• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhong Shanchen, Wu Shu, Wang Li, Su Xiaohua, Zhang Bingyu. Spatio-temporal expression of candidate genes PeCFL1 and PeCFL2 in seed hair development of poplar[J]. Journal of Beijing Forestry University, 2022, 44(5): 1-7. DOI: 10.12171/j.1000-1522.20200403
Citation: Zhong Shanchen, Wu Shu, Wang Li, Su Xiaohua, Zhang Bingyu. Spatio-temporal expression of candidate genes PeCFL1 and PeCFL2 in seed hair development of poplar[J]. Journal of Beijing Forestry University, 2022, 44(5): 1-7. DOI: 10.12171/j.1000-1522.20200403

Spatio-temporal expression of candidate genes PeCFL1 and PeCFL2 in seed hair development of poplar

More Information
  • Received Date: December 19, 2020
  • Revised Date: April 05, 2022
  • Available Online: April 27, 2022
  • Published Date: May 24, 2022
  •   Objective  Poplar seed hair is produced by the development of epidermal cells of the placenta at the base of ovary and it has become one of the environmental problems in northern cities of China in recent years. At present, the research on poplar seed hair is not in-depth. In this study, two genes (PeCFL1 and PeCFL2), which are differentially expressed during the development of poplar ovary and related to cotton fiber development, were selected as candidate genes for the regulation of seed hair development. We studied the spatio-temporal specificity of PeCFL1 and PeCFL2 genes expressed in Populus × euramericana ‘Bofeng 3’ to lay a foundation for further study on the regulation of the two genes during the development of poplar seed hair and improvement of poplar varieties by genetic engineering.
      Method  After 4, 5, 6, 7, 8, 12 days of hydroponic culture, the female inflorescences of Populus × euramericana ‘Bofeng 3’ were collected, fixed, paraffin embedded and sliced to observe the ovary development and the morphogenesis of poplar seed hair. Real time quantitative PCR was used to detect the expression patterns of PeCFL1 and PeCFL2 genes during the development of female inflorescence and in vegetative organs such as roots, stems and leaves of ‘Bofeng 3’ poplar. The tissue expression specificity of PeCFL1 and PeCFL2 genes in poplar flower organs was detected by in situ hybridization, and the temporal and spatial expression patterns of candidate genes PeCFL1 and PeCFL2 related to the regulation of poplar floc development were revealed.
      Result  After 12 days of hydroponic culture, fibrous structure appeared at the bottom of ovary placentation and poplar seed hair began to form. PeCFL1 and PeCFL2 were expressed in roots, stems, leaves and axillary buds of female flower branches of ‘Bofeng 3’ poplar. For the female inflorescence of hydroponic culture, a small amount of PeCFL1 and PeCFL2 were expressed from the 4th to the 7th day, and the expression levels began to increase significantly after the 8th day. Then the expression levels continued to increase significantly on the 12th day, at the same time, the fibrous structure at the bottom of placenta could be seen in paraffin section. The results of in situ hybridization showed that PeCFL1 and PeCFL2 genes were expressed in ovary wall and placenta of poplar ovary.
      Conclusion  The expression of PeCFL1 and PeCFL2 is significantly increased when the fibrous structure appeared at the bottom of the placentation in female flowers of Populus × euramericana ‘Bofeng 3’, and they are specifically expressed in the fibrous structure at the bottom of the placenta and the ovary wall, indicating that they are closely related to the regulation of seed hair development, and can be used as target genes for genetic engineering improvement of poplar seed hair.
  • [1]
    Bai S, Wu H, Zhang J, et al. Genome assembly of salicaceae Populus deltoides (eastern cottonwood) I-69 based on nanopore sequencing and Hi-C technologies[J]. Journal of Heredity, 2021, 112(3): 303−310. doi: 10.1093/jhered/esab010
