Citation: | Lin Jiancong, Sun Yue, Liu Yonglong, Wang Jinda, Wang Rong, Zhang Feiping. Cloning and expression analysis of APN1 gene from Lymantria xylina[J]. Journal of Beijing Forestry University, 2021, 43(9): 94-100. DOI: 10.12171/j.1000-1522.20210186 |
[1] |
Fibiger M, Lafonatine J D. A review of the higher classification of the Noctuoidea (Lepidoptera) with special reference to the Holarctic fauna[J]. Experiana, 2005, 11: 7−92.
|
[2] |
Lafontaine J D, Fibiger M. Revised higher classification of the Noctuoidea (Lepidoptera)[J]. Canadian Entomologist, 2006, 138(5): 610−635. doi: 10.4039/n06-012
|
[3] |
Zahiri R, Kitching I J, Lafontaine J D, et al. A new molecular phylogeny offers hope for a stable family level classification of the Noctuoidea (Lepidoptera)[J]. Zoologica Scripta, 2011, 40(2): 158−173. doi: 10.1111/j.1463-6409.2010.00459.x
|
[4] |
Pogue M G, Schaefer P W. A review of selected species of Lymantria Hübner [1819] including three new species (Lepidoptera: Noctuidae: Lymantriinae) from subtropical and temperate regions of Asia, some potentially invasive to North America[M]. Washington D C: United States Department of Agriculture, Forest Health Technology Enterprise Team, 2007.
|
[5] |
Dewaard J R, Mitchell A, Keena M A, et al. Towards a global barcode library for Lymantria (lepidoptera: lymantriinae) tussock moths of biosecurity concern[J/OL]. PLoS One, 2010, 5(12): e14280[2010−12−09]. http://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC3000334&blobtype=pdf.
|
[6] |
周志强. 龙眼木毒蛾的发生规律及防治策略探究[J]. 现代农业, 2016(6):52−53. doi: 10.3969/j.issn.1008-0708.2016.06.035
Zhou Z Q. Research on the occurrence and control strategies of Lymantria xylina[J]. Modern Agriculture, 2016(6): 52−53. doi: 10.3969/j.issn.1008-0708.2016.06.035
|
[7] |
De B H, F Lemille. Presence of flagellar antigenic subfactors in serotype 3 of Bacillus thuringiensis[J]. Journal of Invertebrate Pathology, 1970, 15(1): 139. doi: 10.1016/0022-2011(70)90113-8
|
[8] |
Goldberg L J, Margalit J. A bacterial spore demonstrating rapid larvicidal activity against Anopheles sergentii, Uranotaenia unguiculata, Culex univittatus, Aedes aegypti and Culex pipiens[J]. Mosquito News, 1977, 37(3): 355−358.
|
[9] |
Knight P J K, Crickmore N, Ellar D J. The receptor for Bacillus thuringiensis CrylA(c) delta-endotoxin in the brush border membrane of the lepidopteran Manduca sexta is aminopeptidase N[J]. Molecular Microbiology, 1994, 11(3): 429−436. doi: 10.1111/j.1365-2958.1994.tb00324.x
|
[10] |
Pigott C R, Ellar D J. Role of receptor in Bacillus thuringiensis crystal toxin activity[J]. Microbiology and Molecular Biology Reviews, 2007, 71: 255−281. doi: 10.1128/MMBR.00034-06
|
[11] |
Wang G, Kongming W. Gene cloning and expression of cadherin in midgut of Helicoverpa armigera and its Cry1A binding region[J]. Science in China, 2005, 48(4): 346−356. doi: 10.1360/03yc0273
|
[12] |
Bravo A, Gill S S, Soberón M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control[J]. Toxicon, 2007, 49(4): 423−435. doi: 10.1016/j.toxicon.2006.11.022
|
[13] |
马文静, 韩兰芝, 尹新明, 等. 鳞翅目昆虫氨肽酶N与Bt毒素的结合及其与Bt抗性的关系[J]. 环境昆虫学报, 2011, 33(3):147−153.
Ma W J, Han L Z, Yi X M, et al. Binding of Bt Cry toxins to lepidopteran midgut aminopeptidase N and the relationship between their interactions with Bt resistance[J]. Journal of Environmental Entomology, 2011, 33(3): 147−153.
|
[14] |
Jenkins J L, Dean D H. Binding specificity of Bacillus thuringiensis Cry1Aa for purified, native Bombyx mori aminopeptidase N and cadherin-like receptors[J]. BMC Biochemistry, 2001, 2(1): 1−8. doi: 10.1186/1471-2091-2-1
|
[15] |
Mi K L, Dean D H. Inconsistencies in determining Bacillus thuringiensis, toxin binding sites relationship by comparing competition assays with Ligand Blotting[J]. Biochemical and Biophysical Research Communications, 1996, 220(3): 575−580. doi: 10.1006/bbrc.1996.0445
|
[16] |
Lorence A, Darszon A, Bravo A. Aminopeptidase dependent pore formation of Bacillus thuringiensis CrylAc toxin on Trichoplusia nimembranes[J]. FEBS Letters, 1997, 414(2): 303−307. doi: 10.1016/S0014-5793(97)01014-4
|
[17] |
Jenkins J L, Lee M K, Valaitis A P, et al. Bivalent sequential binding model of a Bacillus thuringiensis toxin to gypsy moth aminopeptidase N receptor[J]. Journal of Biological Chemistry, 2000, 275(19): 23−31.
