• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wang Shijia, Guo Yafen, Cui Xiaoyang. Changes of active organic carbon in frozen thawed soil under different forest types in cold temperate forest region[J]. Journal of Beijing Forestry University, 2021, 43(12): 65-72. DOI: 10.12171/j.1000-1522.20210030
Citation: Wang Shijia, Guo Yafen, Cui Xiaoyang. Changes of active organic carbon in frozen thawed soil under different forest types in cold temperate forest region[J]. Journal of Beijing Forestry University, 2021, 43(12): 65-72. DOI: 10.12171/j.1000-1522.20210030

Changes of active organic carbon in frozen thawed soil under different forest types in cold temperate forest region

More Information
  • Received Date: January 26, 2021
  • Revised Date: May 25, 2021
  • Available Online: November 04, 2021
  • Published Date: January 04, 2022
  •   Objective  This paper studies the changes of soil dissolved organic carbon (DOC), microbial biomass carbon (MBC) under four typical forest types in cold temperate forest region with different freezing and thawing frequencies, integrates the measured physical and chemical factors, and reveals the correlation between freezing and thawing alternation and main active organic carbon and other potential driving factors in soil to provide a theoretical basis for regional carbon pool balance in cold temperate forest region.
      Method  The soil litter layer (O layer) and surface mineral soil layer (A layer) under four forest types (Pinus pumila forest, Rhododendron simsii-Betula platyphylla forest, Rhododendron simsii-Larix gmelinii forest and Ledum palustre-Larix gmelinii forest) in the Great Hinggan Mountains, northeastern China of cold temperate zone were studied. Soil samples were cyclically treated with different freezing-thawing frequency accumulation by indoor simulated freezing-thawing alternating method, and the content levels of DOC, MBC, aggregates, pH and water content in the soil were determined. Finally, principal component analysis method was used to explore the correlation between the above multivariate variables.
      Result  On the whole, the contents of DOC and MBC in Ledum palustre-Larix gmelinii forest and Rhododendron simsii-Betula platyphylla forest were higher, while the carbon contents in Rhododendron simsii-Larix gmelinii forest and Pinus pumila forest were lower, and the latter was significantly lower than the former. In the same soil layer and different forest types, the contents of DOC and MBC increased first and then decreased with the accumulation of freezing and thawing frequency, and freezing and thawing significantly increased the content of DOC and decreased the content of MBC. In the soil layer, the contents of DOC and MBC in O layer were significantly higher than those in A layer. In addition, temperature and freeze-thaw frequency also affected the potential driving factors such as active organic carbon, aggregate, pH and water content in soil. With the accumulation of freezing-thawing frequency, the freezing-thawing effect significantly increased the content of DOC and decreased the content of MBC. In soil layer, the contents of DOC and MBC in O layer were significantly higher than those in A layer. In addition, temperature, frequency of freeze-thaw and other factors also affect the potential drivers of soil active organic carbon, aggregates, pH and water content.
      Conclusion   Due to the change of freeze-thaw frequency, the contents of DOC and MBC in soil of different forest types in cold temperate zone change dynamically. Compared with the non freeze-thaw treatment, the DOC content increases and the MBC content decreases after the freeze-thaw cycle, and the broadleaved forest (Rhododendron simsii-Betula platyphylla forest) in the middle altitude area and the Ledum palustre-Larix gmelinii forest in the low altitude area are more conducive to the accumulation of carbon content.
  • [1]
    孙辉, 秦纪洪, 吴杨. 土壤冻融交替生态效应研究进展[J]. 土壤, 2008, 40(4):505−509. doi: 10.3321/j.issn:0253-9829.2008.04.001

    Sun H, Qin J H, Wu Y. Research progress on ecological effects of soil freezing-thawing alternation[J]. Soil, 2008, 40(4): 505−509. doi: 10.3321/j.issn:0253-9829.2008.04.001
    [2]
    Grogan P, Michelsen A, Ambus P, et al. Freeze-thaw regime effects on carbon and nitrogen dynamics in sub-arctic heath tundra mesocosms[J]. Soil Biology & Biochemistry, 2004, 36(4): 641−654.
    [3]
    王连峰, 蔡延江, 解宏图. 冻融作用下土壤物理和微生物性状变化与氧化亚氮排放的关系[J]. 应用生态学报, 2007, 18(10):2361−2366.

