Citation: | Lü Yipin, Liang Nansong, Song Tingting, Cui Jinghong, Yu Lei, Zhan Yaguang. Cloning and expression pattern analysis of FmPIF gene family in Fraxinus mandshurica[J]. Journal of Beijing Forestry University, 2022, 44(1): 58-68. DOI: 10.12171/j.1000-1522.20200379 |
[1] |
李秀坤, 许冬清. 植物光信号转导[J]. 自然杂志, 2019, 41(3):183−187. doi: 10.3969/j.issn.0253-9608.2019.03.004
Li X K, Xu D Q. Plant light signal transduction[J]. Journal of Nature, 2019, 41(3): 183−187. doi: 10.3969/j.issn.0253-9608.2019.03.004
|
[2] |
Gabriela T O. The Arabidopsis basic/helix-loop-helix transcription factor family[J]. The Plant Cell, 2003, 8(15): 1749−1770.
|
[3] |
Yu Z. A quartet of pif bhlh factors provides a transcriptionally centered signaling hub that regulates seedling morphogenesis through differential expression-patterning of shared target genes in Arabidopsis [J/OL]. PLoS Genetics, 2013, 1(9): e1003244[2020−10−31]. https://doi.org/10.1371/journal.pgen.1003244.
|
[4] |
Liu X, Chen C Y, Wang K C, et al. Phytochrome interacting factor3 associates with the histone deacetylase hda15 in repression of chlorophyll biosynthesis and photosynthesis in etiolated Arabidopsis seedlings[J]. The Plant Cell, 2013, 25(4): 1258−1273. doi: 10.1105/tpc.113.109710
|
[5] |
Leivar P, Monte E, Oka Y, et al. Multiple phytochrome-interacting bhlh transcription factors repress premature seedling photomorphogenesis in darkness[J]. Current Biology, 2008, 18(23): 1815−1823. doi: 10.1016/j.cub.2008.10.058
|
[6] |
Leivar P, Quail P H. Pifs: pivotal components in a cellular signaling hub[J]. Trends in Plant Science, 2011, 16(1): 19−28. doi: 10.1016/j.tplants.2010.08.003
|
[7] |
杨剑飞, 王宇, 杨琳, 等. 光敏色素互作因子PIFs是整合多种信号调控植物生长发育的核心元件[J]. 植物生理学报, 2014, 50(8):1109−1118.
Yang J F, Wang Y, Yang L, et al. Phytochrome interaction factors pifs are the core elements that integrate multiple signals to regulate plant growth and development[J]. Acta Plant Physiology, 2014, 50(8): 1109−1118.
|
[8] |
任小芸. ZmPIFs基因的克隆、表达及AtPIFs基因的抗旱功能研究[D]. 扬州: 扬州大学, 2017.
Ren X Y. Cloning and expression of ZmPIFs gene and research on drought resistance function of AtPIFs gene[D]. Yangzhou: Yangzhou University, 2017.
|
[9] |
Wang F, Chen X, Dong S, et al. Crosstalk of PIF4 and DELLA modulates CBF transcript and hormone homeostasis in cold response in tomato[J]. Plant Biotechnology Journal, 2020, 18(4): 1041−1055. doi: 10.1111/pbi.13272
|
[10] |
Lau O S, Deng X W. Plant hormone signaling lightens up: integrators of light and hormones[J]. Current Opinion in Plant Biology, 2010, 13(5): 571−577. doi: 10.1016/j.pbi.2010.07.001
|
[11] |
Nozue K, Harmer S L, Maloof J N. Genomic analysis of circadian clock-, light-, and growth-correlated genes reveals phytochrome-interacting factor 5 as a modulator of auxin signaling in Arabidopsis[J]. Plant Physiology, 2011, 156(1): 357−372. doi: 10.1104/pp.111.172684
|
[12] |
Feng S H, Cristina M, Giuliana G, et al. Coordinated regulation of Arabidopsis thaliana development by light and gibberellins[J]. Nature, 2008, 451: 475−479.
|
[13] |
Richter R, Behringer C, Muller I K, et al. The GATA-type transcription factors GNC and GNL/CGA1 repress gibberellin signaling downstream from DELLA proteins and PHYTOCHROME-INTERACTING FACTORS[J]. Genes & Development, 2010, 24(18): 2093−2104.
|
[14] |
Keara A F, Sang H L, Dhaval P, et al. Phytochrome-interacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature[J]. PNAS, 2011, 108(50): 20231−20235. doi: 10.1073/pnas.1110682108
|
[15] |
Friml J Í, Wisniewska J, Benková E, et al. Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis[J]. Nature, 2002, 415: 806−809. doi: 10.1038/415806a
|
[16] |
Sun J Q, Qi L L, Li Y N, et al. Pif4-mediated activation of yucca8 expression integrates temperature into the auxin pathway in regulating Arabidopsis hypocotyl growth. [J/OL]. PLoS Genetics, 2012, 8(3): e1002594[2020−09−20]. https://doi.org/10.1371/journal.pgen.1002594.
