Citation: | Wang Yanjun, Gao Tai, Shi Juan. Prediction and analysis of the global suitability of Lymantria dispar based on MaxEnt[J]. Journal of Beijing Forestry University, 2021, 43(9): 59-69. DOI: 10.12171/j.1000-1522.20200416 |
[1] |
张丽茹. 舞毒蛾的生物学特性及综合防治技术[J]. 现代农业科技, 2020(6):116−117. doi: 10.3969/j.issn.1007-5739.2020.06.072
Zhang L R. Biological characteristics and comprehensive control techniques of Lymantira dispar[J]. Modern Agricultural Science and Technology, 2020(6): 116−117. doi: 10.3969/j.issn.1007-5739.2020.06.072
|
[2] |
Keena M A, Côté M, Grinberg P S, et al. World distribution of female flight and genetic variation in Lymantria dispar (Lepidoptera: Lymantriidae)[J]. Environmental Entomology, 2008, 37(3): 636−649. doi: 10.1603/0046-225X(2008)37[636:WDOFFA]2.0.CO;2
|
[3] |
钱路, 安榆林, 徐梅, 等. 舞毒蛾不同地理种群基于AFLP分子标记的遗传分析[J]. 林业科学, 2011, 47(10):104−110. doi: 10.11707/j.1001-7488.20111016
Qian L, An Y L, Xu M, et al. AFLP analysis of different geographic populations of the gypsy moth, Lymantria dispar (Lepidoptera: Lymantriidae)[J]. Scientia Silvae Sinicae, 2011, 47(10): 104−110. doi: 10.11707/j.1001-7488.20111016
|
[4] |
Luque G M, Bellard C, Bertelsmeier C, et al. The 100th of the world’s worst invasive alien species[J]. Biological Invasions, 2014, 16(5): 981−985. doi: 10.1007/s10530-013-0561-5
|
[5] |
谵运清, 安输林, 刘翔, 等. 由亚洲型舞毒蛾检疫问题引发的几点思考[J]. 植物检疫, 2012, 26(4):76−78.
Zhan Y Q, An Y L, Liu X, et al. Some thoughts on quarantine of Gypsy moth in Asia[J]. Plant quarantine, 2012, 26(4): 76−78.
|
[6] |
Srivastava V, Griess V C, Keena M A. Assessing the potential distribution of Asian gypsy moth in Canada: a comparison of two methodological approaches[J]. Sentific Reports, 2020, 10(22): 1−10.
|
[7] |
Phillips S J, Anderson R P, Schapire R E. Maximum entropy modeling of species geographic distributions[J]. Ecological Modelling, 2006, 190(3/4): 231−259.
|
[8] |
Merow C, Smith M J, Silander J A. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter[J]. Ecography, 2013, 36(10): 1058−1069. doi: 10.1111/j.1600-0587.2013.07872.x
|
[9] |
Phillips S J, Dudík M. Modeling of species distributions with MaxEnt: new extensions and a comprehensive evaluation[J]. Ecography, 2008, 31(2): 161−175. doi: 10.1111/j.0906-7590.2008.5203.x
|
[10] |
Elith J, Phillips S J, Hastie T, et al. A statistical explanation of MaxEnt for ecologists[J]. Diversity & Distributions, 2011, 17(1): 43−57.
|
[11] |
王运生, 谢丙炎, 万方浩, 等. ROC曲线分析在评价入侵物种分布模型中的应用[J]. 生物多样性, 2007(4):365−372. doi: 10.3321/j.issn:1005-0094.2007.04.005
Wang Y S, Xie B Y, Wan F H, et al. Application of ROC curve analysis in evaluating the performance of alien species’ potential distribution models[J]. Biodiversity Science, 2007(4): 365−372. doi: 10.3321/j.issn:1005-0094.2007.04.005
|
[12] |
李一琳, 丁长青. 基于GIS和MaxEnt技术对濒危物种褐马鸡的保护空缺分析[J]. 北京林业大学学报, 2016, 38(11):34−41.