    Wang L F, Cai Y J, Xie H T. Relationship between changes in soil physical and microbial properties and nitrous oxide emissions under freeze-thaw conditions[J]. Chinese Journal of Applied Ecology, 2007, 18(10): 2361−2366.
    [4]
    王娇月, 宋长春, 王宪伟, 等. 冻融作用对土壤有机碳库及微生物的影响研究进展[J]. 冰川冻土, 2011, 33(2):442−452.

    Wang J Y, Song C C, Wang X W, et al. Research progress on effects of freezing-thawing on soil organic carbon pool and microorganisms[J]. Journal of Glaciology and Geocryology, 2011, 33(2): 442−452.
    [5]
    高敏, 李艳霞, 张雪莲, 等. 冻融过程对土壤物理化学及生物学性质的影响研究及展望[J]. 农业环境科学学报, 2016, 35(12):2269−2274. doi: 10.11654/jaes.2016-1087

    Gao M, Li Y X, Zhang X L, et al. Effect of freeze-thaw process on soil physical, chemical and biological properties and its prospects[J]. Journal of Agro-Environment Science, 2016, 35(12): 2269−2274. doi: 10.11654/jaes.2016-1087
    [6]
    娄鑫, 谷岩, 张军辉, 等. 冬季积雪与冻融对土壤团聚体稳定性的影响[J]. 北京林业大学学报, 2016, 38(4):63−70.

    Lou X, Gu Y, Zhang J H, et al. Effects of snow cover and freeze-thaw on the stability of soil aggregates in winter[J]. Journal of Beijing Forestry University, 2016, 38(4): 63−70.
    [7]
    高珊, 尹航, 傅民杰, 等. 冻融循环对温带3种林型下土壤微生物量碳、氮和氮矿化的影响[J]. 生态学报, 2018, 38(21):342−352.

    Gao S, Yin H, Fu M J, et al. Effects of freeze-thaw cycles on soil microbial biomass C, N and N mineralization under three temperate forest types[J]. Acta Ecologica Sinica, 2018, 38(21): 342−352.
    [8]
    Groffman P, Driscoll C, Fahey T, et al. Effects of mild winter freezing on soil nitrogen and carbon dynamics in a northern hardwood forest[J]. Biogeochemistry, 2001, 56(2): 191−213. doi: 10.1023/A:1013024603959
    [9]
    Freppaz M, Williams B L, Edwards A C, et al. Simulating soil freeze/thaw cycles typical of winter alpine conditions: implications for N and P availability[J]. Applied Soil Ecology, 2007, 35(1): 247−255. doi: 10.1016/j.apsoil.2006.03.012
    [10]
    肖烨, 黄志刚, 武海涛, 等. 三江平原不同湿地类型土壤活性有机碳组分及含量差异[J]. 生态学报, 2015, 35(23):7625−7633.

    Xiao Y, Huang Z G, Wu H T, et al. Composition and content difference of soil active organic carbon in different wetland types in Sanjiang Plain[J]. Acta Ecologica Sinica, 2015, 35(23): 7625−7633.
    [11]
    Yergeau E, Kowalchuk G A. Responses of antarctic soil microbial communities and associated functions to temperature and freeze-thaw cycle frequency[J]. Environmental Microbiology, 2010, 10(9): 2223−2235.
    [12]
    王展, 张玉龙, 张良, 等. 冻融次数和含水量对棕壤总有机碳和可溶性有机碳的影响[J]. 农业环境科学学报, 2012, 31(10):1972−1975.

    Wang Z, Zhang Y L, Zhang L, et al. Effects of freeze-thaw frequency and water content on total organic carbon and soluble organic carbon in brown soil[J]. Journal of Agro-Environment Science, 2012, 31(10): 1972−1975.
    [13]
    符鲜, 杨树青, 刘德平, 等. 施氮水平对河套灌区套作小麦-玉米土壤微生物量碳, 氮的影响研究[J]. 生态环境学报, 2018, 27(9):1652−1657.

    Fu X, Yang S Q, Liu D P, et al. Effects of nitrogen application level on soil microbial biomass C and N of wheat and maize intercropping in Hetao irrigated area[J]. Ecology and Environmental Sciences, 2018, 27(9): 1652−1657.
    [14]
    Haei M, Öquist M G, Ilstedt U, et al. The influence of soil frost on the quality of dissolved organic carbon in a boreal forest soil: combining field and laboratory experiments[J]. Biogeochemistry, 2012, 107(1): 95−106.
    [15]
    薛爽, 王茜, 仇付国. 冻融作用对土壤中溶解性有机物的光谱学特性的影响[J]. 环境科学学报, 2016, 36(5):1824−1832.

