• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Li Yan, Zhu Jiayao, Wang Xihe, Sun Quan, Li Yulei, Wu Yunyang, Li Deyao, Li Pingyang, Yu Haiyang, Zhao Xiyang. Growth evaluation and selection study of elite clones and its offspring families in Pinus koraiensis[J]. Journal of Beijing Forestry University, 2021, 43(10): 38-46. DOI: 10.12171/j.1000-1522.20210080
Citation: Li Yan, Zhu Jiayao, Wang Xihe, Sun Quan, Li Yulei, Wu Yunyang, Li Deyao, Li Pingyang, Yu Haiyang, Zhao Xiyang. Growth evaluation and selection study of elite clones and its offspring families in Pinus koraiensis[J]. Journal of Beijing Forestry University, 2021, 43(10): 38-46. DOI: 10.12171/j.1000-1522.20210080

Growth evaluation and selection study of elite clones and its offspring families in Pinus koraiensis

More Information
  • Received Date: March 08, 2021
  • Revised Date: April 27, 2021
  • Available Online: September 25, 2021
  • Published Date: October 29, 2021
  •   Objective  This paper aims to evaluate and select elite germplasm of Pinus koraiensis, and provide materials for seed orchard upgrading.
      Method  The 37-year-old parental clones and 35-year-old offspring half-sib families from the same elite trees in Wangqing Forestry Bureau, Jilin Province of northeastern China were used as materials, and we measured their growth traits.
      Result  Variance analysis showed that the clone or family growth traits had strongly significant differences among the sources of variation (P < 0.01). The phenotypic coefficient of variation of all traits for clone and family ranged from 4.19% to 25.88% and 4.51% to 34.33%, respectively. The clone repeatability of all traits ranged from 0.45 to 0.74, and the family heritability of all traits ranged from 0.70 to 0.85, the single heredity of all traits ranged from 0.29 to 0.66, indicating medium-high level of repeatability and heritability. Correlation analysis results showed that there were significantly positive correlations (r > 0.47, r > 0.57) of some traits (such as DBH, tree height, volume, crown width) for clone and family. The results of principal component analysis showed that the cumulative contribution of the two principal components was 68.50% and 73.37%, respectively, the DBH, tree height, volume and crown width contributed greatly to principal component Ⅰ, and described the growth characters of P. koraiensis, so these traits can be used as an evaluation index for further selection of superior germplasm of P. koraiensis. To select the elite clone and family by multiple-trait comprehensive evaluation, 3 excellent clones and families were selected with 10% selection rate, the clone and family genetic gain of growth traits (the DBH, tree height, volume and crown width) ranged from 3.03% to 14.40%. Selecting the elite individual within the excellent families, 9 excellent individuals were selected and their genetic gain of growth traits (the DBH, tree height, volume and crown width) ranged from 6.98% to 37.37%.
      Conclusion  The selection of excellent clones, families and individuals based on growth traits can be used to improve seed variety declaration and provide theoretical basis for the selection and breeding of improved variety of P. koraiensis.
  • [1]
    Shi S L, Yan S Y, Zhao C, et al. Deep sequencing and analysis of transcriptomes of Pinus koraiensis Sieb. & Zucc.[J/OL]. Forests, 2020, 11(3): 350 [2021−01−20]. https://doi.org/10.3390/f11030350.
    [2]
    Tong Y W, Lewis B J, Zhou W M, et al. Genetic diversity and population structure of natural Pinus koraiensis populations [J/OL]. Forests, 2019, 11(1): 39 [2020−12−26]. https://doi.org/10.3390/f11010039.
    [3]
    Aizawa M, Kim Z S, Yoshimaru H. Phylogeography of the Korean pine (Pinus koraiensis) in northeast Asia: inferences from organelle gene sequences[J]. Journal of Plant Research, 2012, 125(6): 713−723. doi: 10.1007/s10265-012-0488-4
    [4]
    Liang D Y, Ding C J, Zhao G H, et al. Variation and selection analysis of Pinus koraiensis clones in northeast China[J]. Journal of Forestry Research, 2018, 29(3): 611−622. doi: 10.1007/s11676-017-0471-y
    [5]
    Li X, Liu X T, Wei J T, et al. Development and transferability of EST-SSR markers for Pinus koraiensis from cold-stressed transcriptome through illumina sequencing[J/OL]. Genes, 2020, 11(5): 500 [2021−01−02]. https://doi.org/10.3390/genes11050500.
    [6]
    Tuan N T, Shen H L, Wang Q X, et al. Response of photosynthetic physiology to top pruning of young Pinus koraiensis[J]. Forest Engineering, 2017, 33(4): 1−7.
    [7]
    Zhang S T, Zhang L G, Wang L, et al. Total phenols, flavonoids, and procyanidins levels and total antioxidant activity of different Korean pine (Pinus koraiensis) varieties[J]. Journal of Forestry Research, 2019, 30(5): 1743−1754. doi: 10.1007/s11676-018-0744-0
    [8]
    蒋路平, 王景源, 张鹏, 等. 170个红松无性系生长及结实性状变异及选择[J]. 林业科学研究, 2019, 32(1):58−64.