Li Y L, Ding C Q. Reserve gap analysis of endangered brown eared pheasant (Crossoptilon mantchuricum) through GIS and MaxEnt technology[J]. Journal of Beijing Forest University, 2016, 38(11): 34−41.
|
[13] |
赵佳强, 石娟. 基于新型最大熵模型预测刺槐叶瘿蚊(双翅目: 瘿蚊科)在中国的适生区[J]. 林业科学, 2019, 55(2):118−127.
Zhao J Q, Shi J. Prediction of the potential geographical distribution of Obolodiplosis robiniae (Diptera: Cecidomyiidae) in China based on a novel Maximum Entropy model[J]. Scientia Silvae Sinicae, 2019, 55(2): 118−127.
|
[14] |
黄梦伊, 赵佳强, 石娟. 基于MaxEnt对桉树枝瘿姬小蜂在中国发生趋势的预测[J]. 北京林业大学学报, 2020, 42(11):64−71.
Huang M Y, Zhao J Q, Shi J. Predicting occurrence tendency of Leptocybe invasa in China based on MaxEnt[J]. Journal of Beijing Forestry University, 2020, 42(11): 64−71.
|
[15] |
Fang W, Duo W, Ge G, et al. Potential distributions of the invasive barnacle scale Ceroplastes cirripediformis (Hemiptera: Coccidae) under climate change and implications for its management[J]. Journal of Economic Entomology, 2021, 114(1): 82−89. doi: 10.1093/jee/toaa245
|
[16] |
张春华, 和菊, 孙永玉, 等. 基于MaxEnt模型的紫椿适生区预测[J]. 北京林业大学学报, 2017, 39(8):33−41.
Zhang C H, He J, Sun Y Y, et al. Distributional change in suitable areas for Toona sureni based on MaxEnt model[J]. Journal of Beijing Forest University, 2017, 39(8): 33−41.
|
[17] |
吕汝丹, 何健, 刘慧杰, 等. 羽叶铁线莲的分布区与生态位模型分析[J]. 北京林业大学学报, 2019, 41(2):70−79.
Lü R D, He J, Liu H J, et al. Distribution and niche modeling analysis of Clematis pinnata[J]. Journal of Beijing Forestry University, 2019, 41(2): 70−79.
|
[18] |
Inoue M N, Suzuki-Ohno Y, Haga Y, et al. Population dynamics and geographical distribution of the gypsy moth, Lymantria dispar, in Japan[J]. Forest Ecology and Management, 2019, 434: 154−164. doi: 10.1016/j.foreco.2018.12.022
|
[19] |
姜彤, 吕嫣冉, 黄金龙, 等. CMIP6模式新情景(SSP-RCP)概述及其在淮河流域的应用[J]. 气象科技进展, 2020, 10(5):102−109. doi: 10.3969/j.issn.2095-1973.2020.05.016
Jiang T, Lü Y R, Huang J L, et al. New scenarios of CMIP6 model (SSP-RCP) and its application in the Huaihe river basin[J]. Advances in Meteorological Science and Technology, 2020, 10(5): 102−109. doi: 10.3969/j.issn.2095-1973.2020.05.016
|
[20] |
张丽霞, 陈晓龙, 辛晓歌. CMIP6情景模式比较计划(ScenarioMIP)概况与评述[J]. 气候变化研究进展, 2019, 15(5):519−525. doi: 10.12006/j.issn.1673-1719.2019.082
Zhang L X, Chen X L, Xin X G. Short commentary on CMIP6 scenario model intercomparison project (ScenarioMIP)[J]. Climate Change Research, 2019, 15(5): 519−525. doi: 10.12006/j.issn.1673-1719.2019.082
|
[21] |
Sillero N. What does ecological modelling model? A proposed classification of ecological niche models based on their underlying methods[J]. Ecological Modelling, 2011, 222(8): 1343−1346. doi: 10.1016/j.ecolmodel.2011.01.018
|
[22] |
朱耿平, 刘强, 高玉葆. 提高生态位模型转移能力来模拟入侵物种的潜在分布[J]. 生物多样性, 2014, 22(2):223−230. doi: 10.3724/SP.J.1003.2014.08178
Zhu G P, Liu Q, Gao Y B. Improving ecological niche model transferability to predict the potential distribution of invasive exotic species[J]. Biodiversity Science, 2014, 22(2): 223−230. doi: 10.3724/SP.J.1003.2014.08178
|
[23] |
Phillips S J, Anderson R P, Dudík M, et al. Opening the black box: an open-source release of Maxent[J]. Ecography, 2017, 40(7): 887−893. doi: 10.1111/ecog.03049
|
[24] |
刘洋, 石娟. 气候变化背景下埃及吹绵蚧在中国的适生区预测[J]. 植物保护, 2020, 46(1):108−117.
