• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Yang Tingli, An Mingtai, Zhang Guangqi, Qi Yujiao. Seedling composition and its interannual dynamics of woody plants in karst evergreen deciduous broadleaved mixed forest[J]. Journal of Beijing Forestry University, 2022, 44(4): 24-35. DOI: 10.12171/j.1000-1522.20210018
Citation: Yang Tingli, An Mingtai, Zhang Guangqi, Qi Yujiao. Seedling composition and its interannual dynamics of woody plants in karst evergreen deciduous broadleaved mixed forest[J]. Journal of Beijing Forestry University, 2022, 44(4): 24-35. DOI: 10.12171/j.1000-1522.20210018

Seedling composition and its interannual dynamics of woody plants in karst evergreen deciduous broadleaved mixed forest

More Information
  • Received Date: January 19, 2021
  • Revised Date: March 30, 2021
  • Accepted Date: March 08, 2022
  • Available Online: March 15, 2022
  • Published Date: April 24, 2022
  •   Objective  The study of seedling regeneration is of great significance to reveal the mechanism of community regeneration and the distribution pattern of vegetation patches.
      Method  Based on the 1.28 ha fixed sample plot of karst evergreen deciduous broadleaved mixed forest in Maolan National Nature Reserve of southwestern China, the seedlings with DBH < 1 cm in 128 sample plots (1 m × 1 m) were investigated for three years. We analyzed the species, quantity, germination and death characteristics of woody plant seedlings in the forest community, and explored the annual distribution pattern of seedlings of main tree species.
      Result  (1) There were significant differences in the number and species composition of woody plant seedlings between different years. A total of 971 seedlings (8 plant/m2) were found in 2017, belonging to 55 families, 96 genera and 121 species; 767 seedlings (6 plant/m2) were found in 2018, belonging to 40 families, 66 genera and 78 species; and 1 342 seedlings (10 plant/m2) were found in 2019, belonging to 39 families, 70 genera and 87 species. Among them, the woody vine seedlings were important components of seedlings under the forest. (2) Main tree species composition of seedlings under forest was similar to that of main tree species in the sample plot, and also maintained the dominant position under the forest. (3) The number of individuals and species of woody plant seedlings showed a partial peak at the height classes, which reached the highest at the 10−20 cm height classes and then decreased gradually, indicating that there was a certain negative density dependence on the seedlings. (4) The number of individuals and species of woody plant seedlings increased with the increase of elevation and slope, and the density of woody plant seedlings showed a complex patch distribution.
      Conclusion  There are abundant species of woody plant seedlings under Maolan karst evergreen deciduous broadleaved mixed forest, showing complex patch distribution in space, and there is a certain negative density restriction effect due to the significant influence of altitude and slope. The long-term monitoring of seedlings will help us to understand the process of community renewal more accurately, and provide a basis for the rational protection and scientific management of karst forest in the future.
  • [1]
    Szwagrzyk J, Szewczyk J, Bodziarczyk J. Dynamics of seedling banks in beech forest: results of a 10-year study on germination, growth and survival[J]. Forest Ecology and Management, 2001, 141(3): 237−250. doi: 10.1016/S0378-1127(00)00332-7
    [2]
    尹华军, 程新颖, 赖挺, 等. 川西亚高山65年人工云杉林种子雨、种子库和幼苗定居研究[J]. 植物生态学报, 2011, 35(1): 35−44. doi: 10.3724/SP.J.1258.2011.00035

    Yin H J, Cheng X Y, Lai T, et al. Seed rain, soil seed bank and seedling regeneration in a 65-year Picea asperata plantation in subalpine coniferous, western Sichuan, China[J]. Chinese Journal of Plant Ecology, 2011, 35(1): 35−44. doi: 10.3724/SP.J.1258.2011.00035
    [3]
    李小双, 彭明春, 党承林. 植物自然更新研究进展[J]. 生态学杂志, 2007, 26(12): 2081−2088.

    Li X S, Peng M C, Dang C L. Research progress on natural regeneration of plants[J]. Chinese Journal of Ecology, 2007, 26(12): 2081−2088.
    [4]
    李洁琼, 宋晓阳, 曹敏. 云南哀牢山和玉龙雪山森林树种幼苗对海拔梯度的响应及其季节性差异[J]. 应用生态学报, 2016, 27(11): 3403−3412.

    Li J Q, Song X Y, Cao M. Response of tree seedlings to altitudinal gradient and its seasonal variation in Ailao Mountain and Yulong Mountain, Yunnan Province, China[J]. Chinese Journal of Applied Ecology, 2016, 27(11): 3403−3412.
    [5]
    李晓亮, 王洪, 郑征, 等. 西双版纳热带森林树种幼苗的组成、空间分布和旱季存活[J]. 植物生态学报, 2009, 33(4): 658−671.

