• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhong Shanchen, Wu Shu, Wang Li, Su Xiaohua, Zhang Bingyu. Spatio-temporal expression of candidate genes PeCFL1 and PeCFL2 in seed hair development of poplar[J]. Journal of Beijing Forestry University, 2022, 44(5): 1-7. DOI: 10.12171/j.1000-1522.20200403
Citation: Zhong Shanchen, Wu Shu, Wang Li, Su Xiaohua, Zhang Bingyu. Spatio-temporal expression of candidate genes PeCFL1 and PeCFL2 in seed hair development of poplar[J]. Journal of Beijing Forestry University, 2022, 44(5): 1-7. DOI: 10.12171/j.1000-1522.20200403

Spatio-temporal expression of candidate genes PeCFL1 and PeCFL2 in seed hair development of poplar

More Information
  • Received Date: December 19, 2020
  • Revised Date: April 05, 2022
  • Available Online: April 27, 2022
  • Published Date: May 24, 2022
  •   Objective  Poplar seed hair is produced by the development of epidermal cells of the placenta at the base of ovary and it has become one of the environmental problems in northern cities of China in recent years. At present, the research on poplar seed hair is not in-depth. In this study, two genes (PeCFL1 and PeCFL2), which are differentially expressed during the development of poplar ovary and related to cotton fiber development, were selected as candidate genes for the regulation of seed hair development. We studied the spatio-temporal specificity of PeCFL1 and PeCFL2 genes expressed in Populus × euramericana ‘Bofeng 3’ to lay a foundation for further study on the regulation of the two genes during the development of poplar seed hair and improvement of poplar varieties by genetic engineering.
      Method  After 4, 5, 6, 7, 8, 12 days of hydroponic culture, the female inflorescences of Populus × euramericana ‘Bofeng 3’ were collected, fixed, paraffin embedded and sliced to observe the ovary development and the morphogenesis of poplar seed hair. Real time quantitative PCR was used to detect the expression patterns of PeCFL1 and PeCFL2 genes during the development of female inflorescence and in vegetative organs such as roots, stems and leaves of ‘Bofeng 3’ poplar. The tissue expression specificity of PeCFL1 and PeCFL2 genes in poplar flower organs was detected by in situ hybridization, and the temporal and spatial expression patterns of candidate genes PeCFL1 and PeCFL2 related to the regulation of poplar floc development were revealed.
      Result  After 12 days of hydroponic culture, fibrous structure appeared at the bottom of ovary placentation and poplar seed hair began to form. PeCFL1 and PeCFL2 were expressed in roots, stems, leaves and axillary buds of female flower branches of ‘Bofeng 3’ poplar. For the female inflorescence of hydroponic culture, a small amount of PeCFL1 and PeCFL2 were expressed from the 4th to the 7th day, and the expression levels began to increase significantly after the 8th day. Then the expression levels continued to increase significantly on the 12th day, at the same time, the fibrous structure at the bottom of placenta could be seen in paraffin section. The results of in situ hybridization showed that PeCFL1 and PeCFL2 genes were expressed in ovary wall and placenta of poplar ovary.
      Conclusion  The expression of PeCFL1 and PeCFL2 is significantly increased when the fibrous structure appeared at the bottom of the placentation in female flowers of Populus × euramericana ‘Bofeng 3’, and they are specifically expressed in the fibrous structure at the bottom of the placenta and the ovary wall, indicating that they are closely related to the regulation of seed hair development, and can be used as target genes for genetic engineering improvement of poplar seed hair.
