Citation: | Han Wentao, Hu Kejiao, Zhao Wanning, Li Songqing, Lu Pengfei. Determination of five pyrethroid pesticides in water using on-site DLLME-GC[J]. Journal of Beijing Forestry University, 2021, 43(9): 131-138. DOI: 10.12171/j.1000-1522.20210075 |
[1] |
Ma E, Feng Z, Zheng Y. The effect of forest on soil erosion control based on remote sensing technology[J]. Ekoloji Dergisi, 2019, 28(108): 2213−2217.
|
[2] |
Matyjaszczyk E, Karmilowicz E, Skrzecz I. How European Union accession and implementation of obligatory integrated pest management influenced forest protection against harmful insects: A case study from Poland[J]. Forest Ecology and Management, 2019, 433: 146−152. doi: 10.1016/j.foreco.2018.11.001
|
[3] |
Jeong D, Kang J S, Kim K M, et al. Simultaneous determination of pyrethroids and their metabolites in human plasma using liquid chromatography tandem mass spectrometry[J/OL]. Forensic Science International, 2019, 302: 109846 [2021−01−08]. https://doi.org/10.1016/j.forsciint.2019.06.004.
|
[4] |
Lidova J, Buric M, Kouba A, et al. Acute toxicity of two pyrethroid insecticides for five non-indigenous crayfish species in Europe[J]. Veterinární Medicína, 2019, 64(3): 125−133.
|
[5] |
Deng W, Yu L, Li X, et al. Hexafluoroisopropanol-based hydrophobic deep eutectic solvents for dispersive liquid-liquid microextraction of pyrethroids in tea beverages and fruit juices[J]. Food Chemistry, 2019, 274: 891−899. doi: 10.1016/j.foodchem.2018.09.048
|
[6] |
Chen S, Gu S, Wang Y, et al. Exposure to pyrethroid pesticides and the risk of childhood brain tumors in East China[J]. Environmental Pollution, 2016, 218: 1128−1134. doi: 10.1016/j.envpol.2016.08.066
|
[7] |
Sicupira L C, Tiago J P F, Pinho G P, et al. Simultaneous determination of 2, 3, 7, 8-TCDD and 2, 3, 7, 8-TCDF in water samples by LLE-LTP and HPLC-DAD[J]. Journal of the Brazilian Chemical Society, 2019, 30(6): 1284−1292.
|
[8] |
Ebrahimi M R, Ghasemian A, Resalati H, et al. Facile isolation of LCC-fraction from organosolv lignin by simple soxhlet extraction[J/OL]. Polymers, 2019, 11(2): 225 [2021−01−19]. https://doi.org/10.3390/polym11020225.
|
[9] |
Fracassetti D, Vigentini I, Lo Faro A F F, et al. Assessment of tryptophan, tryptophan ethylester, and melatonin derivatives in red wine by SPE-HPLC-FL and SPE-HPLC-MS methods[J]. Foods, 2019, 8(3): 99. doi: 10.3390/foods8030099
|
[10] |
Jouyban A, Farajzadeh M A, Mogaddam M R A. Dispersive liquid-liquid microextraction based on solidification of deep eutectic solvent droplets for analysis of pesticides in farmer urine and plasma by gas chromatography-mass spectrometry[J]. Journal of Chromatography B, 2019, 1124: 114−121. doi: 10.1016/j.jchromb.2019.06.004
|
[11] |
Rezaee M, Assadi Y, Hosseini M R M, et al. Determination of organic compounds in water using dispersive liquid-liquid microextraction[J]. Journal of Chromatography A, 2006, 1116(1−2): 1−9. doi: 10.1016/j.chroma.2006.03.007
|
[12] |
Xue J, Zhu X, Wu X, et al. Self-acidity induced effervescence and manual shaking-assisted microextraction of neonicotinoid insecticides in orange juice[J]. Journal of Separation Science, 2019, 42(18): 2993−3001. doi: 10.1002/jssc.201900473
|
[13] |
Psillakis E. Vortex-assisted liquid-liquid microextraction revisited[J]. TrAC Trends in Analytical Chemistry, 2019, 113: 332−339. doi: 10.1016/j.trac.2018.11.007
|
[14] |
Elik A, Altunay N, Gürkan R. Ultrasound-assisted low-density solvent-based dispersive liquid-liquid microextraction coupled to spectrophotometry for the determination of low levels of histamine in fish and meat products[J]. Food Analytical Methods, 2019, 12(2): 489−502. doi: 10.1007/s12161-018-1380-1