    Li X L, Wang H, Zheng Z, et al. Composition, spatial distribution and survival during the dry season of tree seedlings in a tropical forest in Xishuangbanna, SW China[J]. Chinese Journal of Plant Ecology, 2009, 33(4): 658−671.
    [6]
    张健, 李步杭, 白雪娇, 等. 长白山阔叶红松林乔木树种幼苗组成及其年际动态[J]. 生物多样性, 2009, 17(4): 385−396. doi: 10.3724/SP.J.1003.2009.09102

    Zhang J, Li B H, Bai X J, et al. Composition and interannual dynamics of tree seedlings in broad-leaved Korean pine (Pinus koraiensis) mixed forest in Changbai Mountain[J]. Biodiversity Science, 2009, 17(4): 385−396. doi: 10.3724/SP.J.1003.2009.09102
    [7]
    刘帅. 长白山针阔混交林乔木幼苗动态研究 [D]. 北京: 北京林业大学, 2016.

    Liu S. Studies on the tree seedling dynamics of coniferous and broad leaved mixed forests in Changbai Mountain [D]. Beijing: Beijing Forestry University, 2016.
    [8]
    Comita L S, Aguilar S, Perez R, et al. Patterns of woody plant species abundance and diversity in the seedling layer of a tropical forest[J]. Journal of Vegetation Science, 2007, 18: 163−174. doi: 10.1658/1100-9233(2007)18[163:POWPSA]2.0.CO;2
    [9]
    李艳丽, 杨华, 亢新刚, 等. 长白山云冷杉针阔混交林天然更新空间分布格局及其异质性[J]. 应用生态学报, 2014, 25(2): 311−317.

    Li Y L, Yang H, Kang X G, et al. Spatial heterogeneity of natural regeneration in a spruce-fir mixed broad leaf-conifer forest in Changbai Mountains[J]. Chinese Journal of Applied Ecology, 2014, 25(2): 311−317.
    [10]
    李雪云, 潘萍, 欧阳勋志, 等. 闽楠天然次生林幼树幼苗更新特征及空间分布格局[J]. 东北林业大学学报, 2018, 46(9): 11−15. doi: 10.3969/j.issn.1000-5382.2018.09.003

    Li X Y, Pan P, Ouyang X Z, et al. Spatial distribution patterns and regeneration characteristics of seedling and sapling in natural secondary Phoebe bournei forest[J]. Journal of Northeast Forestry University, 2018, 46(9): 11−15. doi: 10.3969/j.issn.1000-5382.2018.09.003
    [11]
    Albrecht M A, McCarthy B C. Seedling establishment shapes the distribution of shade-adapted forest herbs across a topographical moisture gradient[J]. Journal of Ecology, 2009, 97(5): 1037−1049. doi: 10.1111/j.1365-2745.2009.01527.x
    [12]
    Oshima C, Tokumoto Y, Nakagawa M. Biotic and abiotic drivers of dipterocarp seedling survival following mast fruiting in Malaysian Borneo[J]. Journal of Tropical Ecology, 2014, 31(2): 23−24.
    [13]
    Dai N, Kenji S, Akiko S. Seedling establishment of deciduous trees in various topographic positions[J]. Journal of Vegetation Science, 2002, 13(1): 11−14.
    [14]
    Tang C Q, Qhsawa M. Coexistence mechanisms of evergreen, deciduous and coniferous trees in a mid-montane mixed forest on Mt. Emei, Sichuan, China[J]. Plant Ecology, 2002, 161: 215−230. doi: 10.1023/A:1020395830795
    [15]
    Cantón Y, Barrio G D, Solé-Benet A, et al. Topographic controls on the spatial distribution of ground cover in the Tabernas badlands of SE Spain[J]. Catena, 2004, 55(3): 341−365. doi: 10.1016/S0341-8162(03)00108-5
    [16]
    彭闪江, 黄忠良, 彭少麟, 等. 植物天然更新过程中种子和幼苗死亡的影响因素[J]. 广西植物, 2004, 24(2): 113−121, 124. doi: 10.3969/j.issn.1000-3142.2004.02.004

    Peng S J, Huang Z L, Peng S L, et al. Factors influencing mortality of seed and seedling in plant nature regeneration process[J]. Guihaia, 2004, 24(2): 113−121, 124. doi: 10.3969/j.issn.1000-3142.2004.02.004
    [17]
    Wright S J, Muller-Landau H C, Calderón O, et al. Annual and spatial variation in seedfall and seedling recruitment in a neotropical forest[J]. Ecology, 2005, 86(4): 848−860. doi: 10.1890/03-0750
    [18]
    郭秋菊. 择伐和火干扰对长叶松幼苗更新的影响 [D]. 杨凌: 西北农林科技大学, 2013.

