• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Lin Jin, Hong Yu, Lin Zhiwei, Que Xiang, Liu Jinfu, Lian Haifeng. Spatiotemporal dynamics and its driving mechanism of the Quanzhou Bay Estuary Wetland, Fujian Province of eastern China[J]. Journal of Beijing Forestry University, 2021, 43(6): 75-82. DOI: 10.12171/j.1000-1522.20200358
Citation: Lin Jin, Hong Yu, Lin Zhiwei, Que Xiang, Liu Jinfu, Lian Haifeng. Spatiotemporal dynamics and its driving mechanism of the Quanzhou Bay Estuary Wetland, Fujian Province of eastern China[J]. Journal of Beijing Forestry University, 2021, 43(6): 75-82. DOI: 10.12171/j.1000-1522.20200358

Spatiotemporal dynamics and its driving mechanism of the Quanzhou Bay Estuary Wetland, Fujian Province of eastern China

More Information
  • Received Date: November 20, 2020
  • Revised Date: March 03, 2021
  • Available Online: May 21, 2021
  • Published Date: June 29, 2021
  •   Objective   The natural conditions of Quanzhou Bay estuary wetland are superior, including mangrove, tidal flats and wetlands. In recent years, due to human activities and other factors, its ecological environment and wetland landscape structure have been damaged to a certain extent.
      Method   Taking Quanzhou Bay estuary wetland as the research area, we extracted information based on the Landsat TM remote sensing images. We constructed a dynamic land-use model, using landscape pattern index to analyze its landscape spatial structure characteristics. By establishing Markov matrixes of land types between different periods, we could determine the number transfer relationship between land types. We used the Grey Incidence Analysis to study the driving force of mangrove wetland area change.
      Result   (1) From 1990 to 2018, the proportion of natural wetland areas showed a decreasing trend and the ratio of constructed wetland showed an increasing trend. From the landscape-level perspective, the types were abundant, and their distributions of wetland patches were regular.The degree of aggregation illustrated a reducing trend. (2) The dynamics of mangrove and Spartina alterniflora communities fluctuated widely, and the proportion of mangroves was the cut-off point in 2000, showing a trend of first decreasing and then increasing. From 1990 to 2000, mangroves mainly transferred into water areas and culture ponds, and from 2010 to 2018, many tidal flats and Spartina alterniflora communities moved into mangroves. (3) Since 2000, mangrove’s area had a strong correlation with other land types affected by human activities; among the social and economic factors, GDP and green space area had great influence on it.
      Conclusion   According to the temporal and spatial changes of wetland types, mangroves’ area showed a recovery trend. The spread of Spartina alterniflora communities slowed down, and the ecological environment was gradually improved, which provides scientific and practical basis for wetland protection and ecological restoration.
  • [1]
    孙广友. 中国湿地科学的进展与展望[J]. 地球科学进展, 2000, 15(6):666−672. doi: 10.3321/j.issn:1001-8166.2000.06.008

    Sun G Y. Development and prospect of wetland science in China[J]. Advances in Earth Science, 2000, 15(6): 666−672. doi: 10.3321/j.issn:1001-8166.2000.06.008
    [2]
    黄桂林, 何平, 侯盟. 中国河口湿地研究现状及展望[J]. 应用生态学报, 2006, 17(9):1751−1756. doi: 10.3321/j.issn:1001-9332.2006.09.038

    Huang G L, He P, Hou M. Present status and prospects of estuarine wetland research in China[J]. Chinese Journal of Applied Ecology, 2006, 17(9): 1751−1756. doi: 10.3321/j.issn:1001-9332.2006.09.038
    [3]
    Roach N S, Barrett K. Managed habitats increase occupancy of black rails(Laterallus jamaicensis) and may buffer impacts from sea level rise[J]. Wetlands, 2015, 35(6): 1065−1076. doi: 10.1007/s13157-015-0695-6
    [4]
    Zhang Y M, Zhao S D, Guo R C. Global wetlands: status and trends, scenarios and response options[J]. Advances in Earth Science, 2008, 23(4): 415−420.
    [5]
    韩大勇, 杨永兴, 杨杨, 等. 湿地退化研究进展[J]. 生态学报, 2012, 32(4):289−303.