  • [1]
    Bai S, Wu H, Zhang J, et al. Genome assembly of salicaceae Populus deltoides (eastern cottonwood) I-69 based on nanopore sequencing and Hi-C technologies[J]. Journal of Heredity, 2021, 112(3): 303−310. doi: 10.1093/jhered/esab010
    [2]
    Lin Y C, Wang J, Delhomme N, et al. Functional and evolutionary genomic inferences in Populus through genome and population sequencing of American and European aspen[J]. PNAS, 2018, 115(46): E10970−E10978.
    [3]
    Liu Y J, Wang X R, Zeng Q Y. De novo assembly of white poplar genome and genetic diversity of white poplar population in Irtysh River Basin in China[J]. Science China Life Sciences, 2019, 62(5): 609−618. doi: 10.1007/s11427-018-9455-2
    [4]
    Qiu D, Bai S, Ma J, et al. The genome of Populus alba × Populus tremula var. glandulosa clone 84K[J]. DNA Research, 2019, 26(5): 423−431. doi: 10.1093/dnares/dsz020
    [5]
    Tuskan G A, Difazio S, Jansson S, et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray)[J]. Science, 2006, 313: 1596−1604. doi: 10.1126/science.1128691
    [6]
    Wu H, Yao D, Chen Y, et al. De novo genome assembly of Populus simonii further supports that Populus simonii and Populus trichocarpa belong to different sections[J]. G3 (Bethesda), 2020, 10(2): 455−466. doi: 10.1534/g3.119.400913
    [7]
    Yang W, Wang K, Zhang J, et al. The draft genome sequence of a desert tree Populus pruinosa[J]. Gigascience, 2017, 6(9): 1−7. doi: 10.1093/gigascience/gix066
    [8]
    Zhang Z, Chen Y, Zhang J, et al. Improved genome assembly provides new insights into genome evolution in a desert poplar (Populus euphratica)[J/OL]. Molecular Ecology Resources, 2020, 20(3): 3142[2020−11−01]. https://doi.org/10.1111/1755-0998.13142.
    [9]
    Polle A, Janz D, Teichmann T, et al. Poplar genetic engineering: promoting desirable wood characteristics and pest resistance[J]. Applied Microbiology and Biotechnology, 2013, 97(13): 5669−5679. doi: 10.1007/s00253-013-4940-8
    [10]
    Zhang J, Gao F, Jia H, et al. Molecular response of poplar to single and combined ozone and drought[J]. Science of the Total Environment, 2019, 655(10): 1364−1375.
    [11]
    Radojčić R I, de Marco A, Proietti C, et al. Poplar response to cadmium and lead soil contamination[J]. Ecotoxicology and Environmental Safety, 2017, 144: 482−489. doi: 10.1016/j.ecoenv.2017.06.011
    [12]
    Zhou X, Ren S, Lu M, et al. Preliminary study of cell wall structure and its mechanical properties of C3H and HCT RNAi transgenic poplar sapling[J/OL]. Scientific Reports, 2018, 8(1): 10508[2020−11−01]. https://doi.org/10.1038/s41598-018-28675-5.
    [13]
    Li S, Zhang Y, Ding C, et al. Proline-rich protein gene PdPRP regulates secondary wall formation in poplar[J]. Journal of Plant Physiology, 2019, 233: 58−72. doi: 10.1016/j.jplph.2018.12.007
    [14]
    Kaul R B. Reproductive sructure and organogenesis in a cttonwood, Populus deltoides (Salicaceae)[J]. International Journal of Plant Sciences, 1995, 156: 172−180. doi: 10.1086/297238
    [15]
    Hsu C Y, Liu Y, Luthe D S, et al. Poplar FT2 shortens the juvenile phase and promotes seasonal flowering[J]. Plant Cell, 2006, 18(8): 1846−1861. doi: 10.1105/tpc.106.041038
    [16]
    Ramos-Sánchez J M, Triozzi P M, Alique D, et al. LHY2 integrates night-length information to determine timing of poplar photoperiodic growth[J]. Current Biology, 2019, 29(14): 2402−2406.e4. doi: 10.1016/j.cub.2019.06.003
    [17]
    董源. 毛白杨胚胎学观察. 胚珠、胚囊的构造、受精作用和胚的发育[J]. 北京林学院学报, 1984(1): 83−94.

