• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Lin Jin, Hong Yu, Lin Zhiwei, Que Xiang, Liu Jinfu, Lian Haifeng. Spatiotemporal dynamics and its driving mechanism of the Quanzhou Bay Estuary Wetland, Fujian Province of eastern China[J]. Journal of Beijing Forestry University, 2021, 43(6): 75-82. DOI: 10.12171/j.1000-1522.20200358
Citation: Lin Jin, Hong Yu, Lin Zhiwei, Que Xiang, Liu Jinfu, Lian Haifeng. Spatiotemporal dynamics and its driving mechanism of the Quanzhou Bay Estuary Wetland, Fujian Province of eastern China[J]. Journal of Beijing Forestry University, 2021, 43(6): 75-82. DOI: 10.12171/j.1000-1522.20200358

Spatiotemporal dynamics and its driving mechanism of the Quanzhou Bay Estuary Wetland, Fujian Province of eastern China

More Information
  • Received Date: November 20, 2020
  • Revised Date: March 03, 2021
  • Available Online: May 21, 2021
  • Published Date: June 29, 2021
  •   Objective   The natural conditions of Quanzhou Bay estuary wetland are superior, including mangrove, tidal flats and wetlands. In recent years, due to human activities and other factors, its ecological environment and wetland landscape structure have been damaged to a certain extent.
      Method   Taking Quanzhou Bay estuary wetland as the research area, we extracted information based on the Landsat TM remote sensing images. We constructed a dynamic land-use model, using landscape pattern index to analyze its landscape spatial structure characteristics. By establishing Markov matrixes of land types between different periods, we could determine the number transfer relationship between land types. We used the Grey Incidence Analysis to study the driving force of mangrove wetland area change.
      Result   (1) From 1990 to 2018, the proportion of natural wetland areas showed a decreasing trend and the ratio of constructed wetland showed an increasing trend. From the landscape-level perspective, the types were abundant, and their distributions of wetland patches were regular.The degree of aggregation illustrated a reducing trend. (2) The dynamics of mangrove and Spartina alterniflora communities fluctuated widely, and the proportion of mangroves was the cut-off point in 2000, showing a trend of first decreasing and then increasing. From 1990 to 2000, mangroves mainly transferred into water areas and culture ponds, and from 2010 to 2018, many tidal flats and Spartina alterniflora communities moved into mangroves. (3) Since 2000, mangrove’s area had a strong correlation with other land types affected by human activities; among the social and economic factors, GDP and green space area had great influence on it.
      Conclusion   According to the temporal and spatial changes of wetland types, mangroves’ area showed a recovery trend. The spread of Spartina alterniflora communities slowed down, and the ecological environment was gradually improved, which provides scientific and practical basis for wetland protection and ecological restoration.
  • [1]
    孙广友. 中国湿地科学的进展与展望[J]. 地球科学进展, 2000, 15(6):666−672. doi: 10.3321/j.issn:1001-8166.2000.06.008

    Sun G Y. Development and prospect of wetland science in China[J]. Advances in Earth Science, 2000, 15(6): 666−672. doi: 10.3321/j.issn:1001-8166.2000.06.008
    [2]
    黄桂林, 何平, 侯盟. 中国河口湿地研究现状及展望[J]. 应用生态学报, 2006, 17(9):1751−1756. doi: 10.3321/j.issn:1001-9332.2006.09.038

    Huang G L, He P, Hou M. Present status and prospects of estuarine wetland research in China[J]. Chinese Journal of Applied Ecology, 2006, 17(9): 1751−1756. doi: 10.3321/j.issn:1001-9332.2006.09.038
    [3]
    Roach N S, Barrett K. Managed habitats increase occupancy of black rails(Laterallus jamaicensis) and may buffer impacts from sea level rise[J]. Wetlands, 2015, 35(6): 1065−1076. doi: 10.1007/s13157-015-0695-6
    [4]
    Zhang Y M, Zhao S D, Guo R C. Global wetlands: status and trends, scenarios and response options[J]. Advances in Earth Science, 2008, 23(4): 415−420.
    [5]
    韩大勇, 杨永兴, 杨杨, 等. 湿地退化研究进展[J]. 生态学报, 2012, 32(4):289−303.

    Han D Y, Yang Y X, Yang Y, et al. Recent advances in wetland degradation research[J]. Acta Ecologica Sinica, 2012, 32(4): 289−303.
    [6]
    杨永兴. 国际湿地科学研究的主要特点、进展与展望[J]. 地理科学进展, 2002, 21(2):111−120. doi: 10.3969/j.issn.1007-6301.2002.02.003

    Yang Y X. Main Characteristics, progress and rospect of nternational wetland science research[J]. Advances in Earth Science, 2002, 21(2): 111−120. doi: 10.3969/j.issn.1007-6301.2002.02.003
    [7]
    李经建, 林永源. 泉州湾河口湿地保护现状及发展对策[J]. 湿地科学与管理, 2006, 2(1):47−50.