    Xue S, Wang Q, Qiu F G. Effect of freezing-thawing on the spectroscopic properties of dissolved organic matter in soil[J]. Acta Scientiae Circumstantiae, 2016, 36(5): 1824−1832.
    [16]
    鲁博权, 臧淑英, 孙丽. 冻融作用对大兴安岭典型森林土壤活性有机碳和氮矿化的影响[J]. 环境科学学报, 2019, 39(5):1664−1672.

    Lu B Q, Zang S Y, Sun L. Effects of freezing-thawing on soil active organic carbon and nitrogen mineralization in typical forests of the Daxing ’an Mountains[J]. Chinese Journal of Environmental Sciences, 2019, 39(5): 1664−1672.
    [17]
    贾国晶, 周永斌, 代力民, 等. 冻融对长白山森林土壤碳氮矿化的影响[J]. 生态环境学报, 2012, 21(4):624−628. doi: 10.3969/j.issn.1674-5906.2012.04.006

    Jia G J, Zhou Y B, Dai L M, et al. Effects of freezing-thawing on carbon and nitrogen mineralization in forest soil of Changbai Mountain[J]. Ecology and Environmental Sciences, 2012, 21(4): 624−628. doi: 10.3969/j.issn.1674-5906.2012.04.006
    [18]
    张超凡, 盛连喜, 宫超, 等. 冻融作用对我国东北湿地土壤碳排放与土壤微生物的影响[J]. 生态学杂志, 2018, 37(2):304−311.

    Zhang C F, Sheng L X, Gong C, et al. Effects of freezing-thawing on soil carbon emissions and soil microorganisms in Northeast China wetlands[J]. Chinese Journal of Ecology, 2018, 37(2): 304−311.
    [19]
    吴迪, 崔晓阳, 郭亚芬. 寒温带林区不同林型下土壤中氮矿化特征[J]. 北京林业大学学报, 2019, 41(9):122−129.

    Wu D, Cui X Y, Guo Y F. Characteristics of nitrogen mineralization in soils under different forest types in cold temperate forest region[J]. Journal of Beijing Forestry University, 2019, 41(9): 122−129.
    [20]
    鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.

    Lu R K. Methods of soil agricultural chemical analysis [M]. Beijing: China Agricultural Science and Technology Press, 2000.
    [21]
    白怡婧, 刘彦伶, 李渝, 等. 长期不同轮作模式对黄壤团聚体组成及有机碳的影响[J]. 土壤, 2021, 53(1):161−167.

    Bai Y J, Liu Y L, Li Y, et al. Effects of long-term different crop rotation patterns on aggregate composition and organic carbon in yellow soil[J]. Soil, 2021, 53(1): 161−167.
    [22]
    王洋, 刘景双, 王国平, 等. 冻融作用与土壤理化效应的关系研究[J]. 地理与地理信息科学, 2007, 23(2):91−96. doi: 10.3969/j.issn.1672-0504.2007.02.021

    Wang Y, Liu J S, Wang G P, et al. Relationship between freezing-thawing and soil physicochemical effects[J]. Geography and Geo-Information Science, 2007, 23(2): 91−96. doi: 10.3969/j.issn.1672-0504.2007.02.021
    [23]
    王长庭, 龙瑞军, 王启基, 等. 高寒草甸不同海拔梯度土壤有机质氮磷的分布和生产力变化及其与环境因子的关系[J]. 草业学报, 2005, 14(4):15−20. doi: 10.3321/j.issn:1004-5759.2005.04.003

    Wang C T, Long R J, Wang Q J, et al. Distribution and productivity changes of soil organic matter nitrogen and phosphorus at different elevation gradients in alpine meadow and their relationship with environmental factors[J]. Acta Prataculturae Sinica, 2005, 14(4): 15−20. doi: 10.3321/j.issn:1004-5759.2005.04.003
    [24]
    罗献宝, 张颖清, 徐浩, 等. 温带阔叶红松林中不同树种和倒木对土壤性质的影响[J]. 生态环境学报, 2011, 20(12):1841−1845. doi: 10.3969/j.issn.1674-5906.2011.12.011