    [2]
    Lin Y C, Wang J, Delhomme N, et al. Functional and evolutionary genomic inferences in Populus through genome and population sequencing of American and European aspen[J]. PNAS, 2018, 115(46): E10970−E10978.
    [3]
    Liu Y J, Wang X R, Zeng Q Y. De novo assembly of white poplar genome and genetic diversity of white poplar population in Irtysh River Basin in China[J]. Science China Life Sciences, 2019, 62(5): 609−618. doi: 10.1007/s11427-018-9455-2
    [4]
    Qiu D, Bai S, Ma J, et al. The genome of Populus alba × Populus tremula var. glandulosa clone 84K[J]. DNA Research, 2019, 26(5): 423−431. doi: 10.1093/dnares/dsz020
    [5]
    Tuskan G A, Difazio S, Jansson S, et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray)[J]. Science, 2006, 313: 1596−1604. doi: 10.1126/science.1128691
    [6]
    Wu H, Yao D, Chen Y, et al. De novo genome assembly of Populus simonii further supports that Populus simonii and Populus trichocarpa belong to different sections[J]. G3 (Bethesda), 2020, 10(2): 455−466. doi: 10.1534/g3.119.400913
    [7]
    Yang W, Wang K, Zhang J, et al. The draft genome sequence of a desert tree Populus pruinosa[J]. Gigascience, 2017, 6(9): 1−7. doi: 10.1093/gigascience/gix066
    [8]
    Zhang Z, Chen Y, Zhang J, et al. Improved genome assembly provides new insights into genome evolution in a desert poplar (Populus euphratica)[J/OL]. Molecular Ecology Resources, 2020, 20(3): 3142[2020−11−01]. https://doi.org/10.1111/1755-0998.13142.
    [9]
    Polle A, Janz D, Teichmann T, et al. Poplar genetic engineering: promoting desirable wood characteristics and pest resistance[J]. Applied Microbiology and Biotechnology, 2013, 97(13): 5669−5679. doi: 10.1007/s00253-013-4940-8
    [10]
    Zhang J, Gao F, Jia H, et al. Molecular response of poplar to single and combined ozone and drought[J]. Science of the Total Environment, 2019, 655(10): 1364−1375.
    [11]
    Radojčić R I, de Marco A, Proietti C, et al. Poplar response to cadmium and lead soil contamination[J]. Ecotoxicology and Environmental Safety, 2017, 144: 482−489. doi: 10.1016/j.ecoenv.2017.06.011
    [12]
    Zhou X, Ren S, Lu M, et al. Preliminary study of cell wall structure and its mechanical properties of C3H and HCT RNAi transgenic poplar sapling[J/OL]. Scientific Reports, 2018, 8(1): 10508[2020−11−01]. https://doi.org/10.1038/s41598-018-28675-5.
    [13]
    Li S, Zhang Y, Ding C, et al. Proline-rich protein gene PdPRP regulates secondary wall formation in poplar[J]. Journal of Plant Physiology, 2019, 233: 58−72. doi: 10.1016/j.jplph.2018.12.007
    [14]
    Kaul R B. Reproductive sructure and organogenesis in a cttonwood, Populus deltoides (Salicaceae)[J]. International Journal of Plant Sciences, 1995, 156: 172−180. doi: 10.1086/297238
    [15]
    Hsu C Y, Liu Y, Luthe D S, et al. Poplar FT2 shortens the juvenile phase and promotes seasonal flowering[J]. Plant Cell, 2006, 18(8): 1846−1861. doi: 10.1105/tpc.106.041038
    [16]
    Ramos-Sánchez J M, Triozzi P M, Alique D, et al. LHY2 integrates night-length information to determine timing of poplar photoperiodic growth[J]. Current Biology, 2019, 29(14): 2402−2406.e4. doi: 10.1016/j.cub.2019.06.003
    [17]
    董源. 毛白杨胚胎学观察. 胚珠、胚囊的构造、受精作用和胚的发育[J]. 北京林学院学报, 1984(1): 83−94.

    Dong Y. Some embryological observations on Populus tomentosa Carr. about the structure of ovule and embryo sac, the process of fertilization and development of embryo[J]. Journal of Beijing Forestry University, 1984(1): 83−94.
    [18]
    朱大保. 毛白杨有性生殖能力的研究[J]. 北京林业大学学报, 1991, 12(1): 1−9.

    Zhu D B. Research on the reproduction capacity of P. tomentosa[J]. Journal of Beijing Forestry University, 1991, 12(1): 1−9.
    [19]
    张志毅, 黄智慧, 张东芳, 等. 毛白杨标本园无性系开花结实的研究[J]. 北京林业大学学报, 1992, 14(增刊3): 43−51.