    Dong Y. Some embryological observations on Populus tomentosa Carr. about the structure of ovule and embryo sac, the process of fertilization and development of embryo[J]. Journal of Beijing Forestry University, 1984(1): 83−94.
    [18]
    朱大保. 毛白杨有性生殖能力的研究[J]. 北京林业大学学报, 1991, 12(1): 1−9.

    Zhu D B. Research on the reproduction capacity of P. tomentosa[J]. Journal of Beijing Forestry University, 1991, 12(1): 1−9.
    [19]
    张志毅, 黄智慧, 张东芳, 等. 毛白杨标本园无性系开花结实的研究[J]. 北京林业大学学报, 1992, 14(增刊3): 43−51.

    Zhang Z Y, Huang Z H, Zhang D F, et al. An investigation on flowering and bearing of clones in the arboretum of Populus tomentosa[J]. Journal of Beijing Forestry University, 1992, 14(Suppl.3): 43−51.
    [20]
    张志毅, 于雪松, 朱之梯. 三倍体毛白杨有性生殖能力的研究[J]. 北京林业大学学报, 2000, 22(6): 1−4. doi: 10.3321/j.issn:1000-1522.2000.06.001

    Zhang Z Y, Yu X S, Zhu Z T. Sexual reproduction of hybrid triploids in Populus tomentosa[J]. Journal of Beijing Forestry University, 2000, 22(6): 1−4. doi: 10.3321/j.issn:1000-1522.2000.06.001
    [21]
    安新民, 徐昌杰, 张上隆, 等. 应用滤纸吸附一法和改进的亚克隆方法快速筛选甜橙细胞壁转化酶基因(CS-CW)[J]. 细胞生物学, 2003, 25(1): 59−62.

    An X M, Xu C J, Zhang S L, et al. Rapid screening of sweet orange cell wall invertase gene (CS-CW) by filter paper adsorption method and improved subcloning method[J]. Cell Biology, 2003, 25(1): 59−62.
    [22]
    Wang R, Zhu L, Zhang Y, et al. Genome-wide analysis of poplar NF-YB gene family and identified PtNF-YB1 important in regulate flowering timing in transgenic plants[J]. BMC Plant Biology, 2019, 19(1): 251. doi: 10.1186/s12870-019-1863-2
    [23]
    王静澄. 毛白杨种毛形成中的蔗糖代谢与关键基因表达[D]. 北京: 北京林业大学, 2010: 25.

    Wang J C. Sucrose metabolism and expression profiles of regulated genes during the occurring of seed hairs of Populus tomentosa [D]. Beijing: Beijing Forestry University, 2010: 25.
    [24]
    Campo E. Flower morphogenesis and embryogeny in a bisexual Populus deltoides[J]. Giornale Botanico Italiano, 1963, 70: 212−219. doi: 10.1080/11263506309430203
    [25]
    Li W D, Xu H, Cheng X F, et al. The behaviour of pollen tubes on the stigma in the intersectional crosses in Populus and its relation to seed-setting[J]. Chinese Journal of Botany, 1991, 3(2): 102−109.
    [26]
    李文钿, 马丰山. 木本植物有性杂交生殖生物学图谱[M]. 北京: 科学出版社, 2011: 15−16.

    Li W T, Ma F S. Sexual hybrid reproductive Biology atlas of woody plants[M]. Beijing: Science Press, 2011: 15−16.
    [27]
    中国科学院植物研究所. 中国高等植物图鉴(第一册)[M]. 北京: 科学出版社, 1972: 351.