    Guo Q J. Effects of selection and prescribed firedisturbances on longleaf pine seedling regeneration [D]. Yangling: Northwest A&F University, 2013.
    [19]
    Connell J H, Green P T. Seedling dynamics over thirty-two years in a tropical rain forest tree[J]. Ecology, 2000, 81(2): 568−584. doi: 10.1890/0012-9658(2000)081[0568:SDOTTY]2.0.CO;2
    [20]
    Norden N, Chave J, Caubère A, et al. Is temporal variation of seedling communities determined by environment or by seed arrival? A test in a neotropical forest[J]. Journal of Ecology, 2007, 95(3): 507−516. doi: 10.1111/j.1365-2745.2007.01221.x
    [21]
    Metz M R, Comita L S, Chen Y Y, et al. Temporal and spatial variability in seedling dynamics: a cross-site comparison in four lowland tropical forests[J]. Journal of Tropical Ecology, 2008, 24(1): 9−18. doi: 10.1017/S0266467407004695
    [22]
    龙翠玲. 茂兰喀斯特森林林隙大小对树种更新的影响[J]. 南京林业大学学报 (自然科学版), 2008, 32(2): 34−38.

    Long C L. Effects of gap size on regeneration of karst forest in Maolan Natural Reserve of Guizhou Province[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2008, 32(2): 34−38.
    [23]
    朱守谦. 喀斯特森林生态研究 [M]. 贵阳: 贵州科技出版社, 2003.

    Zhu S Q. Ecological researchon karst forest [M]. Guiyang: Guizhou Science and Technology Publishing House, 2003.
    [24]
    符裕红, 彭琴, 李安定, 等. 喀斯特石灰岩产状地下生境的土壤质量[J]. 森林与环境学报, 2017, 37(3): 353−359.

    Fu Y H, Peng Q, Li A D, et al. Soil quality of the limestone underground habitat types in karst areas[J]. Journal of Forest and Environment, 2017, 37(3): 353−359.
    [25]
    龙健, 李娟, 江新荣, 等. 贵州茂兰喀斯特森林土壤微生物活性的研究[J]. 土壤学报, 2004, 41(4): 597−602. doi: 10.3321/j.issn:0564-3929.2004.04.016

    Long J, Li J, Jang X R, et al. Soil microbial activities in Maolan karst forest, Guizhou Province[J]. Acta Pedologica Sinica, 2004, 41(4): 597−602. doi: 10.3321/j.issn:0564-3929.2004.04.016
    [26]
    宋新章, 张智婷, 张慧玲, 等. 长白山森林不同演替阶段采伐林隙幼苗更新特征[J]. 江西农业大学学报, 2010, 32(3): 504−509, 516. doi: 10.3969/j.issn.1000-2286.2010.03.017

    Song X Z, Zhang Z T, Zhang H L, et al. Characteristics of seedlings in logging gaps of forests at different succession stages in Changbai Mountain[J]. Acta Agriculturae Universitatis Jiangxiensis, 2010, 32(3): 504−509, 516. doi: 10.3969/j.issn.1000-2286.2010.03.017
    [27]
    尤冬梅. 环境因子对水杉种子萌发与幼苗生长的影响研究 [D]. 武汉: 华中师范大学, 2008.

    You D M. The effects of environmental factors on seedgermination and seedling growth of Metasequoia glyptostroboides [D]. Wuhan: Central China Normal University, 2008.
    [28]
    喻理飞, 朱守谦, 祝小科, 等. 退化喀斯特森林恢复评价和修复技术[J]. 贵州科学, 2002, 20(1): 7−13. doi: 10.3969/j.issn.1003-6563.2002.01.002

    Yu L F, Zhu S Q, Zhu X K, et al. A study on evaluation of restoration and remedy technology of degraded karst forest[J]. Guizhou Science, 2002, 20(1): 7−13. doi: 10.3969/j.issn.1003-6563.2002.01.002
    [29]
    刘济明. 茂兰喀斯特森林中华蚊母树群落土壤种子库动态初探[J]. 植物生态学报, 2000, 24(3): 366−374. doi: 10.3321/j.issn:1005-264X.2000.03.021

    Liu J M. A preliminary study on the soil seed bank dynamics of the Distylium chinensis community in the Maolan karst forest[J]. Chinese Journal of Plant Ecology, 2000, 24(3): 366−374. doi: 10.3321/j.issn:1005-264X.2000.03.021
    [30]
    玉屏, 兰洪波, 冉景丞, 等. 茂兰自然保护区生物多样性现状及保护对策[J]. 现代农业科技, 2011(15): 233−234, 236. doi: 10.3969/j.issn.1007-5739.2011.15.142

