• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Huang Xiaohui, Wu Jiaojiao, Feng Dalan, Sun Xiangyang. Effects of potassium deficient stress on growth and physiological characteristics of walnut seedlings[J]. Journal of Beijing Forestry University, 2022, 44(8): 23-30. DOI: 10.12171/j.1000-1522.20210020
Citation: Huang Xiaohui, Wu Jiaojiao, Feng Dalan, Sun Xiangyang. Effects of potassium deficient stress on growth and physiological characteristics of walnut seedlings[J]. Journal of Beijing Forestry University, 2022, 44(8): 23-30. DOI: 10.12171/j.1000-1522.20210020

Effects of potassium deficient stress on growth and physiological characteristics of walnut seedlings

More Information
  • Received Date: January 20, 2021
  • Revised Date: April 12, 2021
  • Accepted Date: May 18, 2022
  • Available Online: May 25, 2022
  • Published Date: August 24, 2022
  •   Objective  The adaptive mechanism of walnut was explored under short-term potassium stress.
      Method  Walnut seedlings were treated with different levels of potassium deficiency for 75 d: control (CK), moderate potassium deficiency (MK) and severe potassium deficiency (SK), respectively. The related indexes were measured every 15 d, and the effects of potassium deficiency stress on the growth and physiology of walnut seedlings were analyzed.
      Result  (1) Under K deficiency stress, the aboveground biomass, root biomass, chlorophyll a, chlorophyll b and carotenoid contents of walnut seedlings were significantly lower than those of CK (control treatment), and the overall decrease was more obvious with the aggravation of K deficiency degree and the extension of treatment time. (2) Compared with CK treatment, Fv/Fm, ΦPSⅡ, ETR and qP of walnut seedlings decreased significantly at the late stage of MK and SK (60−75 d). (3) As the processing time increased, CAT of walnut seedlings increased at first and then decreased under different K deficiency treatments. MK, SK and CK treatments reached the maximum at 30, 45 and 60 d, respectively. SOD activity of MK and SK increased, but POD activity decreased under severe K deficiency. From the middle stage of treatment (30 d) , the content of MDA in walnut seedlings increased with the increase of stress degree.
      Conclusion  The growth of root and aboveground parts, and the synthesis of photosynthetic pigments of walnut are significantly affected by potassium deficiency stress. However, the walnut could increase the input to root system through self-regulation to improve its absorption capacity, and consume the excess excitation energy of PSⅡ reaction center by increasing heat dissipation, in order to reduce the damage of stress on photosynthetic apparatus. Furtherly, the walnut could mobilize its enzymatic antioxidant system, and produce certain resistance to potassium deficiency stress.
  • [1]
    陈光, 高振宇, 徐国华. 植物响应缺钾胁迫的机制及提高钾利用效率的策略[J]. 植物学报, 2017, 52(1): 89−101.

    Chen G, Gao Z Y, Xu G H. Adaption of plants to potassium deficiency and strategies to improve potassium use efficiency[J]. Bulletin of Botany, 2017, 52(1): 89−101.
    [2]
    董艳红, 王火焰, 周健民, 等. 不同土壤钾素淋溶特性的初步研究[J]. 土壤, 2014, 46(2): 225−231.

    Dong Y H, Wang H Y, Zhou J M, et al. Preliminary study on potassium leaching characteristics of different soils[J]. Soils, 2014, 46(2): 225−231.
    [3]
    Battie-Laclau P, Laclau J P, Beri C, et al. Photosynthetic and anatomical responses of Eucalyptus Grandis leaves to potassium and sodium supply in a field experiment[J]. Plant Cell and Environment, 2014, 37(1): 70−81. doi: 10.1111/pce.12131
    [4]
    Hafsi C, Debez A, Abdelly C. Potassium deficiency in plants: effects and signaling cascades[J]. Acta Physiologiae Plantarum, 2014, 36(5): 1055−1070. doi: 10.1007/s11738-014-1491-2
    [5]
    华含白, 李召虎, 田晓莉. 辽棉18与新棉99B苗期耐低钾能力的差异及其机制[J]. 作物学报, 2009, 35(3): 475−482.