    Institute of Botany, Chinese Academy of Sciences. Atlas of higher plants in China (Vol. 1) [M]. Beijing: Science Press, 1972: 351.
    [28]
    Ye M, Chen Z, Su X, et al. Study of seed hair growth in Populus tomentosa, an important character of female floral bud development[J/OL]. BMC Genomics, 2014, 15(1): 475[2020−11−01]. https://doi.org/10.1186/1471-2164-15-475.
    [29]
    Bhosale R, Maere S, de Veylder L. Endoreplication as a potential driver of cell wall modifications[J]. Current Opinion in Plant Biology, 2019, 51: 58−65. doi: 10.1016/j.pbi.2019.04.003
    [30]
    Meinhardt H, Gierer A. Application of a theory of biological pattern formation based on lateral inhibition[J]. Journal of Cell Science, 1974, 15(2): 321−346. doi: 10.1242/jcs.15.2.321
    [31]
    Koch A J, Meinhardt H. Biological pattern formation: from basic mechanisms to complex structures[J]. Reviews of Modern Physics, 1994, 66: 1481−1507. doi: 10.1103/RevModPhys.66.1481
    [32]
    Bouyer D, Geier F, Kragler F, et al. Two-dimensional patterning by a trapping/depletion mechanism: the role of TTG1 and GL3 in Arabidopsis trichome formation[J/OL]. PLoS Biology, 2008, 6(6): e141[2020−11−09]. https://doi.org/10.1371/journal.pbio.0060141.
    [33]
    Pattanaik S, Patra B, Singh S K, et al. An overview of the gene regulatory network controlling trichome development in the model plant, Arabidopsis[J/OL]. Frontiers in Plant Science, 2014, 5(5): 259[2020−11−10]. https://doi.org/10.3389/fpls.2014.00259.
    [34]
    王成. 城市森林建设中的植源性污染[J]. 生态学杂志, 2003, 22(3): 32−37. doi: 10.3321/j.issn:1000-4890.2003.03.007

    Wang C. Plant-caused pollution in urban forest development[J]. Chinese Journal of Ecology, 2003, 22(3): 32−37. doi: 10.3321/j.issn:1000-4890.2003.03.007
    [35]
    王成. 城市花粉、飞絮飞毛等植源性污染特征及其防治[J]. 中国城市林业, 2018, 16(1): 1−6.

    Wang C. Characteristics of plant-caused pollution and its control measures in urban area[J]. China Urban Forestry, 2018, 16(1): 1−6.
    [36]
    李正理. 植物组织制片学[M]. 北京: 北京大学出版社, 1996: 71−72.

    Li Z L. Plant tissue film making[M]. Beijing: Peking University Press, 1996: 71−72.
    [37]
    Sun J, Niu Q W, Tarkowski P, et al. The Arabidopsis AtIPT8/PGA22 gene encodes an isopentenyl transferase that is involved in de novo cytokinin biosynthesis[J]. Plant Physiology, 2003, 131(1): 167−176. doi: 10.1104/pp.011494
    [38]
    Guo W, Zhao J, Li X, et al. A soybean β-expansin gene GmEXPB2 intrinsically involved in root system architecture responses to abiotic stresses[J]. Plant Journal, 2011, 66(3): 541−552. doi: 10.1111/j.1365-313X.2011.04511.x
    [39]
    Yoo M J, Wendel J F. Comparative evolutionary and developmental dynamics of the cotton (Gossypium hirsutum) fiber transcriptome[J/OL]. PLoS Genetics, 2014, 10(1): e1004073[2020−10−20]. https://doi.org/10.1371/journal.pgen.1004073.
    [40]
    Fang L, Wang Q, Hu Y, et al. Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits[J]. Nature Genetics, 2017, 49(7): 1089−1098. doi: 10.1038/ng.3887
    [41]
    Wu M, Li L, Liu G, et al. Differentially expressed genes between two groups of backcross inbred lines differing in fiber length developed from Upland × Pima cotton[J]. Molecular Biology Reports, 2019, 46(1): 1199−1212. doi: 10.1007/s11033-019-04589-x
    [42]
    Zhou X, Hu W, Li B, et al. Proteomic profiling of cotton fiber developmental transition from cell elongation to secondary wall deposition[J]. Acta Biochimica et Biophysica Sinica, 2019, 51(11): 1168−1177.
    [43]
    Lu H, Klocko A L, Brunner A M, et al. RNA interference suppression of AGAMOUS and SEEDSTICK alters floral organ identity and impairs floral organ determinacy, ovule differentiation, and seed-hair development in Populus[J]. The New phytologist, 2019, 222(2): 923−937. doi: 10.1111/nph.15648
    [44]
    Xue L, Wu H, Chen Y, et al. Evidences for a role of two Y-specific genes in sex determination in Populus deltoides[J/OL]. Nature Communications, 2020, 11(1): 5893[2020−11−03]. https://doi.org/10.1038/s41467-020-19559-2.
  • Related Articles