    Jiang L P, Wang J Y, Zhang P, et al. Variation and selection of growth and fruit traits among 170 Pinus koraiensis clones[J]. Forest Research, 2019, 32(1): 58−64.
    [9]
    Liang D Y, Wang B Y, Song S L, et al. Analysis of genetic effects on a complete diallel cross test of Pinus koraiensis[J]. Euphytica, 2019, 215(5): 1−12.
    [10]
    张振, 张含国, 张磊. 红松自由授粉子代家系生产力年度变异与家系选择[J]. 植物研究, 2016, 36(2):305−309. doi: 10.7525/j.issn.1673-5102.2016.02.021

    Zhang Z, Zhang H G, Zhang L. Age variations in productivity and family selection of open-pollinated families of Korean pine (Pinus koraiensis)[J]. Bulletin of Botanical Research, 2016, 36(2): 305−309. doi: 10.7525/j.issn.1673-5102.2016.02.021
    [11]
    Wang F, Zhang Q H, Tian Y G, et al. Comprehensive assessment of growth traits and wood properties in half-sib Pinus koraiensis families[J]. Euphytica, 2018, 214(11): 1−15.
    [12]
    吴强, 赖俊声, 胡青素, 等. 锥栗无性系间杂交种实性状变异分析[J]. 南方林业科学, 2016, 44(4):23−24,40.

    Wu Q, Lai J S, Hu Q S, et al. Genetic variation analysis on fruits characters of Castanea henryi clones[J]. South China Forestry Science, 2016, 44(4): 23−24,40.
    [13]
    缪小飞, 张含国, 侯丹, 等. 杂种落叶松家系遗传变异及多点稳定性[J]. 东北林业大学学报, 2018, 46(12):1−8. doi: 10.3969/j.issn.1000-5382.2018.12.001

    Miao X F, Zhang H G, Hou D, et al. Genetic variation and stability of families in multiple sites of hybrid larch[J]. Journal of Northeast Forestry University, 2018, 46(12): 1−8. doi: 10.3969/j.issn.1000-5382.2018.12.001
    [14]
    洪舟, 杨曾奖, 张宁南, 等. 越南黄花梨种源家系生长遗传变异及早期选择[J]. 南京林业大学学报 (自然科学版), 2020, 44(1):25−30.

    Hong Z, Yang Z J, Zhang N N, et al. Genetic variation and juvenile selection of growth traits of Dalbergia tonkinensis prain[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2020, 44(1): 25−30.
    [15]
    Zhao X Y, Hou W, Zheng H Q, et al. Analyses of genotypic variation in white poplar clones at four sites in China[J]. Silvae Genetica, 2013, 62(4−5): 187−195.
    [16]
    凌娟娟, 肖遥, 杨桂娟, 等. 灰楸无性系生长和形质性状变异与选择[J]. 林业科学研究, 2019, 32(5):149−156.

    Ling J J, Xiao Y, Yang G J, et al. Variation and selection of growth and trunk shape traits of Catalpa fargesii clones[J]. Forest Research, 2019, 32(5): 149−156.
    [17]
    栾柯权, 张恒, 田永刚, 等. 不同树龄水曲柳半同胞家系生长性状变异研究[J]. 植物研究, 2019, 39(2):239−245. doi: 10.7525/j.issn.1673-5102.2019.02.009

    Luan K Q, Zhang H, Tian Y G, et al. Variation analysis of growth traits in different growth year of half-sib Fraxinus mandshurica families[J]. Bulletin of Botanical Research, 2019, 39(2): 239−245. doi: 10.7525/j.issn.1673-5102.2019.02.009
    [18]
    解孝满, 李景涛, 赵合娥, 等. 柳树无性系苗期遗传测定与选择[J]. 江苏林业科技, 2008, 35(3):6−14. doi: 10.3969/j.issn.1001-7380.2008.03.002

    Xie X M, Li J T, Zhao H E, et al. Willow clonal seedling genetic determination and selection[J]. Journal of Jiangsu Forestry Science and Technology, 2008, 35(3): 6−14. doi: 10.3969/j.issn.1001-7380.2008.03.002
    [19]
    续九如. 林木数量遗传学[M]. 北京: 中国林业出版社, 2006.