    Hua H B, Li Z H, Tian X L. Difference and its mechanism in tolerance to low-potassium between Liaomian 18 and NuCOTN99B at seedling stage[J]. Acta Agronomica Sinica, 2009, 35(3): 475−482.
    [6]
    Zorb C, Senbayram M, Peiter E. Potassium in agriculture-status and perspectives[J]. Journal of Plant Physiology, 2014, 171(9): 656−669. doi: 10.1016/j.jplph.2013.08.008
    [7]
    徐新翔, 侯昕, 王芬, 等. 低钾胁迫对苹果砧木M9T337幼苗光合荧光特性及13C吸收分配的影响[J]. 园艺学报, 2020, 47(3): 529−540.

    Xu X X, Hou X, Wang F, et al. Effects of low potassium stress on photosynthetic fluorescence characteristics and 13C absorption and distribution of M9T337 seedlings[J]. Acta Horticulturae Sinica, 2020, 47(3): 529−540.
    [8]
    刘芳, 林李华, 张立丹, 等. 缺钾对香蕉苗期地上部、根系生长及氮磷钾吸收的影响[J]. 华南农业大学学报, 2018, 39(2): 47−53.

    Liu F, Lin L H, Zhang L D, et al. Effects of potassium deficiency on growth and N, P and K balance of banana shoots and roots[J]. Journal of South China Agricultural University, 2018, 39(2): 47−53.
    [9]
    刘智强, Cao Yuying, 赵正雄. 田间烤烟叶片缺钾症状与钾积累及土壤供钾水平关系[J]. 土壤学报, 2020, 57(1): 195−205.

    Liu Z Q, Cao Y Y, Zhao Z X. Relationships of potassium deficiency symptoms and potassium accumulation in flue-cured tobacco leaves with soil potassium supply capacity[J]. Acta Pedologica Sinica, 2020, 57(1): 195−205.
    [10]
    孙萌, 刘洋, 李保国, 等. 核桃园行内地面覆盖的土壤微域生态效应[J]. 生态学报, 2017, 37(13): 4434−4443.

    Sun M, Liu Y, Li B G, et al. Ecological effects of within-row mulching on soil microsites in walnut orchards[J]. Acta Ecologica Sinica, 2017, 37(13): 4434−4443.
    [11]
    袁玲, 方德华, 汪智慧, 等. 钾对外生菌根真菌的分泌作用及氮、磷、钾含量的影响[J]. 生态学报, 2001, 21(2): 254−258. doi: 10.3321/j.issn:1000-0933.2001.02.013

    Yuan L, Fang D H, Wang Z H, et al. Effects of potassium on the secretion of proton and oxalate by ectomycorrhizal fungi and the concentrations of nitrogen, phosphorus and potassium in their hyphae[J]. Acta Ecologica Sinica, 2001, 21(2): 254−258. doi: 10.3321/j.issn:1000-0933.2001.02.013
    [12]
    林郑和, 钟秋生, 陈常颂, 等. 缺钾对茶树幼苗叶片叶绿素荧光特性的影响[J]. 植物营养与肥料学报, 2012, 18(4): 974−980. doi: 10.11674/zwyf.2012.11390

    Lin Z H, Zhong Q S, Chen C S, et al. Effects of potassium deficiency on chlorophyll fluorescence in leaves of tea seedlings[J]. Plant Nutrition and Fertilizer Science, 2012, 18(4): 974−980. doi: 10.11674/zwyf.2012.11390
    [13]
    蒋光华, 母少东, 李浩, 等. 不同植烟区土壤对中上部烟叶抗氧化系统及部分质量指标的影响[J]. 土壤, 2014, 46(6): 1157−1163.

    Jiang G H, Mu S D, Li H, et al. Study of different tobacco-planting soils on antioxidant system and partial quality indexes in middle and upper tobacco leaves[J]. Soils, 2014, 46(6): 1157−1163.
    [14]
    Trankner M, Tavakol E, Jakli B. Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection[J]. Physiol Plant, 2018, 163(3): 414−431. doi: 10.1111/ppl.12747
    [15]
    Finér L, Ohashi M, Noguchi K, et al. Factors causing variation in fine root biomass in forest ecosystems[J]. Forest Ecology and Management, 2010, 261(2): 265−277.
    [16]
    郭泽, 李子绅, 代晓燕, 等. 低钾胁迫下外源生长素对烟草根系生长及钾吸收的影响[J]. 植物营养与肥料学报, 2019, 25(7): 1173−1184. doi: 10.11674/zwyf.18321