    [1]Jin Siyu, Peng Zuodeng. Changes in response of carbon and water physiological parameters of Robinia pseudoacacia seedlings to long-term drought and rehydration[J]. Journal of Beijing Forestry University, 2023, 45(8): 43-56. DOI: 10.12171/j.1000-1522.20220096
    [2]Zhou Cheng, Liu Tong, Wang Qinggui, Han Shijie. Effects of long-term nitrogen addition on fine root morphological, anatomical structure and stoichiometry of broadleaved Korean pine forest[J]. Journal of Beijing Forestry University, 2022, 44(11): 31-40. DOI: 10.12171/j.1000-1522.20210212
    [3]Zou Qingqin, Wang Yisong, Jiang Zhiyan, Chen Xiangwei, Wang Xiuwei. Non-structural carbohydrate allocation and interspecific differences of different soil and water conservation tree species in typical black soil region[J]. Journal of Beijing Forestry University, 2021, 43(10): 1-8. DOI: 10.12171/j.1000-1522.20210233
    [4]Wang Lina, Wu Junwen, Dong Qiong, Shi Zhuogong, Hu Haocheng, Wu Danzi, Li Luping. Effects of tending and thinning on non-structural carbon and stoichiometric characteristics of Pinus yunnanensis[J]. Journal of Beijing Forestry University, 2021, 43(8): 70-82. DOI: 10.12171/j.1000-1522.20210115
    [5]Zhang Jianjun, Chen Liqi, Li Jianguang, Sun Miao, Fan Yongming, Yu Xiaonan. Anatomical structure characteristics and growth ring analysis of underground rhizome of herbaceous peony[J]. Journal of Beijing Forestry University, 2020, 42(5): 124-131. DOI: 10.12171/j.1000-1522.20190096
    [6]LI Wei-yi, ZHANG Qiu-hui, ZHAO Guang-jie.. Structure and properties characterization of the flame retardant wood wallpaper.[J]. Journal of Beijing Forestry University, 2016, 38(7): 91-97. DOI: 10.13332/j.1000-1522.20150453
    [7]YAN Guo-yong, WANG Xiao-chun, XING Ya-juan, HAN Shi-jie, WANG Qing-gui. Response of root anatomy and tissue chemistry to nitrogen deposition in larch forest in the Great Xing’an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2016, 38(4): 36-43. DOI: 10.13332/j.1000-1522.20150433
    [8]LI Ji-ping, FENG Yao, ZHAO Chun-yan, ZHANG Cai-cai. Quantitative analysis of stand spatial structure of Cunninghamia lanceolata non-commercial forest based on Voronoi diagram.[J]. Journal of Beijing Forestry University, 2014, 36(4): 1-7. DOI: 10.13332/j.cnki.jbfu.2014.04.005
    [9]WU Sha-sha, PENG Dong-hui, LI Wen-qi, WANG Jing-mao, L&ucirc, Ying-min. Carbohydrate metabolism and activity variation of related enzymes during the exchanging role of bulb source and sink of oriental hybrid lily ‘Sorbonne'[J]. Journal of Beijing Forestry University, 2013, 35(6): 96-102.
    [10]ZHAO Yan-xia, LUO You-qing, ZONG Shi-xiang, WANG Rong1, LUO Hong-mei. Comparison in leaf anatomical structure and drought resistance of different sex and varieties of sea buckthorn[J]. Journal of Beijing Forestry University, 2012, 34(6): 34-41.
  • Cited by

