Citation: | Wang Yanjun, Gao Tai, Shi Juan. Prediction and analysis of the global suitability of Lymantria dispar based on MaxEnt[J]. Journal of Beijing Forestry University, 2021, 43(9): 59-69. DOI: 10.12171/j.1000-1522.20200416 |
[1] |
张丽茹. 舞毒蛾的生物学特性及综合防治技术[J]. 现代农业科技, 2020(6):116−117. doi: 10.3969/j.issn.1007-5739.2020.06.072
Zhang L R. Biological characteristics and comprehensive control techniques of Lymantira dispar[J]. Modern Agricultural Science and Technology, 2020(6): 116−117. doi: 10.3969/j.issn.1007-5739.2020.06.072
|
[2] |
Keena M A, Côté M, Grinberg P S, et al. World distribution of female flight and genetic variation in Lymantria dispar (Lepidoptera: Lymantriidae)[J]. Environmental Entomology, 2008, 37(3): 636−649. doi: 10.1603/0046-225X(2008)37[636:WDOFFA]2.0.CO;2
|
[3] |
钱路, 安榆林, 徐梅, 等. 舞毒蛾不同地理种群基于AFLP分子标记的遗传分析[J]. 林业科学, 2011, 47(10):104−110. doi: 10.11707/j.1001-7488.20111016
Qian L, An Y L, Xu M, et al. AFLP analysis of different geographic populations of the gypsy moth, Lymantria dispar (Lepidoptera: Lymantriidae)[J]. Scientia Silvae Sinicae, 2011, 47(10): 104−110. doi: 10.11707/j.1001-7488.20111016
|
[4] |
Luque G M, Bellard C, Bertelsmeier C, et al. The 100th of the world’s worst invasive alien species[J]. Biological Invasions, 2014, 16(5): 981−985. doi: 10.1007/s10530-013-0561-5
|
[5] |
谵运清, 安输林, 刘翔, 等. 由亚洲型舞毒蛾检疫问题引发的几点思考[J]. 植物检疫, 2012, 26(4):76−78.
Zhan Y Q, An Y L, Liu X, et al. Some thoughts on quarantine of Gypsy moth in Asia[J]. Plant quarantine, 2012, 26(4): 76−78.
|
[6] |
Srivastava V, Griess V C, Keena M A. Assessing the potential distribution of Asian gypsy moth in Canada: a comparison of two methodological approaches[J]. Sentific Reports, 2020, 10(22): 1−10.
|
[7] |
Phillips S J, Anderson R P, Schapire R E. Maximum entropy modeling of species geographic distributions[J]. Ecological Modelling, 2006, 190(3/4): 231−259.
|
[8] |
Merow C, Smith M J, Silander J A. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter[J]. Ecography, 2013, 36(10): 1058−1069. doi: 10.1111/j.1600-0587.2013.07872.x
|
[9] |
Phillips S J, Dudík M. Modeling of species distributions with MaxEnt: new extensions and a comprehensive evaluation[J]. Ecography, 2008, 31(2): 161−175. doi: 10.1111/j.0906-7590.2008.5203.x
|
[10] |
Elith J, Phillips S J, Hastie T, et al. A statistical explanation of MaxEnt for ecologists[J]. Diversity & Distributions, 2011, 17(1): 43−57.
|
[11] |
王运生, 谢丙炎, 万方浩, 等. ROC曲线分析在评价入侵物种分布模型中的应用[J]. 生物多样性, 2007(4):365−372. doi: 10.3321/j.issn:1005-0094.2007.04.005
Wang Y S, Xie B Y, Wan F H, et al. Application of ROC curve analysis in evaluating the performance of alien species’ potential distribution models[J]. Biodiversity Science, 2007(4): 365−372. doi: 10.3321/j.issn:1005-0094.2007.04.005
|
[12] |
李一琳, 丁长青. 基于GIS和MaxEnt技术对濒危物种褐马鸡的保护空缺分析[J]. 北京林业大学学报, 2016, 38(11):34−41.
Li Y L, Ding C Q. Reserve gap analysis of endangered brown eared pheasant (Crossoptilon mantchuricum) through GIS and MaxEnt technology[J]. Journal of Beijing Forest University, 2016, 38(11): 34−41.
|
[13] |
赵佳强, 石娟. 基于新型最大熵模型预测刺槐叶瘿蚊(双翅目: 瘿蚊科)在中国的适生区[J]. 林业科学, 2019, 55(2):118−127.
