• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Guo Ting, Huang Sai, Wu Ruqian, An Xinmin. Cloning and expression analysis of chalcone synthase gene from Koelreuteria paniculata[J]. Journal of Beijing Forestry University, 2021, 43(3): 27-35. DOI: 10.12171/j.1000-1522.20200377
Citation: Guo Ting, Huang Sai, Wu Ruqian, An Xinmin. Cloning and expression analysis of chalcone synthase gene from Koelreuteria paniculata[J]. Journal of Beijing Forestry University, 2021, 43(3): 27-35. DOI: 10.12171/j.1000-1522.20200377

Cloning and expression analysis of chalcone synthase gene from Koelreuteria paniculata

More Information
  • Received Date: November 27, 2020
  • Revised Date: December 17, 2020
  • Available Online: January 24, 2021
  • Published Date: April 15, 2021
  •   Objective  Chalcone synthase (CHS) is one of the rate-limiting enzymes of phenylpropanoid pathway which plays superior roles in the production of secondary metabolites. In this study, by cloning and bioinformatics analysis of CHS gene and analyzing the relationship between CHS gene expression and flavonoid synthesis of Koelreuteria paniculata, we hope to provide reference for further study of flavonoid biosynthesis pathway related genes, evolution of CHS gene family and coloration mechanism of Koelreuteria paniculata ‘Jinye’.
      Method  CHS genes were isolated and characterized by RT-PCR from Koelreuteria paniculata. And the expression patterns of CHS gene in different tissues of Koelreuteria paniculata and in the leaves of Koelreuteria paniculata and Koelreuteria paniculata ‘Jinye’ in May, July and September were analyzed by qRT-PCR; the differential flavonoid metabolism between Koelreuteria paniculata and Koelreuteria paniculata ‘Jinye’ was screeidues ether.
      Result  Two full-length DNA of CHS genes were cloned named KpCHS1 and KpCHS2 . The KpCHS1 gene sequence was found to be 2 492 bp and comprised an open reading frame of 1 173 bp, encoding for 390 amino acid residues, the KpCHS2 gene sequence was found to be 1 321 bp and comprised an open reading frame of 1 182 bp, encoding for 393 amino acid residues ether. Alignment of the predicted amino acid sequence of KpCHS2 had been shown to have high sequence similarity with KpCHS1, with four CHS specific conserved motifs and one chalcone synthase active site. Furthermore, KpCHS1 and KpCHS2 were generally expressed in roots, stems, leaves and seeds of Koelreuteria paniculata. Among them, the expression of KpCHS2 was the highest in seeds, while that of KpCHS1 was higher in leaves. In roots and stems, the expression levels of the two genes were similar and lower. The expression pattern analysis showed that in Koelreuteria paniculata and Koelreuteria paniculata Jinye’, the expression of KpCHS1 decreased with the increase of months, while the expression of KpCHS2 did not show obvious regularity. In the July plant samples, the expression of KpCHS1 gene in Koelreuteria paniculata ‘Jinye’ was higher than that in Koelreuteria paniculata. Besides, we analyzed the metabonomics of Koelreuteria paniculata and Koelreuteria paniculata ‘Jinye’ leaves in July, and screened out the different flavonoids. It was found that kaempferol-7-o-glucoside, 7-hydroxycoumarin, quercetin-3β-D-glucoside, and kaempferol, naringin, which were important intermediate products in flavonoid biosynthesis, were significantly increased in Koelreuteria paniculata ‘Jinye’ leaves.
      Conclusion  KpCHS1 and KpCHS2 belong to the chalcone synthase family of Koelreuteria paniculata and are highly homologous, but they are distributed in far branches of the phylogenetic tree. It is speculated that the two proteins may have great differences in the catalytic function of amino acid activity. KpCHS1 and KpCHS2 are expressed in roots, stems, leaves and seeds, and higher in leaves and seeds of Koelreuteria paniculata. Our results indicate that the expression of KpCHS1 gene is highly related to the synthesis of flavonoids in Koelreuteria paniculata.
  • [1]
    Tian D, Zhu F, Yan W, et al. Heavy metal accumulation by panicled goldenrain tree (Koelreuteria paniculata) and common elaeocarpus (Elaeocarpus decipens) in abandoned mine soils in southern China[J]. Journal of Environmental Sciences, 2009, 21(3): 340−345. doi: 10.1016/S1001-0742(08)62274-3
    [2]
    Yang L P, Zhu J, Wang P, et al. Effect of Cd on growth, physiological response, Cd subcellular distribution and chemical forms of Koelreuteria paniculata[J]. Ecotoxicology and Environmental Safety, 2018, 160: 10−18. doi: 10.1016/j.ecoenv.2018.05.026
    [3]
    李馨, 姜卫兵, 翁忙玲. 栾树的园林特性及开发利用[J]. 中国农学通报, 2009, 25(1):141−146.