    Periodical cited type(34)

    1. 孙丽,张颖,李文彬,包红光,孙迎坤. 青岛市3种常绿灌木滞尘量与叶微观特征及光合作用等的相关性分析. 西北林学院学报. 2024(04): 232-241 .
    2. 裴云霞,洪慧,包美玲,邓俊,陈岷轩,张强. 农业环境损害鉴定中受体植物的损害因素判别及损害程度分析. 中国司法鉴定. 2024(04): 40-48 .
    3. 贺丹,李朝梅,华超,李思洁,雷雅凯,张曼. 郑州市10种园林植物叶片滞尘与富集重金属的能力. 西北林学院学报. 2023(01): 230-237 .
    4. 张碧媛,李智琦,阮琳,潘勇军,陈国财,代色平,冯娴慧. 2种常用的植物滞纳能力测定方法对比研究. 林业与环境科学. 2023(01): 112-119 .
    5. 罗建平,王宁,宋菲菲,魏汉博,原白玉,唐钰鑫. 大庆市6种绿化树种对SO_2、NO_2的消减及滞尘效应. 生态学报. 2023(11): 4561-4569 .
    6. 张翠,马瑞,谭立佳,杜婉倩,刘涵科. 兰州市10种常用园林绿化树种叶表面微结构对其滞尘量的影响. 甘肃农业大学学报. 2023(04): 192-200+211 .
    7. 廖慧敏,师凤起,李明,朱逸龙. 长沙市典型园林植物叶片的滞尘等级与模式识别研究. 生态环境学报. 2022(01): 110-116 .
    8. 贺丹,汪安印,李紫萱,王翼飞,李朝梅,雷雅凯,李永华,董娜琳. 郑州市常绿树种滞尘能力与叶片生理结构的响应. 福建农业学报. 2022(02): 203-212 .
    9. 李晓璐,叶锦东,章剑,周毅烈,袁楚阳,于慧,张天然,黄芳,张贵豪,邵锋. 乔木滞留大气颗粒物能力及其与叶表面微结构关系. 中国城市林业. 2022(03): 22-28+120 .
    10. 王军梦,汪安印,王翼飞,贺丹,李永华,董娜琳. 不同污染程度下树种滞尘能力与叶表微形态关系研究. 林业调查规划. 2022(05): 16-21+37 .
    11. 孟畅,彭洋,赵杨,王秀荣,肖枫. 2种叶型膏桐幼苗的形态结构和光合特性. 林业科学. 2022(12): 32-41 .
    12. 岳晨,李广德,席本野,曹治国. 叶片大气颗粒物滞纳能力评估方法的定量对比. 环境科学. 2021(01): 114-126 .
    13. 徐立人,刘宠,张军,柳俊明,王立成,李清泉,杨敏生,李彦慧. 单叶刺槐半同胞子代叶片的滞尘能力及叶表SEM特征分析. 西部林业科学. 2021(01): 124-131 .
    14. 杨克彤,陈国鹏,李广,汤东,张凯. 兰州市常见阔叶树种对大气颗粒物吸滞能力的评估. 东北林业大学学报. 2021(05): 84-89 .
    15. 刘宇,张楠,王晓立,周力行,韩浩章. 冬季苏北8种常绿乔木吸滞颗粒物能力与叶表微结构关系. 西北林学院学报. 2021(03): 80-87+127 .
    16. 王薇,张蕾. 基于CiteSpace的城市环境中细颗粒物研究进展的可视化分析. 生态环境学报. 2021(06): 1321-1332 .
    17. 谢长坤,郭健康,梁安泽,汪静,姜睿原,车生泉. 园林植物表面对大气颗粒物削减过程研究进展. 世界林业研究. 2021(05): 38-43 .
    18. 吴桂香,徐成林,刘杰,杨燕飞. 城市道路植物叶面滞尘的微观效应研究. 昆明理工大学学报(自然科学版). 2021(06): 109-115 .