    Guo Z, Li Z S, Dai X Y, et al. Effects of auxin on tobacco root growth and potassium uptake under low potassium stress[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(7): 1173−1184. doi: 10.11674/zwyf.18321
    [17]
    赵泽群, 师赵康, 王雯, 等. 低氮胁迫下玉米幼苗氮素和蔗糖分配特性[J]. 植物营养与肥料学报, 2020, 26(4): 783−796. doi: 10.11674/zwyf.19226

    Zhao Z Q, Shi Z K, Wang W, et al. Allocation of nitrogen and sucrose in maize seedling under low nitrogen stress[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(4): 783−796. doi: 10.11674/zwyf.19226
    [18]
    Roscioli J D, Ghosh S, Lafountain A M, et al. Quantum coherent excitation energy transfer by carotenoids in photosynthetic light harvesting[J]. Journal of Physical Chemistry Letters, 2017, 8(20): 5141−5147. doi: 10.1021/acs.jpclett.7b01791
    [19]
    沙建川, 陈倩, 王芬, 等. 钾水平对富士苹果果实膨大期13C同化物向果实转运的影响[J]. 应用生态学报, 2020, 31(6): 1859−1866.

    Sha J C, Chen Q, Wang F, et al. Effects of potassium levels on translocation of 13C-photoassimilates to fruit in‘Fuji’ apple during fruit expanding period[J]. Chinese Journal of Applied Ecology, 2020, 31(6): 1859−1866.
    [20]
    Perez-Bueno M L, Pineda M, Baron M. Phenotyping plant responses to biotic stress by chlorophyll fluorescence imaging[J]. Frontiers in Plant Science, 2019, 10: 1135. doi: 10.3389/fpls.2019.01135
    [21]
    吴甘霖, 段仁燕, 王志高, 等. 干旱和复水对草莓叶片叶绿素荧光特性的影响[J]. 生态学报, 2010, 30(14): 3941−3946.

    Wu G L, Duan R Y, Wang Z G, et al. Effects of drought stress and rehydration on chlorophyll fluorescence characteristics in Fragaria ×ananassa Duch[J]. Acta Ecologica Sinica, 2010, 30(14): 3941−3946.
    [22]
    张玉玉, 王进鑫, 马戌, 等. 土壤干旱及复水对侧柏叶绿素荧光参数的影响[J]. 水土保持研究, 2021, 28(2): 242−247.

    Zhang Y Y, Wang J X, Ma X, et al. Effects of drought and rewatering on chlorophyll fluorescence parameters of Platycladus orientalis[J]. Research of Soil and Water Conservation, 2021, 28(2): 242−247.
    [23]
    Zubik M, Luchowski R, Kluczyk D, et al. Recycling of energy dissipated as heat accounts for high activity of photosystem Ⅱ[J]. Journal of Physical Chemistry Letters, 2020, 11(9): 3242−3248. doi: 10.1021/acs.jpclett.0c00486
    [24]
    田秋玲, 乐佳兴, 吴焦焦, 等. 西南丘陵地区紫色土酸性对无患子幼树生长和光合特性的影响[J]. 生态学报, 2020, 40(11): 3756−3763.