    Li X, Jiang W B, Weng M L. Landscape characters of Koelreuteria paniculata and their exploitation and application[J]. Chinese Agricultural Science Bulletin, 2009, 25(1): 141−146.
    [4]
    张胜, 汤少展, 彭兆丰. 栾树中有效成分的提取、应用及其生物修复综述[J]. 江苏林业科技, 2020, 47(2):52−55. doi: 10.3969/j.issn.1001-7380.2020.02.011

    Zhang S, Tang S Z, Peng Z F. Extraction, application and bioremediation of active components from Koelreuteria paniculata[J]. Journal of Jiangsu Forestry Science & Technology, 2020, 47(2): 52−55. doi: 10.3969/j.issn.1001-7380.2020.02.011
    [5]
    祁新华. 锦叶栾新品种繁育技术[J]. 中国林副特产, 2011, 12(6):62−63. doi: 10.3969/j.issn.1001-6902.2011.06.030

    Qi X H. Breeding techniques of new varieties of Koelreuteria paniculata Jinye’[J]. Forest By-product and Speciality in China, 2011, 12(6): 62−63. doi: 10.3969/j.issn.1001-6902.2011.06.030
    [6]
    李小雨, 梅广云, 李扬, 等. 锦叶栾黄酮含量及叶绿素荧光参数动态分析[J]. 福建林业科技, 2016, 43(2):66−72.

    Li X Y, Mei G Y, Li Y, et al. Dynamic analysis of total flavonoids and chlorophyll fluorescence parameters of Koelreuteria paniculata Jinye’[J]. Journal of Fujian Forestry Science and Technology, 2016, 43(2): 66−72.
    [7]
    褚江涛. 三角枫新品种’齐鲁金’的叶色变异机理研究[D]. 泰安: 山东农业大学, 2020.

    Zhu J T. Study on leaf color variation mechanism of a new cultivar ‘Golden Qilu’ in Acer buergerianum Miq[D]. Taian: Shandong Agriculture University, 2020.
    [8]
    Yazaki K, Sugiyama A, Morita M, et al. Secondary transport as an efficient membrane transport mechanism for plant secondary metabolites[J]. Phytochemistry Reviews, 2008, 7(3): 513−524. doi: 10.1007/s11101-007-9079-8
    [9]
    Toh H C, Wang S Y, Chang S T, et al. Molecular cloning and characterization of flavonol synthase in Acacia confusa[J]. Tree Genetics & Genomes, 2013, 9(1): 85−92.
    [10]
    Liu H L, Su B B, Zhang H, et al. Identification and functional analysis of a flavonol synthase gene from grape hyacinth[J]. Molecules, 2019, 24(8): 1579. doi: 10.3390/molecules24081579
    [11]
    Hou M, Zhang Y, Mu G, et al. Molecular cloning and expression characterization of flavonol synthase genes in peanut (Arachis hypogaea)[J]. Scientific Reports, 2020, 10(1): 17717. doi: 10.1038/s41598-020-74763-w
    [12]
    Czemmel S, Heppel S C, Bogs J, et al. R2R3 MYB transcription factors: key regulators of the flavonoid biosynthetic pathway in grapevine[J]. Protoplasma, 2012, 249(S2): 109−118. doi: 10.1007/s00709-012-0380-z
    [13]
    Kazuki S, Keiko Y S, Ryo N, et al. The flavonoid biosynthetic pathway in Arabidopsis: structural and genetic diversity[J]. Plant Physiology and Biochemistry, 2013, 72: 21−34. doi: 10.1016/j.plaphy.2013.02.001
    [14]
    Ferrer J L, Jez J M, Bowman M E, et al. Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis[J]. Nature Structural Biology, 1999, 6(8): 775−784. doi: 10.1038/11553
    [15]
    Yu H N, Wang L, Sun B, et al. Functional characterization of a chalcone synthase from the liverwort Plagiochasma appendiculatum[J]. Plant Cell Reports, 2015, 34(2): 233−245. doi: 10.1007/s00299-014-1702-8
    [16]
    Awasthi P, Mahajan V, Jamwal V L, et al. Cloning and expression analysis of chalcone synthase gene from Coleus forskohlii[J]. Journal of Genetics, 2016, 95(3): 647−657. doi: 10.1007/s12041-016-0680-8
    [17]
    马立功, 张匀华, 孟庆林, 等. 向日葵查尔酮合酶HaCHS基因的克隆与逆境应答[J]. 中国油料作物学报, 2016, 38(1):19−26. doi: 10.7505/j.issn.1007-9084.2016.01.004