    Yu P, Lan H B, Ran J C, et al. Status and conservation countermeasures of biodiversity in Maolan National Reserve[J]. Modern Agricultural Science and Technology, 2011(15): 233−234, 236. doi: 10.3969/j.issn.1007-5739.2011.15.142
    [31]
    龙翠玲, 余世孝, 熊志斌, 等. 茂兰喀斯特森林林隙的植物多样性与更新[J]. 生物多样性, 2005, 13(1): 43−50. doi: 10.3321/j.issn:1005-0094.2005.01.006

    Long C L, Yu S X, Xiong Z B, et al. Species diversity and regeneration in forest gaps of the karst forest in Maolan National Nature Reserve, Guizhou Province[J]. Biodiversity Science, 2005, 13(1): 43−50. doi: 10.3321/j.issn:1005-0094.2005.01.006
    [32]
    孟令君, 姚杰, 秦江环, 等. 吉林蛟河针阔混交林乔木幼苗组成及其密度格局影响因素[J]. 植物生态学报, 2018, 42(6): 653−662. doi: 10.17521/cjpe.2018.0025

    Meng L J, Yao J, Qin J H, et al. Drivers of composition and density pattern of tree seedlings in a secondary mixed conifer and broad-leaved forest, Jiaohe, Jilin, China[J]. Chinese Journal of Plant Ecology, 2018, 42(6): 653−662. doi: 10.17521/cjpe.2018.0025
    [33]
    王政权, 王庆成, 李哈滨. 红松老龄林主要树种的空间异质性特征与比较的定量研究[J]. 植物生态学报, 2000, 24(6): 718−723. doi: 10.3321/j.issn:1005-264X.2000.06.013

    Wang Z Q, Wang Q C, Li H B. Characteristics and comparison of spatial heterogeneity of the main species of Korean pine in old growth forests[J]. Chinese Journal of Plant Ecology, 2000, 24(6): 718−723. doi: 10.3321/j.issn:1005-264X.2000.06.013
    [34]
    刘志理, 毕连柱, 宋国华, 等. 典型阔叶红松林叶面积指数的空间异质性[J]. 北京林业大学学报, 2018, 40(11): 1−11.

    Liu Z L, Bi L Z, Song G H, et al. Spatial heterogeneity of leaf area index in a typical mixed broadleaved-Korean pine forest in Xiaoxing’an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(11): 1−11.
    [35]
    刘检明. 林冠结构对林下幼苗多样性影响的研究: 以八大公山亚热带山地常绿落叶阔叶混交林为例 [D]. 武汉: 中国科学院大学 (中国科学院武汉植物园), 2018.

    Liu J M. Study on relationships between canopy structure and seedling diversity: a case study in the dynamic plot of subtropical evergreen and deciduous broadleaved mixed forest in Badagongshan [D]. Wuhan: Wuhan Botanical Garden, Chinese Academy of Sciences, 2018.
    [36]
    姚杰, 闫琰, 张春雨, 等. 吉林蛟河针阔混交林乔木幼苗组成与月际动态[J]. 植物生态学报, 2015, 39(7): 717−725. doi: 10.17521/cjpe.2015.0068

    Yao J, Yan Y, Zhang C Y, et al. Composition and monthly dynamics of tree seedlings in a coniferous and broad-leaved mixed forest in Jiaohe, Jilin Province, China[J]. Chinese Journal of Plant Ecology, 2015, 39(7): 717−725. doi: 10.17521/cjpe.2015.0068
    [37]
    邱华, 舒皓, 吴兆飞, 等. 长白山阔叶红松林乔木幼苗组成及多度格局的影响因素[J]. 生态学报, 2020, 40(6): 2049−2056.

    Qiu H, Shu H, Wu Z F, et al. Influencing factors of composition and abundance pattern of tree seedlings in broadleaved Korean pine (Pinus koraiensis) mixed forest, Changbai Mountain, China[J]. Acta Ecologica Sinica, 2020, 40(6): 2049−2056.
    [38]
    宋慧清, 倪鸣源, 朱师丹. 乔木与木质藤本的水力与光合性状的差异: 以热带森林崖豆藤属和买麻藤属为例[J]. 植物生态学报, 2020, 44(3): 192−204. doi: 10.17521/cjpe.2019.0304

    Song H Q, Ni M Y, Zhu S D. Hydraulic and photosynthetic characteristics differ between co-generic tree and liana species: a case study of Millettia and Gnetum in tropical forest[J]. Chinese Journal of Plant Ecology, 2020, 44(3): 192−204. doi: 10.17521/cjpe.2019.0304
    [39]
    郝建辉. 海南霸王岭木质藤本对低地次生林群落更新的影响 [D]. 重庆: 西南大学, 2010.

    Hao J H. The effects of lianas on the regeneration of lowland secondary forest in nature reserve, Hainan Island [D]. Chongqing: Southwest University, 2010.
    [40]
    郝建辉, 陶建平, 赵科, 等. 木质藤本对人工林群落结构及更新的影响[J]. 西南大学学报 (自然科学版), 2011, 33(2): 34−39.