    Han D Y, Yang Y X, Yang Y, et al. Recent advances in wetland degradation research[J]. Acta Ecologica Sinica, 2012, 32(4): 289−303.
    [6]
    杨永兴. 国际湿地科学研究的主要特点、进展与展望[J]. 地理科学进展, 2002, 21(2):111−120. doi: 10.3969/j.issn.1007-6301.2002.02.003

    Yang Y X. Main Characteristics, progress and rospect of nternational wetland science research[J]. Advances in Earth Science, 2002, 21(2): 111−120. doi: 10.3969/j.issn.1007-6301.2002.02.003
    [7]
    李经建, 林永源. 泉州湾河口湿地保护现状及发展对策[J]. 湿地科学与管理, 2006, 2(1):47−50.

    Li J J, Lin Y Y. Current protective situations and development countermeasures of Quanzhou Bay estuarine wetland[J]. Wetland Science & Management, 2006, 2(1): 47−50.
    [8]
    游惠明, 韩建亮, 潘德灼, 等. 泉州湾河口湿地生态系统服务价值的动态评价及驱动力分析[J]. 应用生态学报, 2019, 30(12):4286−4292.

    You H M, Han J L, Pan D Z, et al. Dynamic evaluation and driving forces of ecosystem services in Quanzhou Bay estuary wetland in China[J]. Chinese Journal of Applied Ecology, 2019, 30(12): 4286−4292.
    [9]
    林志玮, 涂伟豪, 洪宇, 等. 结合多空间特性的保护区功能分区最优化设计[J]. 森林与环境学报, 2019, 39(3):248−255.

    Lin Z W, Tu W H, Hong Y, et al. Optimal design of functional zoning of nature reserves based multiple spatial characteristics[J]. Journal of Forest and Environment, 2019, 39(3): 248−255.
    [10]
    李云桑, 党玮, 郭沛涌, 等. 泉州湾滨海退化湿地红树林修复工程对土壤酶活性的影响[J]. 浙江大学学报(理学版), 2020, 47(5):624−629.

    Li Y S, Dang W, Guo P Y, et al. Effects of mangrove restoration on the soil enzyme activity at Quanzhou Bay degraded coastal wetland[J]. Journal of Zhejiang University (Science Edition), 2020, 47(5): 624−629.
    [11]
    王雨岚, 王远东, 郑衡泌. 基于多时相遥感的泉州湾滨海湿地变化监测[J]. 赣南师范大学学报, 2017, 38(3):102−107.

    Wang Y L, Wang Y D, Zheng H B. Monitoring dynamic changes of coastal wetlands and its surrounding areas in Quanzhou Bay based on multi-temporal remote[J]. Journal of Gannan Normal University, 2017, 38(3): 102−107.
    [12]
    叶翔, 王爱军, 马牧, 等. 高强度人类活动对泉州湾滨海湿地环境的影响及其对策[J]. 海洋科学, 2016, 40(1):94−100. doi: 10.11759/hykx20131205002

    Ye X, Wang A J, Ma M, et al. Effects of high-intensity human activities on the environment variations of coastal wetland in the Quanzhou Bay in China[J]. Marine Sciences, 2016, 40(1): 94−100. doi: 10.11759/hykx20131205002
    [13]
    路春燕, 高弋斌, 陈远丽, 等. 基于RS/GIS的泉州湾红树林湿地时空动态变化分析[J]. 森林与环境学报, 2019, 39(2):143−152.

    Lu C Y, Gao Y B, Chen Y L, et al. Dynamic change analysis of mangrove swamps based on RS/GIS in Quanzhou Bay[J]. Journal of Forest and Environment, 2019, 39(2): 143−152.
    [14]
    王荣芬. 我国沼泽资源开发利用现状[J]. 地理科学, 1994, 14(3):261−269, 296.