    Zhang Z Y, Huang Z H, Zhang D F, et al. An investigation on flowering and bearing of clones in the arboretum of Populus tomentosa[J]. Journal of Beijing Forestry University, 1992, 14(Suppl.3): 43−51.
    [20]
    张志毅, 于雪松, 朱之梯. 三倍体毛白杨有性生殖能力的研究[J]. 北京林业大学学报, 2000, 22(6): 1−4. doi: 10.3321/j.issn:1000-1522.2000.06.001

    Zhang Z Y, Yu X S, Zhu Z T. Sexual reproduction of hybrid triploids in Populus tomentosa[J]. Journal of Beijing Forestry University, 2000, 22(6): 1−4. doi: 10.3321/j.issn:1000-1522.2000.06.001
    [21]
    安新民, 徐昌杰, 张上隆, 等. 应用滤纸吸附一法和改进的亚克隆方法快速筛选甜橙细胞壁转化酶基因(CS-CW)[J]. 细胞生物学, 2003, 25(1): 59−62.

    An X M, Xu C J, Zhang S L, et al. Rapid screening of sweet orange cell wall invertase gene (CS-CW) by filter paper adsorption method and improved subcloning method[J]. Cell Biology, 2003, 25(1): 59−62.
    [22]
    Wang R, Zhu L, Zhang Y, et al. Genome-wide analysis of poplar NF-YB gene family and identified PtNF-YB1 important in regulate flowering timing in transgenic plants[J]. BMC Plant Biology, 2019, 19(1): 251. doi: 10.1186/s12870-019-1863-2
    [23]
    王静澄. 毛白杨种毛形成中的蔗糖代谢与关键基因表达[D]. 北京: 北京林业大学, 2010: 25.

    Wang J C. Sucrose metabolism and expression profiles of regulated genes during the occurring of seed hairs of Populus tomentosa [D]. Beijing: Beijing Forestry University, 2010: 25.
    [24]
    Campo E. Flower morphogenesis and embryogeny in a bisexual Populus deltoides[J]. Giornale Botanico Italiano, 1963, 70: 212−219. doi: 10.1080/11263506309430203
    [25]
    Li W D, Xu H, Cheng X F, et al. The behaviour of pollen tubes on the stigma in the intersectional crosses in Populus and its relation to seed-setting[J]. Chinese Journal of Botany, 1991, 3(2): 102−109.
    [26]
    李文钿, 马丰山. 木本植物有性杂交生殖生物学图谱[M]. 北京: 科学出版社, 2011: 15−16.

    Li W T, Ma F S. Sexual hybrid reproductive Biology atlas of woody plants[M]. Beijing: Science Press, 2011: 15−16.
    [27]
    中国科学院植物研究所. 中国高等植物图鉴(第一册)[M]. 北京: 科学出版社, 1972: 351.

    Institute of Botany, Chinese Academy of Sciences. Atlas of higher plants in China (Vol. 1) [M]. Beijing: Science Press, 1972: 351.
    [28]
    Ye M, Chen Z, Su X, et al. Study of seed hair growth in Populus tomentosa, an important character of female floral bud development[J/OL]. BMC Genomics, 2014, 15(1): 475[2020−11−01]. https://doi.org/10.1186/1471-2164-15-475.
    [29]
    Bhosale R, Maere S, de Veylder L. Endoreplication as a potential driver of cell wall modifications[J]. Current Opinion in Plant Biology, 2019, 51: 58−65. doi: 10.1016/j.pbi.2019.04.003
    [30]
    Meinhardt H, Gierer A. Application of a theory of biological pattern formation based on lateral inhibition[J]. Journal of Cell Science, 1974, 15(2): 321−346. doi: 10.1242/jcs.15.2.321
    [31]
    Koch A J, Meinhardt H. Biological pattern formation: from basic mechanisms to complex structures[J]. Reviews of Modern Physics, 1994, 66: 1481−1507. doi: 10.1103/RevModPhys.66.1481
    [32]
    Bouyer D, Geier F, Kragler F, et al. Two-dimensional patterning by a trapping/depletion mechanism: the role of TTG1 and GL3 in Arabidopsis trichome formation[J/OL]. PLoS Biology, 2008, 6(6): e141[2020−11−09]. https://doi.org/10.1371/journal.pbio.0060141.
    [33]
    Pattanaik S, Patra B, Singh S K, et al. An overview of the gene regulatory network controlling trichome development in the model plant, Arabidopsis[J/OL]. Frontiers in Plant Science, 2014, 5(5): 259[2020−11−10]. https://doi.org/10.3389/fpls.2014.00259.
    [34]
    王成. 城市森林建设中的植源性污染[J]. 生态学杂志, 2003, 22(3): 32−37. doi: 10.3321/j.issn:1000-4890.2003.03.007