Zhao J Q, Shi J. Prediction of the potential geographical distribution of Obolodiplosis robiniae (Diptera: Cecidomyiidae) in China based on a novel Maximum Entropy model[J]. Scientia Silvae Sinicae, 2019, 55(2): 118−127.
|
[14] |
黄梦伊, 赵佳强, 石娟. 基于MaxEnt对桉树枝瘿姬小蜂在中国发生趋势的预测[J]. 北京林业大学学报, 2020, 42(11):64−71.
Huang M Y, Zhao J Q, Shi J. Predicting occurrence tendency of Leptocybe invasa in China based on MaxEnt[J]. Journal of Beijing Forestry University, 2020, 42(11): 64−71.
|
[15] |
Fang W, Duo W, Ge G, et al. Potential distributions of the invasive barnacle scale Ceroplastes cirripediformis (Hemiptera: Coccidae) under climate change and implications for its management[J]. Journal of Economic Entomology, 2021, 114(1): 82−89. doi: 10.1093/jee/toaa245
|
[16] |
张春华, 和菊, 孙永玉, 等. 基于MaxEnt模型的紫椿适生区预测[J]. 北京林业大学学报, 2017, 39(8):33−41.
Zhang C H, He J, Sun Y Y, et al. Distributional change in suitable areas for Toona sureni based on MaxEnt model[J]. Journal of Beijing Forest University, 2017, 39(8): 33−41.
|
[17] |
吕汝丹, 何健, 刘慧杰, 等. 羽叶铁线莲的分布区与生态位模型分析[J]. 北京林业大学学报, 2019, 41(2):70−79.
Lü R D, He J, Liu H J, et al. Distribution and niche modeling analysis of Clematis pinnata[J]. Journal of Beijing Forestry University, 2019, 41(2): 70−79.
|
[18] |
Inoue M N, Suzuki-Ohno Y, Haga Y, et al. Population dynamics and geographical distribution of the gypsy moth, Lymantria dispar, in Japan[J]. Forest Ecology and Management, 2019, 434: 154−164. doi: 10.1016/j.foreco.2018.12.022
|
[19] |
姜彤, 吕嫣冉, 黄金龙, 等. CMIP6模式新情景(SSP-RCP)概述及其在淮河流域的应用[J]. 气象科技进展, 2020, 10(5):102−109. doi: 10.3969/j.issn.2095-1973.2020.05.016
Jiang T, Lü Y R, Huang J L, et al. New scenarios of CMIP6 model (SSP-RCP) and its application in the Huaihe river basin[J]. Advances in Meteorological Science and Technology, 2020, 10(5): 102−109. doi: 10.3969/j.issn.2095-1973.2020.05.016
|
[20] |
张丽霞, 陈晓龙, 辛晓歌. CMIP6情景模式比较计划(ScenarioMIP)概况与评述[J]. 气候变化研究进展, 2019, 15(5):519−525. doi: 10.12006/j.issn.1673-1719.2019.082
Zhang L X, Chen X L, Xin X G. Short commentary on CMIP6 scenario model intercomparison project (ScenarioMIP)[J]. Climate Change Research, 2019, 15(5): 519−525. doi: 10.12006/j.issn.1673-1719.2019.082
|
[21] |
Sillero N. What does ecological modelling model? A proposed classification of ecological niche models based on their underlying methods[J]. Ecological Modelling, 2011, 222(8): 1343−1346. doi: 10.1016/j.ecolmodel.2011.01.018
|
[22] |
朱耿平, 刘强, 高玉葆. 提高生态位模型转移能力来模拟入侵物种的潜在分布[J]. 生物多样性, 2014, 22(2):223−230. doi: 10.3724/SP.J.1003.2014.08178
Zhu G P, Liu Q, Gao Y B. Improving ecological niche model transferability to predict the potential distribution of invasive exotic species[J]. Biodiversity Science, 2014, 22(2): 223−230. doi: 10.3724/SP.J.1003.2014.08178
|
[23] |
Phillips S J, Anderson R P, Dudík M, et al. Opening the black box: an open-source release of Maxent[J]. Ecography, 2017, 40(7): 887−893. doi: 10.1111/ecog.03049
|
[24] |
刘洋, 石娟. 气候变化背景下埃及吹绵蚧在中国的适生区预测[J]. 植物保护, 2020, 46(1):108−117.