    Hao J H, Tao J P, Zhao K, et al. The effects of lianas on community structure and regeneration of vatica astrotricha plantations in Bawangling Nature Reserve, Hainan Province, China[J]. Journal of Southwest University (Natural Science Edition), 2011, 33(2): 34−39.
    [41]
    巩合德, 杨国平, 鲁志云, 等. 哀牢山常绿阔叶林乔木树种的幼苗组成及时空分布特征[J]. 生物多样性, 2011, 19(2): 151−157. doi: 10.3724/SP.J.1003.2011.07010

    Gong H D, Yang G P, Lu Z Y, et al. Composition and spatio-temporal distribution of tree seedlings in an evergreen broad-leaved forest in the Ailao Mountains, Yunnan[J]. Biodiversity Science, 2011, 19(2): 151−157. doi: 10.3724/SP.J.1003.2011.07010
    [42]
    Changyang C H, Lu C L, Sun I F, et al. Long-term seedling dynamics of tree species in a subtropical rain forest, Taiwan[J]. Taiwania, 2013, 58(1): 35−43.
    [43]
    刘帅, 肖翠, 王均伟, 等. 长白山阔叶红松林乔木幼苗年际动态及影响因素[J]. 北京林业大学学报, 2016, 38(11): 57−66.

    Liu S, Xiao C, Wang J W, et al. Interannual seedling dynamic and influencing factors on seedling survival of tree species in a broadleaved Korean pine (Pinus koraiensis) mixed forest in Changbai Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2016, 38(11): 57−66.
    [44]
    Nathan R, Safriel U N, Noy-Meir S, et al. Spatiotemporal variation in seed dispersal and recruitment near and far from Pinus halepensis trees[J]. Ecology, 2000, 81(8): 2156−2169. doi: 10.1890/0012-9658(2000)081[2156:SVISDA]2.0.CO;2
    [45]
    李华. 种子萌发及幼苗形态的研究[J]. 种子, 1992(3): 46−48.

    Li H. Study on seed germination and seedling morphology[J]. Seed, 1992(3): 46−48.
    [46]
    刘有军, 刘世增, 纪永福, 等. 碟果虫实种子萌发对策及生态适应性[J]. 生态学报, 2010, 30(24): 6910−6918.

    Liu Y J, Liu S Z, Ji Y F, et al. Seed germinative strategy and ecological adaptability of Corisperimum patelliforme[J]. Acta Ecologica Sinica, 2010, 30(24): 6910−6918.
    [47]
    万海霞, 贾宝光, 余家治, 等. 栓翅卫矛种子萌发条件的初步研究[J]. 中国种业, 2018(2): 62−64. doi: 10.3969/j.issn.1671-895X.2018.02.020

    Wan H X, Jia B G, Yu J Z, et al. Preliminary study on seed germination conditions of Euonymus amurensis[J]. China Seed Industry, 2018(2): 62−64. doi: 10.3969/j.issn.1671-895X.2018.02.020
    [48]
    孙海群, 冀建鹏. 低温冻害对萌动的霸王种子发芽特性的影响[J]. 黑龙江畜牧兽医, 2013(7): 76−77.

    Sun H Q, Ji J P. Effect of low temperature injury on germinating seed germination characteristics of Sarcozygium xanthoxylon Bunge seed[J]. Heilongjiang Animal Science and Veterinary Medicine, 2013(7): 76−77.
    [49]
    闫琰, 张新娜, 姚杰, 等. 吉林蛟河不同演替阶段针阔混交林乔木幼苗数量组成及其时间动态[J]. 植物生态学报, 2016, 40(2): 127−139. doi: 10.17521/cjpe.2015.0365

    Yan Y, Zhang X N, Yao J, et al. Composition and temporal dynamics of tree seedlings at different successional stages of conifer and broad-leaved mixed forests in Jiaohe, Jilin Province, China[J]. Chinese Journal of Plant Ecology, 2016, 40(2): 127−139. doi: 10.17521/cjpe.2015.0365
    [50]
    谭一波, 詹潮安, 肖泽鑫, 等. 广东南澳岛中华楠种群结构及动态特征[J]. 生态学杂志, 2010, 29(10): 1901−1906.