    Tian Q L, Yue J X, Wu J J, et al. Effects of southwest hilly areas’s purple soil acidity on the growth and photosynthetic characteristics of Sapindus mukorossi Gaertn saplings[J]. Acta Ecologica Sinica, 2020, 40(11): 3756−3763.
    [25]
    Yusuf M A, Kumar D, Rajwanshi R, et al. Overexpression of gamma-tocopherol methyl transferase gene in transgenic Brassica Juncea plants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurements[J]. Biochim Biophys Acta, 2010, 1797(8): 1428−1438. doi: 10.1016/j.bbabio.2010.02.002
    [26]
    Park S, Fischer A L, Steen C J, et al. Chlorophyll-carotenoid excitation energy transfer in high-light-exposed thylakoid membranes investigated by snapshot transient absorption spectroscopy[J]. Journal of the American Chemical Society, 2018, 140(38): 11965−11973. doi: 10.1021/jacs.8b04844
    [27]
    Wang M, Zheng Q, Shen Q, et al. The critical role of potassium in plant stress response[J]. International Journal of Molecular Sciences, 2013, 14(4): 7370−7390. doi: 10.3390/ijms14047370
    [28]
    Gao X, Zhang S, Zhao X, et al. Potassium-induced plant resistance against soybean cyst nematode via root exudation of phenolic acids and plant pathogen-related genes[J]. PLoS One, 2018, 13(7): e200903.
    [29]
    Ahmad S, Kamran M, Ding R, et al. Exogenous melatonin confers drought stress by promoting plant growth, photosynthetic capacity and antioxidant defense system of maize seedlings[J]. Peer Journal, 2019, 7: e7793. doi: 10.7717/peerj.7793
    [30]
    Laxa M, Liebthal M, Telman W, et al. The role of the plant antioxidant system in drought tolerance[J]. Antioxidants (Basel), 2019, 8(4): 94. doi: 10.3390/antiox8040094
    [31]
    Zhang Z, Xu Y, Xie Z, et al. Association-dissociation of glycolate oxidase with catalase in rice: a potential switch to modulate intracellular H2O2 levels[J]. Molecular Plant, 2016, 9(5): 737−748. doi: 10.1016/j.molp.2016.02.002
    [32]
    Du Q, Zhao X H, Xia L, et al. Effects of potassium deficiency on photosynthesis, chloroplast ultrastructure, ROS, and antioxidant activities in maize (Zea mays L.)[J]. Journal of Integrative Agriculture, 2019, 18(2): 395−406. doi: 10.1016/S2095-3119(18)61953-7
    [33]
    Chapman J M, Muhlemann J K, Gayomba S R, et al. RBOH-dependent ROS synthesis and ROS scavenging by plant specialized metabolites to modulate plant development and stress responses[J]. Chemical Research in Toxicology, 2019, 32(3): 370−396. doi: 10.1021/acs.chemrestox.9b00028
    [34]
    林艳, 郭伟珍, 徐振华, 等. 大叶女贞抗寒性及冬季叶片丙二醛和可溶性糖含量的变化[J]. 中国农学通报, 2012, 28(25): 68−72. doi: 10.3969/j.issn.1000-6850.2012.25.013

    Lin Y, Guo W Z, Xu Z H, et al. Cold resistance and changes on MDA and soluble sugar of leaves of Ligustrunlucidum ait in winter[J]. Chinese Agricultural Science Bulletin, 2012, 28(25): 68−72. doi: 10.3969/j.issn.1000-6850.2012.25.013
    [35]
    葛体达, 隋方功, 白莉萍, 等. 长期水分胁迫对夏玉米根叶保护酶活性及膜脂过氧化作用的影响[J]. 干旱地区农业研究, 2005, 23(3): 18−23. doi: 10.3321/j.issn:1000-7601.2005.03.004

    Ge T D, Sui F G, Bai L P, et al. Effects of long-term water stress on protective enzyme activities and lipid peroxidation in summer maize roots and leaves[J]. Agricultural Research in the Arid Areas, 2005, 23(3): 18−23. doi: 10.3321/j.issn:1000-7601.2005.03.004
    [36]
    刘政波, 张春阁, 刘宁, 等. 钾水平对人参根叶保护酶、活性氧代谢及膜脂过氧化作用的影响[J]. 东北农业科学, 2017, 42(3): 9−13.

    Liu Z B, Zhang C G, Liu N, et al. Effects of potassium levels on the protective enzyme activities, active oxy-gen metabolism and lipid peroxidation in roots and leaves of Panax ginsneg C. A. Meyer[J]. Journal of Northeast Agricultural Sciences, 2017, 42(3): 9−13.
  • Related Articles