    Luo X B, Zhang Y Q, Xu H, et al. Effects of different tree species and fallen wood on soil properties in temperate broad-leaved Korean pine forest[J]. Ecology and Environmental Sciences, 2011, 20(12): 1841−1845. doi: 10.3969/j.issn.1674-5906.2011.12.011
    [25]
    Kraus T E C, Yu Z, Preston C M, et al. Linking chemical reactivity and protein precipitation to structural characteristics of foliar tannins[J]. Journal of Chemical Ecology, 2003, 29(3): 703−730. doi: 10.1023/A:1022876804925
    [26]
    李忠佩, 张桃林, 陈碧云. 可溶性有机碳的含量动态及其与土壤有机碳矿化的关系[J]. 土壤学报, 2004, 41(4):544−552. doi: 10.3321/j.issn:0564-3929.2004.04.008

    Li Z P, Zhang T L, Chen B Y. Content dynamics of soluble organic carbon and its relationship with soil organic carbon mineralization[J]. Acta Pedologica Sinica, 2004, 41(4): 544−552. doi: 10.3321/j.issn:0564-3929.2004.04.008
    [27]
    Herrmann A, Witter E. Sources of C and N contributing to the flush in mineralization upon freeze-thaw cycles in soils[J]. Soil Biology & Biochemistry, 2002, 34(10): 1495−1505.
    [28]
    Lehrsch G A, Sojka R E, Carter D L, et al. Freezing effects on aggregate stability affected by texture, mineralogy, and organic matter[J]. Soil Science Society of America Journal, 1991, 55(5): 1401−1406. doi: 10.2136/sssaj1991.03615995005500050033x
    [29]
    Larsen K S, Jonasson S, Michelsen A. Repeated freeze-thaw cycles and their effects on biological processes in two arctic ecosystem types[J]. Applied Soil Ecology, 2002, 21(3): 187−195. doi: 10.1016/S0929-1393(02)00093-8
    [30]
    Dagesse, D. Effect of freeze-drying on soil aggregate stability[J]. Soil Science Society of America Journal, 2011, 75(6): 2111−2121. doi: 10.2136/sssaj2010.0287
    [31]
    刘淑霞, 王宇, 赵兰坡, 等. 冻融作用下黑土有机碳数量变化的研究[J]. 农业环境科学学报, 2008, 27(3):984−990. doi: 10.3321/j.issn:1672-2043.2008.03.027

    Liu S X, Wang Y, Zhao L P, et al. Study on the variation of organic carbon in black soil under freezing-thawing[J]. Journal of Agro-Environment Science, 2008, 27(3): 984−990. doi: 10.3321/j.issn:1672-2043.2008.03.027
    [32]
    Michalzik B, Matzner E. Dynamics of dissolved organic nitrogen and carbon in a Central European Norway spruce ecosystem[J]. European Journal of Soil Science, 2010, 50(4): 579−590.
    [33]
    Rosa M, Melanie J, da Gmar T, et al. Microbial communities and activities in alpine and subalpine soils[J]. Fems Microbiology Ecology, 2010, 67(2): 208−218.
    [34]
    Tan B, Wu F Z, Yang W Q, et al. The dynamics pattern of soil carbon and nutrients as soil thawing proceeded in the alpine/subalpine forest[J]. Acta Ayiculturae Scandinavica, 2011, 61(7): 670−679.
    [35]
    Tierney G L, Fahey T J, Goffman P M, et al. Soil freezing alters fine root dynamics in a northern hardwood forest[J]. Biogeochemistry, 2001, 56(2): 175−190. doi: 10.1023/A:1013072519889
    [36]
    谭波, 吴福忠, 秦嘉励, 等. 川西亚高山、高山森林土壤微生物生物量和酶活性动态特征[J]. 生态环境学报, 2014, 23(8):1265−1271. doi: 10.3969/j.issn.1674-5906.2014.08.003

    Tan B, Wu F Z, Qin J L, et al. Dynamic characteristics of soil microbial biomass and enzyme activities in subalpine and alpine forests of western Sichuan[J]. Ecology and Environmental Sciences, 2014, 23(8): 1265−1271. doi: 10.3969/j.issn.1674-5906.2014.08.003

Catalog

    Article views (774) PDF downloads (67) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return