    Li J J, Lin Y Y. Current protective situations and development countermeasures of Quanzhou Bay estuarine wetland[J]. Wetland Science & Management, 2006, 2(1): 47−50.
    [8]
    游惠明, 韩建亮, 潘德灼, 等. 泉州湾河口湿地生态系统服务价值的动态评价及驱动力分析[J]. 应用生态学报, 2019, 30(12):4286−4292.

    You H M, Han J L, Pan D Z, et al. Dynamic evaluation and driving forces of ecosystem services in Quanzhou Bay estuary wetland in China[J]. Chinese Journal of Applied Ecology, 2019, 30(12): 4286−4292.
    [9]
    林志玮, 涂伟豪, 洪宇, 等. 结合多空间特性的保护区功能分区最优化设计[J]. 森林与环境学报, 2019, 39(3):248−255.

    Lin Z W, Tu W H, Hong Y, et al. Optimal design of functional zoning of nature reserves based multiple spatial characteristics[J]. Journal of Forest and Environment, 2019, 39(3): 248−255.
    [10]
    李云桑, 党玮, 郭沛涌, 等. 泉州湾滨海退化湿地红树林修复工程对土壤酶活性的影响[J]. 浙江大学学报(理学版), 2020, 47(5):624−629.

    Li Y S, Dang W, Guo P Y, et al. Effects of mangrove restoration on the soil enzyme activity at Quanzhou Bay degraded coastal wetland[J]. Journal of Zhejiang University (Science Edition), 2020, 47(5): 624−629.
    [11]
    王雨岚, 王远东, 郑衡泌. 基于多时相遥感的泉州湾滨海湿地变化监测[J]. 赣南师范大学学报, 2017, 38(3):102−107.

    Wang Y L, Wang Y D, Zheng H B. Monitoring dynamic changes of coastal wetlands and its surrounding areas in Quanzhou Bay based on multi-temporal remote[J]. Journal of Gannan Normal University, 2017, 38(3): 102−107.
    [12]
    叶翔, 王爱军, 马牧, 等. 高强度人类活动对泉州湾滨海湿地环境的影响及其对策[J]. 海洋科学, 2016, 40(1):94−100. doi: 10.11759/hykx20131205002

    Ye X, Wang A J, Ma M, et al. Effects of high-intensity human activities on the environment variations of coastal wetland in the Quanzhou Bay in China[J]. Marine Sciences, 2016, 40(1): 94−100. doi: 10.11759/hykx20131205002
    [13]
    路春燕, 高弋斌, 陈远丽, 等. 基于RS/GIS的泉州湾红树林湿地时空动态变化分析[J]. 森林与环境学报, 2019, 39(2):143−152.

    Lu C Y, Gao Y B, Chen Y L, et al. Dynamic change analysis of mangrove swamps based on RS/GIS in Quanzhou Bay[J]. Journal of Forest and Environment, 2019, 39(2): 143−152.
    [14]
    王荣芬. 我国沼泽资源开发利用现状[J]. 地理科学, 1994, 14(3):261−269, 296.

    Wang R F. Development and utilization of swamp resources in China[J]. Scientia Geographica Sinica, 1994, 14(3): 261−269, 296.
    [15]
    姚薇, 李志军, 姚珙, 等. Landsat卫星遥感影像的大气校正方法研究[J]. 大气科学学报, 2011, 34(2):251−256. doi: 10.3969/j.issn.1674-7097.2011.02.016

    Yao W, Li Z J, Yao G, et al. Atmospheric correction model for Landsat images[J]. Transactions of Atmospheric Sciences, 2011, 34(2): 251−256. doi: 10.3969/j.issn.1674-7097.2011.02.016
    [16]
    李禄康. 湿地与湿地公约[J]. 世界林业研究, 2001, 14(1):1−7. doi: 10.3969/j.issn.1001-4241.2001.01.001

    Li L K. Wetlands and wetland convention[J]. World Forestry Research, 2001, 14(1): 1−7. doi: 10.3969/j.issn.1001-4241.2001.01.001
    [17]
    唐小平, 黄桂林. 中国湿地分类系统的研究[J]. 林业科学研究, 2003, 16(5):531−539. doi: 10.3321/j.issn:1001-1498.2003.05.003

    Tang X P, Huang G L. Study on wetland classification system in China[J]. Forest Research, 2003, 16(5): 531−539. doi: 10.3321/j.issn:1001-1498.2003.05.003
    [18]
    常虹, 詹福雷, 杨国东, 等. 面向对象的高分遥感影像信息提取技术研究.[J]. 测绘通报, 2015, 61(1):99−101.