    19. 陈胜楠,陈左司南,张志强. 北京山区油松和元宝槭冠层气孔导度特征及其环境响应. 植物生态学报. 2021(12): 1329-1340 .
    20. 王琴,冯晶红,黄奕,王鹏程,谢梦婷,万好,苏泽琳,王仁鹏,王征洋,余刘思. 武汉市15种阔叶乔木滞尘能力与叶表微形态特征. 生态学报. 2020(01): 213-222 .
    21. 童凌云,何婉璎,裘璐函,陈健,刘美华. 基于层次分析法的杭州市8种园林植物林分环境质量评价. 浙江林业科技. 2020(01): 56-62 .
    22. 苏维,刘苑秋,赖胜男,古新仁,刘青,龚鹏. 南昌市8种乔木叶片性状对叶表滞留颗粒物的影响. 西北林学院学报. 2020(04): 61-67 .
    23. 刘开琳,李学敏,万翔,刘淑娟,李菁菁,徐先英,刘虎俊. 民勤植物园3种灌木的叶面微结构及其滞尘能力研究. 中国农学通报. 2020(26): 62-68 .
    24. 孙应都,陈奇伯,李艳梅,杨思莹. 昆明市6个绿化树种叶表微结构与滞尘能力的关系研究. 西南林业大学学报(自然科学). 2019(03): 78-85 .
    25. 张俊叶,邹明,刘晓东,王林,朱晨晨,俞元春. 南京城市森林植物叶面颗粒物的含量特征. 环境污染与防治. 2019(07): 837-843 .
    26. 林星宇,李海梅,李彦华,姜月梅. 八种乔木滞尘效益及其与叶表面特征关系. 北方园艺. 2019(17): 94-101 .
    27. 林星宇,李海梅,李彦华,刘志科. 灌木滞尘能力与重金属含量间的关系. 江苏农业科学. 2019(15): 180-183 .
    28. 姜霞,侯贻菊,刘延惠,舒德远,崔迎春,李成龙,杨冰,丁访军. 3种木樨科树种叶片滞尘效应动态变化及其与叶片特征的关系. 江苏农业科学. 2019(16): 150-154 .
    29. 林星宇,李彦华,李海梅,李士美. 乔木对不同粒径颗粒物吸滞作用研究. 福建农业学报. 2019(08): 912-919 .
    30. 阿丽亚·拜都热拉,甄敬,潘存德,张中远,胡梦玲,喀哈尔·扎依木. 乌鲁木齐市河滩快速路林带内颗粒物浓度变化特征. 新疆农业大学学报. 2019(05): 378-384 .
    31. 林星宇,李海梅,李彦华,郑茗月. 5种灌木的滞尘效益研究. 现代农业科技. 2018(02): 150-151+155 .
    32. 赵文君,侯贻菊,舒德远,刘延惠,崔迎春,丁访军. 贵阳市木兰科树种叶片滞尘效应及影响因素. 贵州林业科技. 2018(02): 19-24 .
    33. 李艳梅,陈奇伯,王邵军,孙应都,杨淏舟,杨思莹. 昆明市主要绿化树种叶片滞尘能力的叶表微形态学解释. 林业科学. 2018(05): 18-29 .
    34. 朱济友,于强,刘亚培,覃国铭,李金航,徐程扬,何韦均. 植物功能性状及其叶经济谱对城市热环境的响应. 北京林业大学学报. 2018(09): 72-81 . 本站查看

    Other cited types(26)

Catalog

    Article views (843) PDF downloads (108) Cited by(60)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return