    Tan Y B, Zhan C A, Xiao Z X, et al. Population structure and dynamic characteristics of Machilus chinensis in Nan’ao Island, Guangdong Province[J]. Chinese Journal of Ecology, 2010, 29(10): 1901−1906.
    [51]
    Comita L S, Hubbell S P. Local neighborhood and species’ shade tolerance influence survival in a diverse seedling bank[J]. Ecology, 2009, 90(2): 328−334. doi: 10.1890/08-0451.1
    [52]
    Harms K E, Condit R, Hubbell S P, et al. Habitat associations of trees and shrubs in a 50-ha neotropical forest plot [J]. 2001, 89(6): 947−959.
    [53]
    Martínez I, Taboada F G, Wiegand T, et al. Spatial patterns of seedling-adult associations in a temperate forest community[J]. Forest Ecology and Management, 2013, 296: 74−80. doi: 10.1016/j.foreco.2013.02.005
    [54]
    宾粤, 叶万辉, 曹洪麟, 等. 鼎湖山南亚热带常绿阔叶林20公顷样地幼苗的分布[J]. 生物多样性, 2011, 19(2): 127−133. doi: 10.3724/SP.J.1003.2011.07290

    Bin Y, Ye W H, Cao H L, et al. Seedling distribution in a subtropical evergreen broad-leaved forest plot in the Dinghu Mountain[J]. Biodiversity Science, 2011, 19(2): 127−133. doi: 10.3724/SP.J.1003.2011.07290
    [55]
    张忠华, 胡刚, 祝介东, 等. 喀斯特森林土壤养分的空间异质性及其对树种分布的影响[J]. 植物生态学报, 2011, 35(10): 1038−1049.

    Zhang Z H, Hu G, Zhu J D, et al. Spatial heterogeneity of soil nutrients and its impact on tree species distribution in a karst forest of Southwest China[J]. Chinese Journal of Plant Ecology, 2011, 35(10): 1038−1049.
    [56]
    黄萍, 刘艳红. 北京松山油松林林分结构和地形对幼苗更新的影响[J]. 生态学杂志, 2018, 37(4): 1003−1009.

    Huang P, Liu Y H. Effects of stand structure and terrain factors on seedling regeneration of Pinus tabuliformis forest in the Songshan National Nature Reserve, Beijing[J]. Chinese Journal of Ecology, 2018, 37(4): 1003−1009.
    [57]
    张忠华, 胡刚, 倪健, 等. 茂兰喀斯特常绿落叶阔叶混交林树种的空间分布格局及其分形特征[J]. 生态学报, 2015, 35(24): 8221−8230.

    Zhang Z H, Hu G, Ni J, et al. Spatial distribution patterns and their fractal properties for trees in a subtropical mixed evergreen-deciduous broad-leaved karst forest in Maolan, southwestern China[J]. Acta Ecologica Sinica, 2015, 35(24): 8221−8230.
    [58]
    黄云霞, 徐萱, 张莉芗, 等. 百山祖常绿阔叶林灌草层物种组成和分布的10年动态[J]. 生物多样性, 2016, 24(12): 1353−1363. doi: 10.17520/biods.2016095

    Huang Y X, Xu X, Zhang L X, et al. Ten-years period of grass and small woody plant dynamics in a 5-ha evergreen forest plot in Baishanzu, Zhejiang Province[J]. Biodiversity Science, 2016, 24(12): 1353−1363. doi: 10.17520/biods.2016095
    [59]
    殷正, 范秀华. 长白山不同演替阶段温带森林林下草本植物对乔木幼苗的影响[J]. 生态学报, 2020, 40(7): 2194−2204.

    Yin Z, Fan X H. Effects of herbs on tree seedlings in different succession stages of temperate forests in Changbai Mountain, China[J]. Acta Ecologica Sinica, 2020, 40(7): 2194−2204.
    [60]
    符裕红, 黄宗胜, 喻理飞, 等. 岩溶区典型根系地下生境的土壤质量分析[J]. 水土保持研究, 2012, 19(3): 67−73.

    Fu Y H, Huang Z S, Yu L F, et al. Analysis on the soil quality of different typical underground root habitat types in karst areas[J]. Research of Soil and Water Conservation, 2012, 19(3): 67−73.
    [61]
    陈欣, 韩有志. 关帝山不同密度云杉林的更新特征[J]. 山西农业科学, 2019, 47(8): 1446−1449. doi: 10.3969/j.issn.1002-2481.2019.08.31

    Chen X, Han Y Z. Regeneration characteristics of spruce forests with different densities in Guandi Mountain[J]. Journal of Shanxi Agricultural Sciences, 2019, 47(8): 1446−1449. doi: 10.3969/j.issn.1002-2481.2019.08.31
    [62]
    于金莹, 亢新刚, 刘怀东. 林隙及其对天然林更新的影响[J]. 林业与生态科学, 2005, 20(2): 133−137.

    Yu J Y, Kang X G, Liu H D. Study advances on the forest gap and its influence on natural forest regeneration[J]. Forestry and Ecological Sciences, 2005, 20(2): 133−137.
    [63]
    姜玲玲, 许中旗. 东北东部山地蒙古栎林的年龄结构及天然更新研究[J]. 林业与生态科学, 2020, 35(4): 365−368, 376.