|
[17] |
Leivar P, Tepperman J M, Cohn M M, et al. Dynamic antagonism between phytochromes and PIF family basic helix-loop-helix factors induces selective reciprocal responses to light and shade in a rapidly responsive transcriptional network in Arabidopsis[J]. The Plant Cell, 2012, 24(4): 1398−1419. doi: 10.1105/tpc.112.095711
|
[18] |
Leivar P, Monte E. PIFs: systems integrators in plant development[J]. The Plant Cell, 2014, 26(1): 56−78. doi: 10.1105/tpc.113.120857
|
[19] |
Bernardo-García S, Delucas M, Martínez C, et al. BR-dependent phosphorylation modulates PIF4 transcriptional activity and shapes diurnal hypocotyl growth.[J]. Genes & Development, 2014, 28(15): 1681−1694.
|
[20] |
Kim J, Kang H, Park J, et al. PIF1-interacting transcription factors and their binding sequence elements determine the in vivo targeting sites of PIF1[J]. The Plant Cell, 2016, 28(6): 1388−1405. doi: 10.1105/tpc.16.00125
|
[21] |
周明琦. CBF信号途径在低温下对植物生长的调控及其育种应用[D]. 上海: 复旦大学, 2013.
Zhou M Q. Regulation of CBF signaling pathway on plant growth under low temperature and its breeding application [D]. Shanghai: Fudan University, 2013.
|
[22] |
Jiang B, Shi Y, Zhang X, et al. PIF3 is a negative regulator of the CBF pathway and freezing tolerance in Arabidopsis[J]. PNAS, 2017, 114(32): E6695−E6702. doi: 10.1073/pnas.1706226114
|
[23] |
王峰. PhyA、HY5和PIF4在光质调控番茄低温抗性中的机制研究[D]. 杭州: 浙江大学, 2017.
Wang F. Mechanism of Phya, HY5 and PIF4 in light quality regulation of low temperature resistance in tomato [D]. Hangzhou: Zhejiang University, 2017.
|
[24] |
Gao Y, Jiang W, Dai Y, et al. A maize phytochrome-interacting factor 3 improves drought and salt stress tolerance in rice[J]. Plant Molecular Biology, 2015, 87(4/5): 413−428.
|
[25] |
Kumar S V, Lucyshyn D, Jaeqer K E, et al. Transcription factor PIF4 controls the thermosensory activation of flowering [J]. Nature, 2012, 484: 242−245.
|
[26] |
赵晓玲. 植物中与光敏色素相互作用的因子PIFs[J]. 植物生理学通讯, 2009, 45(6):531−536.
Zhao X L. PIFs interacting with phytochrome in plants[J]. Journal of Plant Physiology, 2009, 45(6): 531−536.
|
[27] |
Soy J, Leivar P, Nahuel G, et al. Phytochrome-imposed oscillations in PIF3 protein abundance regulate hypocotyl growth under diurnal light/dark conditions in Arabidopsis[J]. The Plant Journal, 2012, 71(3): 390−401.
|
[28] |
Herbert K, Hans-Joachim G. The protein protocols handbook, 2nd edition [M]. Totowa: Humana Press, 2002.
|
[29] |
孙平楠, 周小玲, 王正祥. 信号肽生物信息学分析在Neurospora crassa phyA基因鉴定中的应用[J]. 南方医科大学学报, 2009, 29(6):1098−1101. doi: 10.3321/j.issn:1673-4254.2009.06.003
Sun P N, Zhou X L, Wang Z X. Application of signal peptide bioinformatics analysis in identification of Neurospora crassa phyA gene[J]. Journal of Southern Medical University, 2009, 29(6): 1098−1101. doi: 10.3321/j.issn:1673-4254.2009.06.003
|
[30] |
Thomas N P, Soren B, Gunnar V H, et al. Signalp 4.0: discriminating signal peptides from transmembrane regions[J]. Nature Methods, 2011, 8(10): 785−786. doi: 10.1038/nmeth.1701
|
[31] |
Horton P, Park K J, Obayashi T, et al. Wolf psort: protein localization predictor [J]. Nucleic Acids Research, 2007, 35(Suppl.2): W585−W587.
|
[32] |
Hu B, Jin L, Guo A Y, et al. GSDS 2.0: an upgraded gene feature visualization server[J]. Bioinformatics, 2015, 31(8): 1296−1297. doi: 10.1093/bioinformatics/btu817
|
[33] |
Ma B, Yuan Y, Gao M, et al. Genome-wide identification, molecular evolution, and expression divergence of aluminum-activated malate transporters in apples[J]. International Journal of Molecular Sciences, 2018, 19(9): 2807−2809. doi: 10.3390/ijms19092807
|
[34] |
Larkin M. Clustal W and Clustal X version 2.0[J]. Bioinformatics, 2007, 23(21): 2947−2948. doi: 10.1093/bioinformatics/btm404
|
[35] |
Olsson H, Belfrage P. Phosphorylation and dephosphorylation of hormone-sensitive lipase interactions between the regulatory and basal phosphorylation sites[J]. FEBS Letters, 1988, 232(1): 78−82.