    Wang R F. Development and utilization of swamp resources in China[J]. Scientia Geographica Sinica, 1994, 14(3): 261−269, 296.
    [15]
    姚薇, 李志军, 姚珙, 等. Landsat卫星遥感影像的大气校正方法研究[J]. 大气科学学报, 2011, 34(2):251−256. doi: 10.3969/j.issn.1674-7097.2011.02.016

    Yao W, Li Z J, Yao G, et al. Atmospheric correction model for Landsat images[J]. Transactions of Atmospheric Sciences, 2011, 34(2): 251−256. doi: 10.3969/j.issn.1674-7097.2011.02.016
    [16]
    李禄康. 湿地与湿地公约[J]. 世界林业研究, 2001, 14(1):1−7. doi: 10.3969/j.issn.1001-4241.2001.01.001

    Li L K. Wetlands and wetland convention[J]. World Forestry Research, 2001, 14(1): 1−7. doi: 10.3969/j.issn.1001-4241.2001.01.001
    [17]
    唐小平, 黄桂林. 中国湿地分类系统的研究[J]. 林业科学研究, 2003, 16(5):531−539. doi: 10.3321/j.issn:1001-1498.2003.05.003

    Tang X P, Huang G L. Study on wetland classification system in China[J]. Forest Research, 2003, 16(5): 531−539. doi: 10.3321/j.issn:1001-1498.2003.05.003
    [18]
    常虹, 詹福雷, 杨国东, 等. 面向对象的高分遥感影像信息提取技术研究.[J]. 测绘通报, 2015, 61(1):99−101.

    Chang H, Zhan F L, Yang G D, et al. Research on objects-oriented information extraction technology for high resolution remote sensing image[J]. Bulletin of Surveying and Mapping, 2015, 61(1): 99−101.
    [19]
    陈秋晓, 骆剑承, 周成虎, 等. 基于多特征的遥感影像分类方法[J]. 遥感学报, 2004, 8(3):239−245. doi: 10.11834/jrs.20040308

    Chen Q X, Luo J C, Zhou C H, et al. Classification of remotely sensed imagery using multi-features based approach[J]. National Remote Sensing Bulletin, 2004, 8(3): 239−245. doi: 10.11834/jrs.20040308
    [20]
    Walter V. Object-based classification of remote sensing data for change detection[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2004, 58(3−4): 225−238. doi: 10.1016/j.isprsjprs.2003.09.007
    [21]
    刘盛和, 何书金. 土地利用动态变化的空间分析测算模型[J]. 自然资源学报, 2002, 17(5):533−540. doi: 10.3321/j.issn:1000-3037.2002.05.002

    Liu S H, He S J. A spatial analysis model for measuring the rate of land use change[J]. Journal of Natural Resources, 2002, 17(5): 533−540. doi: 10.3321/j.issn:1000-3037.2002.05.002
    [22]
    王秀兰, 包玉海. 土地利用动态变化研究方法探讨[J]. 地理科学进展, 1999, 18(1):83−89.

    Wang X L, Bao Y H. Study on the methods of land use dynamic change research[J]. Progress in Geography, 1999, 18(1): 83−89.
    [23]
    Gustafson E J. Quantifying landscape spatial pattern: what is the state of the art[J]. Ecosystems, 1998, 1(2): 143−156. doi: 10.1007/s100219900011
    [24]
    刘思峰, 蔡华, 杨英杰, 等. 灰色关联分析模型研究进展[J]. 系统工程理论与实践, 2013, 33(8):2041−2046. doi: 10.3969/j.issn.1000-6788.2013.08.018

    Liu S F, Cai H, Yang Y J, et al. Advance in grey incidence analysis modelling[J]. Systems Engineering-Theory & Practice, 2013, 33(8): 2041−2046. doi: 10.3969/j.issn.1000-6788.2013.08.018
    [25]
    谭学瑞, 邓聚龙. 灰色关联分析: 多因素统计分析新方法[J]. 统计研究, 1995, 12(3):46−48.

    Tan X R, Deng J L. Grey incidence analysis: a new method of multivariate statistical analysis[J]. Statistical Research, 1995, 12(3): 46−48.
    [26]
    王丽娟, 陈兴鹏, 庞芳兰, 等. 兰州市土地利用变化及其社会驱动力研究[J]. 西北师范大学学报(自然科学版), 2007, 43(2):88−92.