|
[15] |
Zhong Z, Li G, Luo Z, et al. Microwave-assisted dispersive liquid-liquid microextraction coupling to solidification of floating organic droplet for colorants analysis in selected cosmetics by liquid chromatography[J]. Talanta, 2019, 194: 46−54. doi: 10.1016/j.talanta.2018.09.105
|
[16] |
Lasarte-Aragonés G, Lucena R, Cárdenas S, et al. Effervescence assisted dispersive liquid-liquid microextraction with extractant removal by magnetic nanoparticles[J]. Analytica Chimica Acta, 2014, 807: 61−66. doi: 10.1016/j.aca.2013.11.029
|
[17] |
Shishov A, Sviridov I, Timofeeva I, et al. An effervescence tablet-assisted switchable solvent-based microextraction: on-site preconcentration of steroid hormones in water samples followed by HPLC-UV determination[J]. Journal of Molecular Liquids, 2017, 247: 246−253. doi: 10.1016/j.molliq.2017.09.120
|
[18] |
Hassan M, Alshana U. Switchable-hydrophilicity solvent liquid-liquid microextraction of non-steroidal anti-inflammatory drugs from biological fluids prior to HPLC-DAD determination[J]. Journal of Pharmaceutical and Biomedical Analysis, 2019, 174: 509−517. doi: 10.1016/j.jpba.2019.06.023
|
[19] |
Vakh C, Pochivalov A, Andruch V, et al. A fully automated effervescence-assisted switchable solvent-based liquid phase microextraction procedure: liquid chromatographic determination of ofloxacin in human urine samples[J]. Analytica Chimica Acta, 2016, 907: 54−59. doi: 10.1016/j.aca.2015.12.004
|
[20] |
Moghadam A G, Rajabi M, Hemmati M, et al. Development of effervescence-assisted liquid phase microextraction based on fatty acid for determination of silver and cobalt ions using micro-sampling flame atomic absorption spectrometry[J]. Journal of Molecular Liquids, 2017, 242: 1176−1183. doi: 10.1016/j.molliq.2017.07.038
|
[21] |
Piao H, Jiang Y, Qin Z, et al. Development of a novel acidic task-specific ionic liquid-based effervescence-assisted microextraction method for determination of triazine herbicides in tea beverage [J/OL]. Talanta, 2020, 208: 120414 [2021−01−19]. https://doi.org/10.1016/j.talanta.2019.120414.
|
[22] |
Liu X, Shen Z, Wang P, et al. Effervescence assisted on-site liquid phase microextraction for the determination of five triazine herbicides in water[J]. Journal of Chromatography A, 2014, 1371: 58−64. doi: 10.1016/j.chroma.2014.10.068
|
[23] |
Talaee M, Lorestani B, Ramezani M, et al. Microfunnel-filter-based emulsification microextraction followed by gas chromatography for simple determination of organophosphorus pesticides in environmental water samples[J]. Journal of Separation Science, 2019, 42(14): 2418−2425. doi: 10.1002/jssc.201900132
|
[24] |
Li S, Hu L, Chen K, et al. Extensible automated dispersive liquid–liquid microextraction[J]. Analytica Chimica Acta, 2015, 872: 46−54. doi: 10.1016/j.aca.2015.02.061
|
[25] |
Li C, Chen L. Determination of pyrethroid pesticides in environmental waters based on magnetic titanium dioxide nanoparticles extraction followed by HPLC analysis[J]. Chromatographia, 2013, 76(7−8): 409−417. doi: 10.1007/s10337-013-2393-y
|
[26] |
Mi Y, Jia C, Lin X, et al. Dispersive solid-phase extraction based on β-cyclodextrin grafted hyperbranched polymers for determination of pyrethroids in environmental water samples [J/OL]. Microchemical Journal, 2019, 150: 104164 [2021−02−18]. https://doi.org/10.1016/j.microc.2019.104164.
|
[27] |
He X, Yang W, Li S, et al. An amino-functionalized magnetic framework composite of type Fe 3 O 4-NH 2@ MIL-101 (Cr) for extraction of pyrethroids coupled with GC-ECD[J]. Microchimica Acta, 2018, 185(2): 1−8.
|