    Ma L G, Zhang Y H, Meng Q L, et al. Cloning and stress response of chalcone synthase gene in sunflower (Helianthus annuus)[J]. Chinese Journal of Oil Crop Sciences, 2016, 38(1): 19−26. doi: 10.7505/j.issn.1007-9084.2016.01.004
    [18]
    Kumar S, Tamura K, Nei M. MEGA: molecular evolutionary genetics analysis software for microcomputers[J]. Bioinformatics, 1994, 10(2): 189−191. doi: 10.1093/bioinformatics/10.2.189
    [19]
    Berkman S J, Roscoe E M, Bourret J C. Comparing self-directed methods for training staff to create graphs using Graphpad Prism[J]. Journal of Applied Behavior Analysis, 2019, 52(1): 188−204. doi: 10.1002/jaba.522
    [20]
    Hu B, Jin J, Guo A Y, et al. GSDS 2.0: an upgraded gene feature visualization server[J]. Bioinformatics, 2015, 31(8): 1296−1297. doi: 10.1093/bioinformatics/btu817
    [21]
    张声祥, 施圆圆, 王晨凯, 等. 异叶天南星查尔酮合成酶和异构酶基因的克隆及蛋白的结构性质分析[J]. 中国中药杂志, 2019, 41(9):1799−1807.

    Zhang S X, Shi Y Y, Wang C K, et al. Cloning and characterization of chalcone synthase and chalcone isomerase genes in Arisaema heterophyllum[J]. China Journal of Chinese Materia Medica, 2019, 41(9): 1799−1807.
    [22]
    Lu X, Zhou W, Gao F. Cloning, characterization and localization Of CHS gene from blood orange, Citrus sinensis (L.) Osbeck cv. Ruby[J]. Molecular Biology Reports, 2009, 36(7): 1983−1990.
    [23]
    Seshime Y, Juvvadi P R, Fujii I, et al. Discovery of a novel superfamily of type Ⅲ polyketide synthases in Aspergillus oryzae[J]. Biochemical and Biophysical Research Communications, 2005, 331(1): 253−260. doi: 10.1016/j.bbrc.2005.03.160
    [24]
    Chen C, Chen H, Zhang Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194−1202. doi: 10.1016/j.molp.2020.06.009
    [25]
    Hahlbrock K, Kreuzaler F. Demonstration of two, up to now, hypothetic enzymes of flavonylglycoside biosynthesis as based on their regulation in plant cell suspension culture[J]. Hoppe-Seyler’s Zeitschrift für physiologische Chemie, 1972, 353(10): 1522.
    [26]
    Jiang C, Schommer C K, Kim S Y, et al. Cloning and characterization of chalcone synthase from the moss, Physcomitrella patens[J]. Phytochemistry, 2006, 67(23): 2531−2540. doi: 10.1016/j.phytochem.2006.09.030
    [27]
    Akada S, Kung S D, Dube S K. The nucleotide sequence of gene 1 of the soybean chalcone synthase multigene family[J]. Plant Molecular Biology, 1991, 16(4): 751−752. doi: 10.1007/BF00023443
    [28]
    关淑文, 王毅, 郝佳波, 等. 竹叶花椒查尔酮合成酶基因克隆与表达[J]. 分子植物育种, 2020, 18(16):5300−5305.

    Guan S W, Wang Y, Hao J B, et al. Cloning and expression of chalcone synthase gene from Zanthoxylum armatum[J]. Molecular Plant Breeding, 2020, 18(16): 5300−5305.
    [29]
    薛英茹. 红花黄酮类生物合成途径查尔酮合酶基因的功能研究[D]. 上海: 第二军医大学, 2017.

    Xue Y R. Flavonoids biosynthesis pathway chalcone synthase genes function research in Carthamus tinctorius L.[D]. Shanghai: The Second Military Medical University, 2017.
    [30]
    Wang Z, Yu Q, Shen W, et al. Functional study of CHS gene family members in citrus revealed a novel CHS gene affecting the production of flavonoids[J]. BMC Plant Biology, 2018, 18(1): 189.
    [31]
    Yahyaa M, Ali S, Davidovich-Rikanati R, et al. Characterization of three chalcone synthase-like genes from apple (Malus × domestica Borkh.)[J]. Phytochemistry, 2017, 140: 125−133. doi: 10.1016/j.phytochem.2017.04.022
    [32]
    Wang C, Zhi S, Liu C, et al. Isolation and characterization of a novel chalcone synthase gene family from mulberry[J]. Plant Physiology and Biochemistry, 2017, 115: 107−118. doi: 10.1016/j.plaphy.2017.03.014
    [33]
    姜翠翠, 王玉珍, 叶新福. 油果实中查尔酮合成酶基因PsCHS的克隆表达分析及其启动子的分离[J]. 福建农业学报, 2016, 31(1):16−21. doi: 10.3969/j.issn.1008-0384.2016.01.004