    [1]Chen Tingqiao, Yuan Tao, Xie Mengyu, Tang Ying, Zeng Xiuli. Development of secondary branches and apical buds of Paeonia ludlowii under cultivated conditions[J]. Journal of Beijing Forestry University, 2022, 44(6): 106-114. DOI: 10.12171/j.1000-1522.20210144
    [2]LIU Jin-chun, MA Ye, TAO Jian-ping, GAO Kai-min, LIANG Qian-hui. Effects of AM fungus on root growth of Lonicera japonica under alternate dry and wet conditions in karst regions of southwestern China.[J]. Journal of Beijing Forestry University, 2015, 37(10): 110-116. DOI: 10.13332/j.1000-1522.20150057
    [3]CHEN Jie, XIE Jing, TANG Ming. Effects of arbuscular mycorrhizal fungi on the growth and drought resistance of Amorpha fruticosa under water stress.[J]. Journal of Beijing Forestry University, 2014, 36(6): 142-148. DOI: 10.13332/j.cnki.jbfu.2014.06.026
    [4]WEI Bao, DING Guo-dong, WU Bin, ZHANG Yu-qing, BAO Yan-feng, GAO Guang-lei1, SHI Hui-shu, ZHAO Jin-hong. Windbreak mechanism under different shrub cover conditions.[J]. Journal of Beijing Forestry University, 2013, 35(5): 73-78.
    [5]XU Yan, YU Xue-jun, GAO Yan, GAO Pei-jun, ZHANG Ru-min. Effects of NO on seed germination and seedling growth of Haloxylon ammodendron under osmosis stress[J]. Journal of Beijing Forestry University, 2011, 33(6): 65-69.
    [6]MENG Fan-juan, WANG Jian-zhong, HUANG Feng-lan, WANG Yan-jie. Ultrastructure of mesophyll cells in two Robinia pseudoacacia hybrids under NaCl stress.[J]. Journal of Beijing Forestry University, 2010, 32(4): 97-102.
    [7]WANG Jin-li, LIANG Wen-yan, CHEN Li. Separation and purification of microcystin-LR.[J]. Journal of Beijing Forestry University, 2010, 32(2): 184-188.
    [8]XIA Songhua, LI Li, LI Jian-zhang.. Ureaformaldehyde resin modified by nanoTiO2 under ultrasonic treatment[J]. Journal of Beijing Forestry University, 2009, 31(4): 123-129.
    [9]WANG Xing-zu, CHENG Xiang, ZHENG Hui, SUN De-zhi. Autocatalysis in biological decolorization of Reactive Black 5 under anaerobic condition.[J]. Journal of Beijing Forestry University, 2009, 31(3): 135-139.
    [10]ZHENG Yong-hong, , LIANG Er-yuan, ZHU Hai-feng, SHAO Xue-mei. Response of radial growth of Qilian juniper to climatic change under different habitats[J]. Journal of Beijing Forestry University, 2008, 30(3): 7-12.
  • Cited by

    Periodical cited type(8)

    1. 杨灿,范习健,张九于. SSFYOLO:一种面向复杂森林场景的树干检测算法. 北京林业大学学报. 2025(02): 132-142 . 本站查看
    2. 刘伟起,刘洪杰,史璐,杨欣,李建平,王鹏飞. 电动果园作业平台结构设计与试验. 农机化研究. 2024(01): 75-83 .
    3. 刘伟起,刘洪杰,史璐,杨欣,李建平,王鹏飞. 履带式果园作业平台结构稳定性分析与研究. 农机化研究. 2024(04): 42-47 .
    4. 郭昊生,马蓉,张垚鑫,李子迎. 丫形欠驱动库尔勒香梨采摘机械手的设计与仿真分析. 农机化研究. 2023(01): 110-117 .
    5. 虞浪,俞高红,吴浩宇,孙福兴,钱孟波. 欠驱动关节型柑橘采摘末端执行器设计与试验. 农业工程学报. 2023(17): 29-38 .
    6. 于泳超,康峰,郑永军,吕昊暾,王亚雄. 果园高位自动调平作业平台设计及仿真. 北京林业大学学报. 2021(02): 150-159 . 本站查看
    7. 曹琨,张姗姗. 基于机器视觉的蔬果辅助采摘装置系统设计与优化. 食品工业. 2021(05): 362-366 .
    8. 董杰,赵元豪,尚宁宁,蒋创宇,赵秒. 一种旋转式欠驱动自适应水果采摘器. 科学技术创新. 2019(13): 155-156 .

    Other cited types(1)

Catalog

    Article views (720) PDF downloads (88) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return