Liu Y, Shi J. Prediction of potential geographical distribution of Icerya aegyptiaca in China under climate change[J]. Plant Protection, 2020, 46(1): 108−117.
|
[25] |
Muscarella R, Galante P J, Soley-Guardia M, et al. ENMeval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models[J]. Methods in Ecology & Evolution, 2015, 5(11): 1198−1205.
|
[26] |
Shcheglovitova M, Anderson R P. Estimating optimal complexity for ecological niche models: a jackknife approach for species with small sample sizes[J]. Ecological Modelling, 2013, 269: 9−17.
|
[27] |
Zhong Q, Zhang J E, Ditommaso A, et al. Predicting invasions of Wedelia trilobata (L.) Hitchc. with MaxEnt and GARP models[J]. Journal of Plant Research, 2015, 128: 763−775. doi: 10.1007/s10265-015-0738-3
|
[28] |
Pearson R G, Raxworthy C J, Nakamura M, et al. Original article: predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar[J]. Journal of Biogeography, 2007, 34(1): 102−117.
|
[29] |
Liu Y, Shi J. Predicting the potential global geographical distribution of two icerya species under climate change[J]. Forests, 2020, 11(6): 1−19.
|
[30] |
赵晓冏, 巩娟霄, 赵莎莎, 等. 样本量及其空间分布对物种分布模型的影响[J]. 兰州大学学报: 自然科学版, 2018, 54(2):70−77.
Zhao X J, Gong J X, Zhao S S, et al. Impact of sample size and spatial distribution on species distribution model[J]. Journal of Lanzhou University: Natural Sciences, 2018, 54(2): 70−77.
|
[31] |
Morey A C, Venette R C. Minimizing risk and maximizing spatial transferability: challenges in constructing a useful model of potential suitability for an invasive insect[J]. Annals of the Entomological Society of America, 2020, 113(2): 100−113. doi: 10.1093/aesa/saz049
|
[32] |
闻连仁, 赵春芝, 张洪彦, 等. 舞毒蛾生物学特性观察[J]. 吉林林业科技, 1989(2):34−37.
Wen L R, Zhao C Z, Zhang H Y, et al. Observation on biological characteristics of Lymantria dispar[J]. Journal of Jilin Forestry Science and Technology, 1989(2): 34−37.
|
[33] |
卢小雨, 陈洪俊, 陈乃中, 等. 亚洲型舞毒蛾在北美的适生性[J]. 昆虫知识, 2009, 46(3):398−402, 495.
Lu X Y, Chen H J, Chen N Z, et al. Potential geographic distribution of Asian gypsy moth, Lymantria dispar, in north America[J]. Chinese Bulletin of Entomology, 2009, 46(3): 398−402, 495.
|
[34] |
Heikkinen R K, Luoto M, Araújo M B, et al. Methods and uncertainties in bioclimatic envelope modelling under climate change[J]. Progress in Physical Geography, 2006, 30(6): 751−777. doi: 10.1177/0309133306071957
|
[35] |
Sinclair S J, White M D, Newell G R. How useful are species distribution models for managing biodiversity under future climates?[J]. Ecology & Society, 2010, 15(1): 175−183.