    Wang L J, Chen X P, Pang F L, et al. Research on the process and social driving forces of land use change in Lanzhou City[J]. Journal of Northwest Normal University (Natural Science), 2007, 43(2): 88−92.
    [27]
    莫权芳, 钟仕全. 基于Landsat数据的铁山港区红树林变迁及其驱动力分析研究[J]. 科学技术与工程, 2014, 14(23):8−14. doi: 10.3969/j.issn.1671-1815.2014.23.002

    Mo Q F, Zhong S Q. Analysis of mangrove changes and its driving forces based on Landsat data in Tieshangang[J]. Science Technology and Engineering, 2014, 14(23): 8−14. doi: 10.3969/j.issn.1671-1815.2014.23.002
    [28]
    李晓俞, 张东水, 马宇, 等. 1990 ~ 2015年间四省红树林变化监测及其驱动力分析[J]. 地理空间信息, 2020, 18(2):76−80, 87. doi: 10.3969/j.issn.1672-4623.2020.02.022

    Li X Y, Zhang D S, Ma Y, et al. Monitoring and driving force analysis of mangrove change in four provinces from 1990 to 2015[J]. Geospatial Information, 2020, 18(2): 76−80, 87. doi: 10.3969/j.issn.1672-4623.2020.02.022
    [29]
    吴健生, 王政, 张理卿, 等. 景观格局变化驱动力研究进展[J]. 地理科学进展, 2012, 31(12):1739−1746. doi: 10.11820/dlkxjz.2012.12.021

    Wu J S, Wang Z, Zhang L Q, et al. Research progresses on driving forces of the changes of landscape pattern[J]. Progress in Geography, 2012, 31(12): 1739−1746. doi: 10.11820/dlkxjz.2012.12.021
  • Related Articles

    [1]Li Yang, Zhang Jianjun, Yu Yang, Hu Yawei, Zhao Yuhui, Ma Xinyi. Experimental study on the variation characteristics of runoff sediment concentration with slope length in the loess region of western Shanxi Province of northern China[J]. Journal of Beijing Forestry University, 2023, 45(8): 148-155. DOI: 10.12171/j.1000-1522.20220454
    [2]Wang Hengxing, Zhang Jianjun, Sun Ruoxiu, Zhang Jianan. Effects of different vegetation slope patterns on infiltration and characteristics of runoff and sediment production in the loess area of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2021, 43(3): 85-95. DOI: 10.12171/j.1000-1522.20190231
    [3]Wen Wenjie, Zhang Jianjun, Li Yixuan, Huang Xiaoqing, He Pei. A simple method for estimating runoff sediment concentration[J]. Journal of Beijing Forestry University, 2019, 41(11): 155-162. DOI: 10.13332/j.1000-1522.20180246
    [4]Zhang Shuai, Ding Guo-dong, Gao Guang-lei, Zhao Yuan-yuan, Yu Ming-han, Bao Yan-feng, Wang Chun-yuan. Study on new highway guardrail for anti-sediment in sand area[J]. Journal of Beijing Forestry University, 2018, 40(2): 90-97. DOI: 10.13332/j.1000-1522.20170353
    [5]AI Ning, WEI Tian-xing, ZHU Qing-ke, GEGENBATU, QIN Wei, ZHAO Xing-kai, ZHAO Wei-jun, MA Huan, YANG Yuan-jun. Factors affecting slope runoff and sediment yield in northern Shaanxi Province based on path analysis[J]. Journal of Beijing Forestry University, 2015, 37(6): 77-84. DOI: 10.13332/j.1000-1522.20140428
    [6]ZHU Yao-jun, GUO Ju-lan, WU Gao-jie, LIN Guang-xuan, WU Xiao-dong. Spatial distribution of physicochemical properties and metal concentration in mangrove sediments from Gaoqiao in Zhanjiang, Guangdong of Southern China.[J]. Journal of Beijing Forestry University, 2014, 36(2): 1-9.
    [7]WANG Jian-xun, , ZHENG Fen-li, JIANG Zhong-shan, ZHANG Xun-chang. Hillslope soil erosion prediction based on WEPP model under different slope lengths in hillygully region of the loess area[J]. Journal of Beijing Forestry University, 2008, 30(2): 151-156.
    [8]ZHANG Xiao-ming, YU Xin-xiao, WU Si-hong, WANG Yun-qi, ZHANG Man-liang. Effects of landuse-landcover change on sediment production of runoff in typical watershed in the loess gully-hilly region of China[J]. Journal of Beijing Forestry University, 2007, 29(6): 115-122. DOI: 10.13332/j.1000-1522.2007.06.033
    [9]WU Shu-fang, WU Pu-te, FENG Hao, LI Min. Effects of forage grass on the reduction of runoff and sediment and the hydrodynamic characteristic mechanism of slope runoff in the standard slope plot[J]. Journal of Beijing Forestry University, 2007, 29(3): 99-104. DOI: 10.13332/j.1000-1522.2007.03.016
    [10]ZHANG Jian-jun, NA Lei, FANG Jia-qiang. Manning roughness of sloping ground in the loess area of west Shanxi Province[J]. Journal of Beijing Forestry University, 2007, 29(1): 108-113. DOI: 10.13332/j.1000-1522.2007.01.019
  • Cited by