    Jiang L L, Xu Z Q. Research on age structure and natural regeneration of Quercus mongolica forest on eastern mountains in northeast region[J]. Forestry and Ecological Sciences, 2020, 35(4): 365−368, 376.
    [64]
    陈香茗. 长白山阔叶红松林种子雨及幼苗时空动态研究 [D]. 北京: 北京林业大学, 2011.

    Chen X M. Spatiotemporal dynamics of seed rain and seedling in broad-leaved Korean pine mixed forests in Changbai Mountain [D]. Beijing: Beijing Forestry University, 2011.
    [65]
    白志强, 刘华, 张新平, 等. 新疆额尔齐斯河流域杨树幼苗天然更新影响因子分析[J]. 西北林学院学报, 2011, 26(1): 98−102.

    Bai Z Q, Liu H, Zhang X P, et al. Analysis on influence factors of natural regeneration of young poplar seedlings in Irtysh River Basin, Xinjiang[J]. Journal of Northwest Forestry University, 2011, 26(1): 98−102.
  • Related Articles

    [1]Fu Qun, Zhang Haiting. Using the method of semi-bionic to extract total alkaloids from Berberis poiretii and to study the antibacterial property[J]. Journal of Beijing Forestry University, 2018, 40(5): 117-123. DOI: 10.13332/j.1000-1522.20170345
    [2]ZHENG Dan, LI Xiao-min, HE Jing, LEI Jian-du. Optimization of extraction process for total flavonoids from leaves of Aquilaria sinensis by response surface method and purification technology[J]. Journal of Beijing Forestry University, 2017, 39(8): 104-110. DOI: 10.13332/j.1000-1522.20160343
    [3]FAN Zi-luan, YUAN Bin, WANG Zhen-yu. Response surface methodology for optimizing high shear emulsifier-assisted extraction of essential oil from pine needles.[J]. Journal of Beijing Forestry University, 2015, 37(11): 109-114. DOI: 10.13332/j.1000-1522.20150135
    [4]CHENG Jing, LEI Jian-du, LIU Jing, WANG Lu-ying, DENG Li-hong, HE Jing. Optimization of extraction technology of ginsenosides from ginseng leaves by response surface method[J]. Journal of Beijing Forestry University, 2015, 37(2): 142-147. DOI: 10.13332/j.cnki.jbfu.2015.02.003
    [5]ZHAO Yu-hong, ZHAI Ya-nan, DANG Yuan, SHI Ji-yi, WANG Zhen-yu. Optimization of purification conditions of polyphenols from Pinus sylvestris var. mongolica using response surface methodology.[J]. Journal of Beijing Forestry University, 2014, 36(1): 138-142.
    [6]YUAN Yuan, GUO Ming-hui.. Process research of particleboards using corn stalk pretreated with laccase based on response surface methodology.[J]. Journal of Beijing Forestry University, 2013, 35(4): 112-117.
    [7]WANG Feng-jun, WANG Yun-qiang, GU Xin, LI Li, HUANG Jian-dong, WANG Jian-zhong. Optimization of ultrasonic extraction of chlorophyll from papermulberry leaves via response surface analysis[J]. Journal of Beijing Forestry University, 2010, 32(6): 135-140.
    [8]YU Yun-shui, HE Wei-li, LI Li-jun, ZHAO Ren-jie. Optimal design of the mechanical properties of bamboo plywood form based on response surface model.[J]. Journal of Beijing Forestry University, 2009, 31(6): 103-107.
    [9]MENG Chun-ling, WANG Jian-zhong, WANG Feng-jun, XU Gui-juan. Optimization of ultrasoundassisted extraction technique of seabuckthorn seed oil by response surface methodology[J]. Journal of Beijing Forestry University, 2008, 30(5): 118-122.
    [10]WANG Feng-jun, WANG Jian-zhong, HAO Jun, GUO Xiao-ping, HU Xiao-shu. Optimization of the ultrasonic assisted extraction technique of polysaccharide from mulberry leaves via response surface analysis[J]. Journal of Beijing Forestry University, 2007, 29(5): 142-146. DOI: 10.13332/j.1000-1522.2007.05.026
  • Cited by

    Periodical cited type(26)