|
[1] | Xu Jingya, Liu Tian, Zang Guozhang, Zheng Yiqi. Prediction of suitable areas of Eremochloa ophiuroides in China under different climate scenarios based on MaxEnt model[J]. Journal of Beijing Forestry University, 2024, 46(3): 91-102. DOI: 10.12171/j.1000-1522.20230022 |
[2] | He Xin, Ma Wenxu, Zhao Tiantian, Yang Xiaohong, Ma Qinghua, Liang Lisong, Wang Guixi, Yang Zhen. Ecological differentiation and changes in historical distribution of Corylus heterophylla species complex since the last interglacial[J]. Journal of Beijing Forestry University, 2023, 45(4): 11-23. DOI: 10.12171/j.1000-1522.20210350 |
[3] | Zhou Yuting, Ge Xuezhen, Zou Ya, Guo Siwei, Wang Tao, Tao Jing, Zong Shixiang. Prediction of the potential geographical distribution of Hylurgus ligniperda at the global scale and in China using the Maxent model[J]. Journal of Beijing Forestry University, 2022, 44(11): 90-99. DOI: 10.12171/j.1000-1522.20210345 |
[4] | Liu Wei, Zhao Runan, Sheng Qianqian, Geng Xingmin, Zhu Zunling. Geographical distribution and potential distribution area prediction of Paeonia jishanensis in China[J]. Journal of Beijing Forestry University, 2021, 43(12): 83-92. DOI: 10.12171/j.1000-1522.20200360 |
[5] | Wang Yanjun, Gao Tai, Shi Juan. Prediction and analysis of the global suitability of Lymantria dispar based on MaxEnt[J]. Journal of Beijing Forestry University, 2021, 43(9): 59-69. DOI: 10.12171/j.1000-1522.20200416 |
[6] | Huang Ruizhi, Yu Tao, Zhao Hui, Zhang Shengkai, Jing Yang, Li Junqing. Prediction of suitable distribution area of the endangered plant Acer catalpifolium under the background of climate change in China[J]. Journal of Beijing Forestry University, 2021, 43(5): 33-43. DOI: 10.12171/j.1000-1522.20200254 |
[7] | Huang Mengyi, Zhao Jiaqiang, Shi Juan. Predicting occurrence tendency of Leptocybe invasa in China based on MaxEnt[J]. Journal of Beijing Forestry University, 2020, 42(11): 64-71. DOI: 10.12171/j.1000-1522.20190053 |
[8] | Yang Furong, Qi Yaodong, Liu Haitao, Xie Caixiang, Song Jingyuan. Global potential suitable area and ecological characteristics of Moringa oleifera[J]. Journal of Beijing Forestry University, 2020, 42(10): 45-54. DOI: 10.12171/j.1000-1522.20190375 |
[9] | ZHANG Chao, CHEN Lei, TIAN Cheng-ming, LI Tao, WANG Rong, YANG Qi-qing. Predicting the distribution of dwarf mistletoe (Arceuthobium sichuanense) with GARP and MaxEnt models[J]. Journal of Beijing Forestry University, 2016, 38(5): 23-32. DOI: 10.13332/j.1000-1522.20150516 |
[10] | SONG Yan, JI Jing-jun, ZHU Lin-hong, ZHANG Shi-ying. Characteristics of Asian-African summer monsoon pre-and post-global warming in mid-1980s[J]. Journal of Beijing Forestry University, 2007, 29(2): 24-33. |
1. |
韩蓉,马燕,敖羽,张婷,孟新涛,许铭强,潘俨. 基于多元分析法综合评价新疆不同品种大果沙棘汁品质特性及加工适宜性. 食品工业科技. 2025(03): 322-332 .
![]() | |
2. |
李元朝,黎勤吉,郭玉琼,郝志龙,金珊. 枸杞茶感官审评方法的建立及其主要呈香物质的探索. 食品工业科技. 2025(04): 30-41 .
![]() |