Liu Y, Shi J. Prediction of potential geographical distribution of Icerya aegyptiaca in China under climate change[J]. Plant Protection, 2020, 46(1): 108−117.
|
[25] |
Muscarella R, Galante P J, Soley-Guardia M, et al. ENMeval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models[J]. Methods in Ecology & Evolution, 2015, 5(11): 1198−1205.
|
[26] |
Shcheglovitova M, Anderson R P. Estimating optimal complexity for ecological niche models: a jackknife approach for species with small sample sizes[J]. Ecological Modelling, 2013, 269: 9−17.
|
[27] |
Zhong Q, Zhang J E, Ditommaso A, et al. Predicting invasions of Wedelia trilobata (L.) Hitchc. with MaxEnt and GARP models[J]. Journal of Plant Research, 2015, 128: 763−775. doi: 10.1007/s10265-015-0738-3
|
[28] |
Pearson R G, Raxworthy C J, Nakamura M, et al. Original article: predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar[J]. Journal of Biogeography, 2007, 34(1): 102−117.
|
[29] |
Liu Y, Shi J. Predicting the potential global geographical distribution of two icerya species under climate change[J]. Forests, 2020, 11(6): 1−19.
|
[30] |
赵晓冏, 巩娟霄, 赵莎莎, 等. 样本量及其空间分布对物种分布模型的影响[J]. 兰州大学学报: 自然科学版, 2018, 54(2):70−77.
Zhao X J, Gong J X, Zhao S S, et al. Impact of sample size and spatial distribution on species distribution model[J]. Journal of Lanzhou University: Natural Sciences, 2018, 54(2): 70−77.
|
[31] |
Morey A C, Venette R C. Minimizing risk and maximizing spatial transferability: challenges in constructing a useful model of potential suitability for an invasive insect[J]. Annals of the Entomological Society of America, 2020, 113(2): 100−113. doi: 10.1093/aesa/saz049
|
[32] |
闻连仁, 赵春芝, 张洪彦, 等. 舞毒蛾生物学特性观察[J]. 吉林林业科技, 1989(2):34−37.
Wen L R, Zhao C Z, Zhang H Y, et al. Observation on biological characteristics of Lymantria dispar[J]. Journal of Jilin Forestry Science and Technology, 1989(2): 34−37.
|
[33] |
卢小雨, 陈洪俊, 陈乃中, 等. 亚洲型舞毒蛾在北美的适生性[J]. 昆虫知识, 2009, 46(3):398−402, 495.
Lu X Y, Chen H J, Chen N Z, et al. Potential geographic distribution of Asian gypsy moth, Lymantria dispar, in north America[J]. Chinese Bulletin of Entomology, 2009, 46(3): 398−402, 495.
|
[34] |
Heikkinen R K, Luoto M, Araújo M B, et al. Methods and uncertainties in bioclimatic envelope modelling under climate change[J]. Progress in Physical Geography, 2006, 30(6): 751−777. doi: 10.1177/0309133306071957
|
[35] |
Sinclair S J, White M D, Newell G R. How useful are species distribution models for managing biodiversity under future climates?[J]. Ecology & Society, 2010, 15(1): 175−183.