    1. 李豪,吴明豪,詹芳芷,李虹烨,张翔,刘志成. 耦合Graphab-PLUS模型的生态网络动态评估框架——以北京市中心城区为例. 北京林业大学学报. 2025(01): 95-105 . 本站查看
    2. 张浪,仲启铖,张瑞,张桂莲. 城市绿地生态网络概念辨析及构建方法探析. 园林. 2024(01): 4-10 .
    3. 李华,郑育桃,黄荷,陈飞平. 基于MSPA和MCR模型的庐山市生态网络构建. 中南林业科技大学学报. 2024(02): 98-107 .
    4. 刘园园,马彩虹,滑雨琪,李聪慧,杨航. 基于MSPA_P-MCR_F的干旱区层级生态网络构建与优化——以宁夏中卫市为例. 自然资源遥感. 2024(01): 67-76 .
    5. 杨迈,郑毅,李晓琳,欧朝蓉,杨秀彪,孙仕仙. 洱海流域生态网络构建与分析. 湿地科学. 2024(02): 254-263 .
    6. 邵润钰,罗紫薇,胡希军,王烨梓,张九月. 基于MSPA和MCR模型的株洲市生态网络构建与优化. 西北林学院学报. 2024(02): 217-227 .
    7. 许涛,樊鹤翔,周可钦,李涵璟,王苗. 基于MSPA-MCR-CIRCUIT的山西省运城市景观生态网络构建. 中国园林. 2024(03): 114-118 .
    8. 彭慧思,王艳慧,王志岗. 基于夜间灯光数据的郑州都市圈一体化景观格局的时空演变. 应用生态学报. 2024(05): 1359-1368 .
    9. 董欣雨,刘扬. 基于形态学空间格局分析与景观连通性的易门县生态网络构建与优化. 云南农业大学学报(自然科学). 2024(05): 168-177 .
    10. 丁金华,褚涵,孙琦. 基于MSPA与电路理论的水网地区生态网络构建. 中国城市林业. 2024(05): 122-129 .
    11. 申佳可,李烨,王云才. 基于生态感知的景观生态格局构建新思路与实施框架. 中国园林. 2024(12): 63-69 .
    12. 秦子博,玄锦,黄柳菁,刘兴诏. 基于MSPA和MCR模型的海岛型城市生态网络构建——以福建省平潭岛为例. 水土保持研究. 2023(02): 303-311 .
    13. 杜箫宇,吕飞南,王春雨,宇振荣. 基于MSPA-Conefor-MCR的县域尺度生态网络构建——以延庆区为例. 应用生态学报. 2023(04): 1073-1082 .
    14. 李彤,贾宝全,刘文瑞,张秋梦,姜莎莎. 宜昌市生态安全网络要素时空动态及其影响因素. 生态学报. 2023(15): 6154-6169 .
    15. 郑群明,申明智,曹灵,扈嘉辉. 基于MSPA和旅游流的风景道构建研究——以湖南省为例. 湖南师范大学自然科学学报. 2023(05): 17-27 .
    16. 陈胜兰,丁山,魏甫,阳胜男,周维,罗致,毛旭鹏. 基于生态景观连通性的浏阳市自然保护地整合优化评价. 中南林业调查规划. 2023(04): 21-25 .
    17. 邓靖琳,沈一,王倩娜,雷雪,高黄根. 四川眉山市彭山区生态空间格局构建——基于MSPA与生态扩张适宜性分析. 中国城市林业. 2023(06): 121-127 .
    18. 王博娅,刘志成. 城市更新背景下北京市中心城区生态网络的优化策略. 城市发展研究. 2022(01): 113-120 .
    19. 高娜,姜雪,郑曦. 基于生态系统服务的永定河流域北京段生态网络构建与优化. 北京林业大学学报. 2022(03): 106-118 . 本站查看
    20. 姚新治,杨航,王立涛,许磊,何鹏飞,田国行. 基于MSPA模型的登封市生态网络构建与优化. 河南科学. 2022(05): 776-784 .
    21. 费文君,赵梦琴. 基于MSPA的南京市绿色基础设施网络构建. 南京林业大学学报(自然科学版). 2022(03): 50-56 .
    22. 石龙宇,郑巧雅,廖振珍. 雄安新区生态基础设施建设与城市发展协同度评价. 生态学报. 2022(12): 4968-4977 .
    23. 陈南南,康帅直,赵永华,周煜杰,闫瑾,卢雅茹. 基于MSPA和MCR模型的秦岭(陕西段)山地生态网络构建. 应用生态学报. 2021(05): 1545-1553 .
    24. 代继平,朱坤,周天宇,彭建松. 腾冲市中心城区生态空间网络构建. 林业资源管理. 2021(05): 131-138 .
    25. 陈竹安,马彬彬,危小建,曾令权,姜晓桦. 基于MSPA和MCR模型的南昌市生态网络构建与优化. 水土保持通报. 2021(06): 139-147 .
    26. 张美丽,齐跃普,张利,陈影,周亚鹏,陈亚恒,王树涛. 基于Linkage Mapper与粒度反推法的太行山中北段生态节点识别与分析:以河北省阜平县为例. 生态与农村环境学报. 2020(12): 1569-1578 .

    Other cited types(31)

Catalog

    Article views (849) PDF downloads (71) Cited by(57)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return