|
[18] |
Yaoi K, Nakanishi K, Kadotani T, et al. cDNA cloning and expression of Bacillus thuringiensis Cry1Aa toxin binding 120 kDa aminopeptidase N from Bombyx mori[J]. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 1999, 1444(1): 131−137. doi: 10.1016/S0167-4781(98)00250-4
|
[19] |
Ferre J, VanRie J. Biochemistry and genetics of insect resistance to Bacillus thuringiensis[J]. Annual Review Entomology, 2002, 47: 501−533. doi: 10.1146/annurev.ento.47.091201.145234
|
[20] |
Kumar S, Tamura K, Nei M. MEGA: molecular evolutionary genetics analysis software for microcomputers[J]. Bioinformatics, 1994, 10(2): 189−191. doi: 10.1093/bioinformatics/10.2.189
|
[21] |
喻子牛. 苏云金杆菌[M]. 北京: 科学出版社, 1990: 20−21.
Yu Z N. Bacillus thuringiensis[M]. Beijing: Science Press, 1990: 20−21.
|
[22] |
Schnepf E, Crickmore N, Van R J, et al. Bacillus thuringiensis and its pesticidal crystal proteins[J]. Microbiology and Molecular Biology Reviews, 1998, 62(3): 775−806. doi: 10.1128/MMBR.62.3.775-806.1998
|
[23] |
Cristofoletti P T, Terra W R. The role of amino acid residues in the active site of a midgut microvillar aminopeptidase from the beetle Tenebrio molitor[J]. Biochimica et Biophysica Acta, 2000, 1479(1): 185−195.
|
[24] |
Zhu Y C, Kramer K J, Oppert B, et al. cDNAs of aminopeptidase-like protein genes from Plodia interpunctella strains with different susceptibilities to Bacillus thuringiensis toxins[J]. Insect Biochemistry and Molecular Biology, 2000, 30(3): 215−224. doi: 10.1016/S0965-1748(99)00118-6
|
[25] |
Crave C M, Bel Y, Lee S, et al. Study of aminopeptidase N gene family in the Lepidopterans Ostrinia nubilalis and Bombyx mori: Sequences, mapping and expression[J]. Insect Biochemistry and Molecular Biology, 2010, 40: 506−515. doi: 10.1016/j.ibmb.2010.04.010
|
[26] |
Chauhan V K, Dhania N K, Lokya V, et al. Midgut aminopeptidase N expression profile in castor semilooper (Achaea janata) during sublethal Cry toxin exposure[J]. Journal of Biosciences, 2021, 46(1): 209−213.
|
[27] |
Knight P J K, Carroll J, Ellar D J. Analysis of glycan structures on the 120 kDa aminopeptidase N of Manduca sexta and their interactions with Bacillus thuringiensis Cry1Ac toxin[J]. Insect Biochemistry and Molecular Biology, 2004, 34(1): 101−112. doi: 10.1016/j.ibmb.2003.09.007
|
[28] |
展恩玲. 梨小食心虫中肠氨肽酶N3(GmolAPN3)基因的克隆、表达及功能分析[D]. 杨凌: 西北农林科技大学, 2018.
Zhan E L. Gene cloning, expression and functional analysis of aminopeptidase N3(GmolAPN3) from midgut of the oriental fruit moth, Grapholitha molesta[D]. Yangling: Northwest A&F University, 2018.
|
[29] |
Zhang Y, Dan Z, Yan X, et al. Identification and characterization of Hyphantria cunea aminopeptidase N as a binding protein of Bacillus thuringiensis Cry1Ab toxin[J]. International Journal of Molecular Sciences, 2017, 18(12): 2575. doi: 10.3390/ijms18122575
|
[30] |
牛琳琳, ZAW Lin Naing, 张彩虹, 等. 棉铃虫APN基因家族系统进化与功能分析[J]. 中国生物防治学报, 2021, 37(1):91−101.
Niu L L, Zaw L N, Zhang C H, et al. Phylogenetic evolution and function of APN gene family in Helicoverpa armigera[J]. Chinese Journal of Biological Control, 2021, 37(1): 91−101.
|
[31] |
王兴云, 马文静, 韩兰芝, 等. 大螟中肠氨肽酶N基因的克隆及表达谱分析[J]. 昆虫学报, 2012, 55(9):1022−1030.
Wang X Y, Ma W J, Han Z L, et al. Cloning and expression profiling of aminopeptidase N encoding gene in larval midgut of Sesamia inferens[J]. Acta Entomologica Sinica, 2012, 55(9): 1022−1030.
|
[32] |
Wang J D, Zhang J S, Guo Y F, et al. Molecular cloning, characterization, and expression profiling analysis of Cry toxin receptor genes from sugarcane shoot borer Chilo infuscatellus (Snellen)[J]. Pesticide Biochemistry and Physiology, 2019, 157: 186−195. doi: 10.1016/j.pestbp.2019.03.023
|