|
[1] | Jiang Yibing, Song Xiaoshuang, Wang Zhanbin, Wang Liang, Deng Xun, Yu Wenjing. Diversity and community structure of endophytic fungi in Pinus sibirica needles with different lesion grades[J]. Journal of Beijing Forestry University, 2024, 46(11): 24-33. DOI: 10.12171/j.1000-1522.20230299 |
[2] | Yan Jiahui, Zhou Chengcheng, Niu Shihui, Li Wei. Identification of SAUR gene family in Pinus tabuliformis and analysis on its expression patterns under drought stress[J]. Journal of Beijing Forestry University, 2024, 46(8): 57-67. DOI: 10.12171/j.1000-1522.20230333 |
[3] | Sun Fan, Ma Yanguang, Liu Zhanmin, Yang Boning, Wang Huili, Li Wei. Parental selection strategies of high generation seed orchard of Pinus tabuliformis[J]. Journal of Beijing Forestry University, 2024, 46(4): 28-39. DOI: 10.12171/j.1000-1522.20230138 |
[4] | Liu Fengchen, Tian Na, Cheng Xiaoqin. Releasing variation and bacteriostatic effects of botanic volatile organic compounds from Pinus tabuliformis[J]. Journal of Beijing Forestry University, 2022, 44(9): 72-82. DOI: 10.12171/j.1000-1522.20210125 |
[5] | Liu Siwen, Ai Yebo, Liu Yanhong. Variations in leaf functional traits along the altitude gradient of Pinus tabuliformis and its environmental explanations in Beijing Songshan Mountain[J]. Journal of Beijing Forestry University, 2021, 43(4): 47-55. DOI: 10.12171/j.1000-1522.20200292 |
[6] | Jiang Ning, Mu Changcheng, Han Lidong, Shen Zhongqi. Impact of harvesting on carbon source/sink of Alnus sibirica var. hirsuta swamps in Daxing’anling Mountains discontinuous permafrost region of northeastern China[J]. Journal of Beijing Forestry University, 2020, 42(3): 1-13. DOI: 10.12171/j.1000-1522.20190074 |
[7] | Li Yixuan, Zhao Jian, Fu Shuangbin, Dong Mingliang, Yang Shuo, Li Shanshan, Kong Lisheng, Zhang Jinfeng. Enhancement of embryogenic callus proliferation in Chinese pine (Pinus tabuliformis) by airlift bioreactor[J]. Journal of Beijing Forestry University, 2019, 41(11): 37-43. DOI: 10.13332/j.1000-1522.20190221 |
[8] | GAO Qiong, WANG Wei-you, LIANG Dong, LI Yue.. Comparison of growth traits and photosynthetic physiology in Pinus tabuliformis from eight provenances of China.[J]. Journal of Beijing Forestry University, 2014, 36(2): 87-93. |
[9] | LI Wei, ZHU Song-lin, LI Yue. Comparative study on plant traits between sexual and asexual reproduction for Pinus tabuliformis.[J]. Journal of Beijing Forestry University, 2012, 34(1): 46-50. |
[10] | ZHANG Zhi-du, XU Cheng-yang, CAI Bao-jun, LI Cui-cui, YUAN SHi-bao, YANG Cheng, PENG Qiang, JIN Gui-xiang. Influence of stock density on crown structure of Prunus davidiana.[J]. Journal of Beijing Forestry University, 2009, 31(6): 187-192. |
1. |
张鑫,张丹,代鹏飞,张广森,宋玫. 气候变化下反枝苋潜在中国适生区及生态位研究. 草地学报. 2024(10): 3280-3288 .
![]() | |
2. |
陈禹衡,陆家祎,吴鹏飞,毛岭峰. 基于气候与物种扩散的破坏草入侵区域对未来气候变化的响应. 北京林业大学学报. 2022(01): 69-76 .
![]() | |
3. |
刘佳琪,魏广阔,史常青,赵廷宁,钱云楷. 基于MaxEnt模型的北方抗旱造林树种适宜区分布. 北京林业大学学报. 2022(07): 63-77 .
![]() | |
4. |
王艳君,高泰,石娟. 基于MaxEnt模型对舞毒蛾全球适生区的预测及分析. 北京林业大学学报. 2021(09): 59-69 .
![]() | |
5. |
张明珠,叶兴状,李佳慧,刘益鹏,陈世品,刘宝. 气候变化情景下长序榆在中国的潜在适生区预测. 生态学杂志. 2021(12): 3822-3835 .
![]() | |
6. |
吕汝丹,何健,刘慧杰,姚敏,程瑾,谢磊. 羽叶铁线莲的分布区与生态位模型分析. 北京林业大学学报. 2019(02): 70-79 .
![]() | |
7. |
塞依丁·海米提,努尔巴依·阿布都沙力克,迈迪娜·吐尔逊,阿尔曼·解思斯,阿腾古丽. 外来入侵植物意大利苍耳在新疆的潜在分布及扩散趋势. 江苏农业科学. 2019(13): 126-130 .
![]() |