    Jiang C C, Wang Y Z, Ye X F. Cloning, expression analysis and promoter isolation of chalcone-synthase gene from fruits of nane, Prunus salicina Lindl. var. cordata[J]. Fujian Journal of Agricultural Sciench, 2016, 31(1): 16−21. doi: 10.3969/j.issn.1008-0384.2016.01.004
    [34]
    Pan J Q, Tong X R, Guo B L. Progress of effects of light on plant flavonoids[J]. China Journal of Chinese Materia Medica, 2016, 41(21): 3897−3903.
    [35]
    Ryan K G, Swinny E E, Winefield C, et al. Flavonoids and UV photoprotection in Arabidopsis mutants[J]. Ztschrift Für Naturforschung C, 2001, 56(9−10): 745−754.
    [36]
    Miranda M, Ralph S G, Mellway R, et al. The transcriptional response of hybrid poplar (Populus trichocarpa × P. deltoides) to infection by Melampsora medusae leaf rust involves induction of flavonoid pathway genes leading to the accumulation of proanthocyanidins[J]. Molecular Plant-Microbe Interactions, 2007, 20(7): 816−831. doi: 10.1094/MPMI-20-7-0816
    [37]
    Figueiredo-Gonzalez M, Cancho-Grande B, Boso S, et al. Evolution of flavonoids in Mouraton berries taken from both bunch halves[J]. Food Chemistry, 2013, 138(2−3): 1868−1877. doi: 10.1016/j.foodchem.2012.11.083
    [38]
    Czemmel S, Hll J, LoyolA R, et al. Transcriptome-wide identification of novel UV-B- and light modulated flavonol pathway genes controlled by VviMYBF1[J]. Frontiers in Plant Science, 2017, 8: 1084. doi: 10.3389/fpls.2017.01084
    [39]
    Liu Y Y, Chen X R, Wang J P, et al. Transcriptomic analysis reveals flavonoid biosynthesis of Syringa oblata Lindl. in response to different light intensity[J]. BMC Plant Biology, 2019, 19(1): 487. doi: 10.1186/s12870-019-2100-8
    [40]
    Liu Y J, Wang Z L, Gou L Y, et al. Content determination of rutin and sophoricoside in FRUCTUS SOPHORAE at different harvesting time[J]. Medicinal Plant, 2012, 2(413): 12−14.
    [41]
    杨舜博. 银杏变异斑叶呈色机理研究[D]. 扬州: 扬州大学, 2018.

    Yang S B. Mechanism of leaf coloration in the variety of Ginkgo biloba[D]. Yangzhou: Yangzhou University, 2018.
    [42]
    常青山. 菊花黄绿叶突变体黄叶与绿叶组织形成的生理与分子机制比较研究[D].南京: 南京农业大学, 2011.

    Chang Q S. Comparative study on the physiological and molecular mechanism of the mutagenesis of the yellow and green leaf tissue in Chrysanthemum yellow-green leaf mutant[D]. Nanjing: Nanjing Agricultural University, 2011.
    [43]
    Whitelam G C, Franklin K A. Light signals, phytochromes and cross-talk with other environmental cues[J]. Journal of Experimental Botany, 2004, 55(395): 271−276.
    [44]
    Steyn W J, Wand S J E, Holcroft D M. Anthocyanins in vegetative tissues: a proposed unified function in photoprotection[J]. New Phytologist, 2002, 155(3): 349−361. doi: 10.1046/j.1469-8137.2002.00482.x
    [45]
    Song L B, Ma Q P, Zou Z W, et al. Molecular link between leaf coloration and gene expression of flavonoid and carotenoid biosynthesis in Camellia sinensis cultivar ‘Huangjinya’[J]. Frontiers in Plants Science, 2017, 8: 803. doi: 10.3389/fpls.2017.00803
    [46]
    Gang H, Li R, Zhao Y, et al. Loss of GLK1 transcription factor function reveals new insights in chlorophyll biosynthesis and chloroplast development[J]. Journal of Experimental Botany, 2019, 70(12): 3125−3138. doi: 10.1093/jxb/erz128
  • Related Articles