    Chang H, Zhan F L, Yang G D, et al. Research on objects-oriented information extraction technology for high resolution remote sensing image[J]. Bulletin of Surveying and Mapping, 2015, 61(1): 99−101.
    [19]
    陈秋晓, 骆剑承, 周成虎, 等. 基于多特征的遥感影像分类方法[J]. 遥感学报, 2004, 8(3):239−245. doi: 10.11834/jrs.20040308

    Chen Q X, Luo J C, Zhou C H, et al. Classification of remotely sensed imagery using multi-features based approach[J]. National Remote Sensing Bulletin, 2004, 8(3): 239−245. doi: 10.11834/jrs.20040308
    [20]
    Walter V. Object-based classification of remote sensing data for change detection[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2004, 58(3−4): 225−238. doi: 10.1016/j.isprsjprs.2003.09.007
    [21]
    刘盛和, 何书金. 土地利用动态变化的空间分析测算模型[J]. 自然资源学报, 2002, 17(5):533−540. doi: 10.3321/j.issn:1000-3037.2002.05.002

    Liu S H, He S J. A spatial analysis model for measuring the rate of land use change[J]. Journal of Natural Resources, 2002, 17(5): 533−540. doi: 10.3321/j.issn:1000-3037.2002.05.002
    [22]
    王秀兰, 包玉海. 土地利用动态变化研究方法探讨[J]. 地理科学进展, 1999, 18(1):83−89.

    Wang X L, Bao Y H. Study on the methods of land use dynamic change research[J]. Progress in Geography, 1999, 18(1): 83−89.
    [23]
    Gustafson E J. Quantifying landscape spatial pattern: what is the state of the art[J]. Ecosystems, 1998, 1(2): 143−156. doi: 10.1007/s100219900011
    [24]
    刘思峰, 蔡华, 杨英杰, 等. 灰色关联分析模型研究进展[J]. 系统工程理论与实践, 2013, 33(8):2041−2046. doi: 10.3969/j.issn.1000-6788.2013.08.018

    Liu S F, Cai H, Yang Y J, et al. Advance in grey incidence analysis modelling[J]. Systems Engineering-Theory & Practice, 2013, 33(8): 2041−2046. doi: 10.3969/j.issn.1000-6788.2013.08.018
    [25]
    谭学瑞, 邓聚龙. 灰色关联分析: 多因素统计分析新方法[J]. 统计研究, 1995, 12(3):46−48.

    Tan X R, Deng J L. Grey incidence analysis: a new method of multivariate statistical analysis[J]. Statistical Research, 1995, 12(3): 46−48.
    [26]
    王丽娟, 陈兴鹏, 庞芳兰, 等. 兰州市土地利用变化及其社会驱动力研究[J]. 西北师范大学学报(自然科学版), 2007, 43(2):88−92.

    Wang L J, Chen X P, Pang F L, et al. Research on the process and social driving forces of land use change in Lanzhou City[J]. Journal of Northwest Normal University (Natural Science), 2007, 43(2): 88−92.
    [27]
    莫权芳, 钟仕全. 基于Landsat数据的铁山港区红树林变迁及其驱动力分析研究[J]. 科学技术与工程, 2014, 14(23):8−14. doi: 10.3969/j.issn.1671-1815.2014.23.002

    Mo Q F, Zhong S Q. Analysis of mangrove changes and its driving forces based on Landsat data in Tieshangang[J]. Science Technology and Engineering, 2014, 14(23): 8−14. doi: 10.3969/j.issn.1671-1815.2014.23.002
    [28]
    李晓俞, 张东水, 马宇, 等. 1990 ~ 2015年间四省红树林变化监测及其驱动力分析[J]. 地理空间信息, 2020, 18(2):76−80, 87. doi: 10.3969/j.issn.1672-4623.2020.02.022

    Li X Y, Zhang D S, Ma Y, et al. Monitoring and driving force analysis of mangrove change in four provinces from 1990 to 2015[J]. Geospatial Information, 2020, 18(2): 76−80, 87. doi: 10.3969/j.issn.1672-4623.2020.02.022
    [29]
    吴健生, 王政, 张理卿, 等. 景观格局变化驱动力研究进展[J]. 地理科学进展, 2012, 31(12):1739−1746. doi: 10.11820/dlkxjz.2012.12.021

    Wu J S, Wang Z, Zhang L Q, et al. Research progresses on driving forces of the changes of landscape pattern[J]. Progress in Geography, 2012, 31(12): 1739−1746. doi: 10.11820/dlkxjz.2012.12.021
  • Cited by

    Periodical cited type(5)

    1. 乔志宏,侯宏宇,高梅香,卢廷玉. 短时暴雨对小兴安岭凉水阔叶红松林地表甲虫群落的影响. 生态学报. 2020(14): 4994-5007 .
    2. 郑欣颖,佘汉基,薛立,蔡金桓. 外源性氮和磷对火力楠凋落叶分解的影响. 华南农业大学学报. 2018(01): 98-104 .
    3. 李旭华,孙建新. Biome-BGC模型模拟阔叶红松林碳水通量的参数敏感性检验和不确定性分析. 植物生态学报. 2018(12): 1131-1144 .
    4. 毛宏蕊,金光泽. 氮添加对典型阔叶红松林净初级生产力的影响. 北京林业大学学报. 2017(08): 42-49 . 本站查看
    5. 宋蕾,林尤伟,金光泽. 模拟氮沉降对典型阔叶红松林土壤微生物群落特征的影响. 南京林业大学学报(自然科学版). 2017(05): 7-12 .

    Other cited types(9)

Catalog

    Article views (1223) PDF downloads (74) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return