    Wang C. Plant-caused pollution in urban forest development[J]. Chinese Journal of Ecology, 2003, 22(3): 32−37. doi: 10.3321/j.issn:1000-4890.2003.03.007
    [35]
    王成. 城市花粉、飞絮飞毛等植源性污染特征及其防治[J]. 中国城市林业, 2018, 16(1): 1−6.

    Wang C. Characteristics of plant-caused pollution and its control measures in urban area[J]. China Urban Forestry, 2018, 16(1): 1−6.
    [36]
    李正理. 植物组织制片学[M]. 北京: 北京大学出版社, 1996: 71−72.

    Li Z L. Plant tissue film making[M]. Beijing: Peking University Press, 1996: 71−72.
    [37]
    Sun J, Niu Q W, Tarkowski P, et al. The Arabidopsis AtIPT8/PGA22 gene encodes an isopentenyl transferase that is involved in de novo cytokinin biosynthesis[J]. Plant Physiology, 2003, 131(1): 167−176. doi: 10.1104/pp.011494
    [38]
    Guo W, Zhao J, Li X, et al. A soybean β-expansin gene GmEXPB2 intrinsically involved in root system architecture responses to abiotic stresses[J]. Plant Journal, 2011, 66(3): 541−552. doi: 10.1111/j.1365-313X.2011.04511.x
    [39]
    Yoo M J, Wendel J F. Comparative evolutionary and developmental dynamics of the cotton (Gossypium hirsutum) fiber transcriptome[J/OL]. PLoS Genetics, 2014, 10(1): e1004073[2020−10−20]. https://doi.org/10.1371/journal.pgen.1004073.
    [40]
    Fang L, Wang Q, Hu Y, et al. Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits[J]. Nature Genetics, 2017, 49(7): 1089−1098. doi: 10.1038/ng.3887
    [41]
    Wu M, Li L, Liu G, et al. Differentially expressed genes between two groups of backcross inbred lines differing in fiber length developed from Upland × Pima cotton[J]. Molecular Biology Reports, 2019, 46(1): 1199−1212. doi: 10.1007/s11033-019-04589-x
    [42]
    Zhou X, Hu W, Li B, et al. Proteomic profiling of cotton fiber developmental transition from cell elongation to secondary wall deposition[J]. Acta Biochimica et Biophysica Sinica, 2019, 51(11): 1168−1177.
    [43]
    Lu H, Klocko A L, Brunner A M, et al. RNA interference suppression of AGAMOUS and SEEDSTICK alters floral organ identity and impairs floral organ determinacy, ovule differentiation, and seed-hair development in Populus[J]. The New phytologist, 2019, 222(2): 923−937. doi: 10.1111/nph.15648
    [44]
    Xue L, Wu H, Chen Y, et al. Evidences for a role of two Y-specific genes in sex determination in Populus deltoides[J/OL]. Nature Communications, 2020, 11(1): 5893[2020−11−03]. https://doi.org/10.1038/s41467-020-19559-2.
  • Cited by

    Periodical cited type(3)

    1. 孙永平,于新栋,柴希娟,徐开蒙,解林坤. 低熔点合金高低温循环浸渍杨木的性能及机理研究. 林产工业. 2024(04): 1-6 .
    2. 韦溶军,王志闯,王雪纯,王婷欢,王振宇,何正斌,伊松林. 锡铋合金/肉豆蔻酸制备具有金属外壳的储能木材. 北京林业大学学报. 2024(08): 25-33 . 本站查看
    3. 陶鑫,田东雪,梁善庆,李善明,彭立民,傅峰. 微波膨化木基金属复合材料的涂饰性能及耐光老化研究. 北京林业大学学报. 2023(10): 140-148 . 本站查看

    Other cited types(0)

Catalog

    Article views (846) PDF downloads (108) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return