate change in Pinus koraiensis with different diameter classes[J]. Chinese Journal of Applied Ecology, 2018, 29(11): 3530−3540.
  • Related Articles

    [1]Liu Yang, Wang Hesong. Effects of climate change on distribution of suitable area of Pinus tabuliformis plantation in China[J]. Journal of Beijing Forestry University, 2024, 46(6): 82-92. DOI: 10.12171/j.1000-1522.20230072
    [2]Wei Yugui, Peng Wanyu, Qiu Yingqing, Feng Wenzhong, Bai Tianjun, Ye Qing, Deng Wenping. Response of water use efficiency of Cryptomeria japonica to climate change in Lushan Mountain, Jiangxi Province of eastern China[J]. Journal of Beijing Forestry University, 2023, 45(3): 48-57. DOI: 10.12171/j.1000-1522.20220279
    [3]Chen Meilin, Han Hairong. Response of four common tree species suitable areas to climate change in the Loess Plateau region of northern China[J]. Journal of Beijing Forestry University, 2023, 45(3): 21-33. DOI: 10.12171/j.1000-1522.20220138
    [4]Li Xiarong, Chen Yixin, Chen Jingfei, Zhu Jiyou, Sun Guangpeng, Wei Liuduan, Zhang Xinna, Xu Chengyang. Comparative study on the effects of climate change on radial growth of Pinus tabuliformis in near and outer suburbs of Beijing[J]. Journal of Beijing Forestry University, 2022, 44(1): 19-28. DOI: 10.12171/j.1000-1522.20200329
    [5]Feng Yuan, Xiao Wenfa, Zhu Jianhua, Huang Zhilin, Yan Xuxin, Wu Dong. Effects of stand age and climate change on the volume of Pinus massoniana forests in the Three Gorges Reservoir Area of central China[J]. Journal of Beijing Forestry University, 2019, 41(11): 11-21. DOI: 10.13332/j.1000-1522.20190184
    [6]Wen Yongbin, Han Hairong, Cheng Xiaoqin, Li Zuzheng. Forest water use efficiency in Qianyanzhou based on Biome-BGC model, Jiangxi Province of eastern China[J]. Journal of Beijing Forestry University, 2019, 41(4): 69-77. DOI: 10.13332/j.1000-1522.20190001
    [7]Liu Zhengcai, Qu Yaoyao. Vegetation change and its response to climate change based on SPOT-VGT in Hunan Province of southern China[J]. Journal of Beijing Forestry University, 2019, 41(2): 80-87. DOI: 10.13332/j.1000-1522.20180278
    [8]Liu Ming, Zhang Deshun. Adaptability of landscape tree species response to climate change in Shanghai within the past 55 years[J]. Journal of Beijing Forestry University, 2018, 40(9): 107-117. DOI: 10.13332/j.1000-1522.20180113
    [9]CHEN Feng, LIN Xiang-dong, NIU Shu-kui, WANG San1, LI De, . Influence of climate change on forest fire in Yunnan Province, southwestern China[J]. Journal of Beijing Forestry University, 2012, 34(6): 7-15.
    [10]HUO Chang-fu, CHENG Gen-wei, LU Xu-yang, FAN Ji-hui, XIAO Fei-peng. Dynamic simulation of climate change impacts on forest primary succession in Gongga Mountain, southwestern China[J]. Journal of Beijing Forestry University, 2010, 32(1): 1-6.
  • Cited by

    Periodical cited type(5)

    1. 谢孟,张学星,罗燕,马永鹏,李伟,杨琳祥,柳文,赵培仙,李正红,马宏. 基于MaxEnt模型的云南干热河谷适生树种选择. 生态学报. 2024(09): 3689-3707 .
    2. 刘阳,王鹤松. 气候变化对我国油松人工林适生区分布的影响. 北京林业大学学报. 2024(06): 82-92 . 本站查看
    3. 徐亚兰,杨智敏,卢盛俊,周帆,周彭晨,王斌. 基于Maxent模型的湖南省白颈长尾雉适宜栖息地预测. 生命科学研究. 2024(03): 267-273 .
    4. 杨璐,刘小芳,巨佳敏,张秀敏,常富强,赵勇钢. 黄土坡面种植柠条对土壤团聚体稳定性和可蚀性的影响. 水土保持通报. 2024(03): 46-55 .
    5. 陈程浩,龙主多杰,陆徐伟,宋扎磋,苗琪,孙芳慧,索南吉. 基于优化MaxEnt模型的中国紫堇属植物生境适宜性研究. 生态学报. 2023(24): 10345-10362 .

    Other cited types(2)

Catalog

    Article views (1111) PDF downloads (90) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return