|
[36] |
任小龙, 詹亚光, 梁雪, 等. 水曲柳花发育过程中AG、SOC1基因表达的qRT-PCR分析[J]. 植物研究, 2015, 35(4):612−617. doi: 10.7525/j.issn.1673-5102.2015.04.021
Ren X L, Zhan Y G, Liang X, et al. QRT-PCR analysis of AG and SOC1 gene expression during flower development of Fraxinus mandshurica[J]. Plant Research, 2015, 35(4): 612−617. doi: 10.7525/j.issn.1673-5102.2015.04.021
|
[37] |
韦雪芳, 王冬梅, 刘思, 等. 信号肽及其在蛋白质表达中的应用[J]. 生物技术通报, 2006(6):38−42. doi: 10.3969/j.issn.1002-5464.2006.06.009
Wei X F, Wang D M, Liu S, et al. Signal peptide and its application in protein expression[J]. Biotechnology Bulletin, 2006(6): 38−42. doi: 10.3969/j.issn.1002-5464.2006.06.009
|
[38] |
王镜岩, 朱圣庚, 徐长法. 生物化学[M]. 北京: 高等教育出版社, 2002.
Wang J Y, Zhu S G, Xu C F. Biochemistry[M]. Beijing: Higher Education Press, 2002.
|
[39] |
宋毓峰. 林烟草钾转运体基因NsHAK11的克隆与功能分析[D]. 北京: 中国农业科学院, 2014.
Song Y F. Cloning and functional analysis of tobacco potassium transporter gene NsHAK11 [D]. Beijing: Chinese Academy of Agricultural Sciences, 2014.
|
[40] |
高凯. NJ进化树构建方法的改进及其应用[D]. 北京: 北京工业大学, 2008.
Gao K. Improvement and application of NJ evolutionary tree construction method [D]. Beijing: Beijing University of Technology, 2008.
|
[41] |
Jeong J, Choi G. Phytochrome-interacting factors have both shared and distinct biological roles[J]. Molecules and Cells, 2013, 35(5): 371−380. doi: 10.1007/s10059-013-0135-5
|
[42] |
Alabadí D, Gallego-Bartolomé J, Orlando L, et al. Gibberellins modulate light signaling pathways to prevent Arabidopsis seedling de-etiolation in darkness[J]. Plant Journal, 2010, 53(2): 324−335.
|
[43] |
Shen H, Zhu L, Castillon A, et al. Light-induced phosphorylation and degradation of the negative regulator PIF1 depends upon its direct physical interactions with photoactivated phytochromes[J]. The Plant Cell, 2008, 20(6): 1586−1602. doi: 10.1105/tpc.108.060020
|
[44] |
宋晓祎. 玉米中ZmPIFs基因的克隆与功能分析[D]. 泰安: 山东农业大学, 2016.
Song X Y. Cloning and functional analysis of ZmPIFs gene in Zea mays [D]. Taian: Shandong Agricultural University, 2016.
|
[45] |
刘浩浩. 过表达ZmPIF3转基因拟南芥植株抗盐分析[D]. 郑州: 河南农业大学, 2018.
Liu H H. Salt tolerance analysis of transgenic Arabidopsis plants overexpressing ZmPIF3 [D]. Zhengzhou: Henan Agricultural University, 2018.
|
[46] |
刘春浩, 梁楠松, 于磊, 等. 水曲柳TCP4转录因子克隆及胁迫和激素下的表达分析[J]. 北京林业大学学报, 2017, 39(6):22−31.
Liu C H, Liang N S, Yu L, et al. Cloning and expression analysis of TCP4 transcription factor in Fraxinus mandshurica[J]. Journal of Beijing Forestry University, 2017, 39(6): 22−31.
|
[47] |
Zheng P F, Wang X, Yang Y Y, et al. Identification of phytochrome-interacting factor family members and functional analysis of MdPIF4 in Malus domestica [J/OL]. International Journal of Molecular Sciences, 2020, 21(19): 7350[2020−11−11] . https://doi.org/10.3390/ijms21197350.
|
[48] |
潘教文, 赵术珍, 张烨, 等. 光敏色素互作因子(PIFs)对植物生长发育的调控[J]. 山东农业科学, 2014, 46(6):150−156.
Pan J W, Zhao S Z, Zhang Y, et al. Regulation of phytochrome interaction factors (PIFs) on plant growth and development[J]. Shandong Agricultural Sciences, 2014, 46(6): 150−156.
|
[49] |
Oh E, Kang H, Yamaguchi S, et al. Genome-wide analysis of genes targeted by PHYTOCHROME INTERACTING FACTOR 3-LIKE 5 during seed germination in Arabidopsis[J]. The Plant Cell, 2009, 21(2): 403−419. doi: 10.1105/tpc.108.064691
|