    [1]Liu Lipan, Yang Aihong, Liu Tengyun, Zhong Yongda, Zhou Hua, Yu Faxin. Cloning, subcellular localization and expression analysis of telomere genes CcTBP1 and CcPOT1 in ancient Cinnamomum camphora[J]. Journal of Beijing Forestry University, 2022, 44(12): 1-11. DOI: 10.12171/j.1000-1522.20210179
    [2]Hao Yingying, Zhou Mingzhu, Han Kaiyuan, Yang Xiong, Gao Yuhan, Chen Zhong. Cloning and expression analysis of three members of PtYABBYs in Populus tomentosa[J]. Journal of Beijing Forestry University, 2022, 44(1): 48-57. DOI: 10.12171/j.1000-1522.20210277
    [3]Lin Jiancong, Sun Yue, Liu Yonglong, Wang Jinda, Wang Rong, Zhang Feiping. Cloning and expression analysis of APN1 gene from Lymantria xylina[J]. Journal of Beijing Forestry University, 2021, 43(9): 94-100. DOI: 10.12171/j.1000-1522.20210186
    [4]CAO Shan, JIANG Lu-yao, LI Li-hong, YAO Xiao-yun, ZHANG Qiang, HAN Jing-yi, WANG Ying, LI Hui, LU Hai.. Cloning and enzymatic analysis of medium-chain acyl coenzyme A synthetase in Populus trichocarpa.[J]. Journal of Beijing Forestry University, 2016, 38(7): 9-15. DOI: 10.13332/j.1000-1522.20160121
    [5]GUO Peng, ZHANG Shi-gang, XING Xin, JIANG Jian. Cloning and function analysis of PdPP2C from Populus deltoides[J]. Journal of Beijing Forestry University, 2015, 37(2): 100-106. DOI: 10.13332/j.cnki.jbfu.2015.02.018
    [6]SHI Yu-bo, ZHANG Di, SHEN Xiao-hui, WANG Ling, ZHUO Li-huan. Molecular cloning and expression pattern analysis of a CONSTANS homolog from Agapanthus praecox ssp. orientalis.[J]. Journal of Beijing Forestry University, 2014, 36(4): 113-120. DOI: 10.13332/j.cnki.jbfu.2014.04.021
    [7]PAN Xiang, LI Na, LI Yin-jun, WEI Hong-yi, ZHANG Lei, LU Hai. Cloning expression and characterization of an ascorbate peroxidase gene PtAPX2 from Populus tomentosa.[J]. Journal of Beijing Forestry University, 2013, 35(1): 36-44.
    [8]LIU Jun-mei, LI Hao, CUI Dong-qing, YE Mei-xia, SPAN lang, US style, pt solid, solid windowtext, ZHANG Zhi-yi, AN Xin-min. Isolation labA-like1 gene from Populus tomentosa: expression of PtlabA-like1 in P. tomentosa and construction of expression vector[J]. Journal of Beijing Forestry University, 2011, 33(4): 55-62.
    [9]LIAN Qing-long, HAN Hao-jun, XIN Hai-bo, CHEN Li, HU Xiao-yan, HE Xiu-li, YI Ming-fang. Cloning and expression of GhAOS gene from Gladiolus hybridus[J]. Journal of Beijing Forestry University, 2011, 33(2): 77-83.
    [10]ZHANG Xing-yao, TAN Qing-feng, HE Wei, LIANG Jun, LIU Hui-xiang. Cloning and sequence analysis on cDNA of cysteine proteinase inhibitor gene from Populus tomentosa Carr[J]. Journal of Beijing Forestry University, 2007, 29(6): 23-28. DOI: 10.13332/j.1000-1522.2007.06.010
  • Cited by

    Periodical cited type(3)

    1. 孙媛媛,陈佳宁,倪涛,任昊杰,蔡鹏宁,彭显程,张飞萍,王荣. 木毒蛾钙黏蛋白基因的克隆及其表达与结构特点分析. 福建农林大学学报(自然科学版). 2025(01): 17-25 .
    2. 陈佳宁,孙媛媛,任昊杰,孙悦,刘用垄,左城,王荣. 木毒蛾成虫触角感器超微结构观察. 福建农林大学学报(自然科学版). 2023(04): 445-449 .
    3. 孙悦,刘用垄,孙媛媛,任昊杰,陈佳宁,张飞萍,王荣. 木毒蛾蛹性别的快速鉴定. 福建农林大学学报(自然科学版). 2023(05): 628-631 .

    Other cited types(1)

Catalog

    Article views (1239) PDF downloads (59) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return