    Periodical cited type(15)

    1. 冯旭环,周璐,熊伟,宗桦. 大渡河干热河谷区本土优势灌草植物根系的抗拉力学特性及其影响因素研究. 干旱区资源与环境. 2023(07): 159-169 .
    2. 李宏斌,张旭,姚晨,杜峰. 陕北黄土区不同植物根系抗拉力学特性研究. 水土保持研究. 2023(04): 122-129 .
    3. 李金波,伍红燕,赵斌,陈济丁,宋桂龙. 模拟边坡条件下常见护坡植物苗期根系构型特征. 生态学报. 2023(24): 10131-10141 .
    4. 赵佳愉,伍红燕,史蔚林,宋桂龙. 聚丙烯酰胺添加浓度对种基盘特性的影响. 草原与草坪. 2021(05): 16-21 .
    5. 黄炎和,李思诗,岳辉,彭绍云,谢炎敏,林根根,周曼,吴俣,蔡学智. 崩岗区四种草本植物根系抗拉特性及其与化学成分的关系. 亚热带水土保持. 2021(04): 9-15 .
    6. 李义强,伍红燕,宋桂龙,赵斌,李一为,夏宇,孙盛年,梁燕宁. 岩石边坡坡度对胡枝子和紫穗槐根系形态特征影响. 草原与草坪. 2020(02): 23-29 .
    7. 曹磊,马海天才. 不同草本植物根系力动力学及抗压力特征研究. 干旱区资源与环境. 2019(01): 164-170 .
    8. 李淑霞,刘亚斌,余冬梅,胡夏嵩,祁兆鑫. 寒旱环境盐胁迫条件下两种草本植物的根系力学特性研究. 盐湖研究. 2019(01): 116-131 .
    9. 李瑞燊,刘静,王博,张欣,胡晶华,苏慧敏,白潞翼,王多民. 反复施加拉剪组合力对小叶锦鸡儿直根材料力学特性的影响. 水土保持学报. 2019(05): 121-125 .
    10. 马海天才. 不同草本植物根系的抗压动力学特征. 北方园艺. 2018(19): 71-77 .
    11. 王博,刘静,王晨嘉,张欣,刘嘉伟,李强,张强. 半干旱矿区3种灌木侧根分支处折力损伤后的自修复特性. 应用生态学报. 2018(11): 3541-3549 .
    12. 韦杰,李进林,史炳林. 紫色土耕地埂坎2种典型根——土复合体抗剪强度特征. 应用基础与工程科学学报. 2018(03): 483-492 .
    13. 刘昌义,胡夏嵩,赵玉娇,窦增宁. 寒旱环境草本与灌木植物单根拉伸试验强度特征研究. 工程地质学报. 2017(01): 1-10 .
    14. 谷利茶,王国梁. 氮添加对油松幼苗不同径级细根碳水化合物含量的影响. 生态学杂志. 2017(08): 2184-2190 .
    15. 杨闻达,王桂尧,常婧美,张永杰. 主直根系拉拔力的室内试验研究. 中国水土保持科学. 2017(04): 111-116 .

    Other cited types(25)

Catalog

    Article views (1231) PDF downloads (75) Cited by(40)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return