    Xu J R. Trees quantitative genetics [M]. Beijing: China Forestry Publishing House, 2006.
    [20]
    朱之悌. 林木遗传学研究[M]. 北京: 中国林业出版社, 1989.

    Zhu Z D. Forest tree genetics foundation [M]. Beijing: China Forestry Publishing House, 1989.
    [21]
    Mwase W F, Savill P S, Hemery G. Genetic parameter estimates for growth and form traits in common ash (Fraxinus excelsior L.) in a breeding seedling orchard at Little Wittenham in England[J]. New Forests, 2008, 36(3): 225−238. doi: 10.1007/s11056-008-9095-6
    [22]
    周雪燕, 高海燕, 李召珉, 等. 基于生长与结实评价红松种子园亲本[J]. 植物研究, 2020, 40(3):376−385. doi: 10.7525/j.issn.1673-5102.2020.03.008

    Zhou X Y, Gao H Y, Li Z M, et al. Evaluating parents of Pinus koraiensis seeds orchard with growth and fruiting[J]. Bulletin of Botanical Research, 2020, 40(3): 376−385. doi: 10.7525/j.issn.1673-5102.2020.03.008
    [23]
    张秦徽, 王洪武, 姜国云, 等. 红松半同胞家系变异分析及选择研究[J]. 植物研究, 2019, 39(4):557−567. doi: 10.7525/j.issn.1673-5102.2019.04.010

    Zhang Q H, Wang H W, Jiang G Y, et al. Variation analysis and selection of Pinus koraiensis half-sib families[J]. Bulletin of Botanical Research, 2019, 39(4): 557−567. doi: 10.7525/j.issn.1673-5102.2019.04.010
    [24]
    Pan Y Y, Li S C, Wang C L, et al. Early evaluation of growth traits of Larix kaempferi clones[J]. Journal of Forestry Research, 2018, 29(4): 1031−1039. doi: 10.1007/s11676-017-0492-6
    [25]
    梁德洋, 金允哲, 赵光浩, 等. 50个红松无性系生长与木材性状变异研究[J]. 北京林业大学学报, 2016, 38(6):51−59.

    Liang D Y, Jin Y Z, Zhao G H, et al. Variance analyses of growth and wood characteristics of 50 Pinus koraiensis clones[J]. Journal of Beijing Forestry University, 2016, 38(6): 51−59.
    [26]
    刘明国, 张欣, 董胜君, 等. 西伯利亚杏优选无性系间数量性状的差异与重复力研究[J]. 沈阳农业大学学报, 2015, 46(5):548−554. doi: 10.3969/j.issn.1000-1700.2015.05.007

    Liu M G, Zhang X, Dong S J, et al. Differences and repeatabilities of quantitative characters of Prunus sibirica superior clones[J]. Journal of Shenyang Agricultural University, 2015, 46(5): 548−554. doi: 10.3969/j.issn.1000-1700.2015.05.007
    [27]
    王庆娜. 红松种子园优良亲本及子代评价选择[D]. 哈尔滨: 东北林业大学, 2017.

    Wang Q N. Evaluated and selected analyses on excellent parents and offspring in Pinus koraiensis seed orchard [D]. Harbin: Northeast Forestry University, 2017.
    [28]
    史加亮, 李凤瑞, 赵文超, 等. 陆地棉特异种质主要性状配合力和遗传力分析[J]. 山东农业科学, 2021, 53(1):14−19.

    Shi J L, Li F R, Zhao W C, et al. Analysis on combining ability and heritability of main traits for special heteroplasm in upland cotton[J]. Shandong Agricultural Sciences, 2021, 53(1): 14−19.
    [29]
    王芳, 王元兴, 王成录, 等. 红松优树半同胞子代家系生长、结实及抗病虫能力的变异特征[J]. 应用生态学报, 2019, 30(5):1679−1686.

    Wang F, Wang Y X, Wang C L, et al. Variation of the growth, fruiting and resistance to disease and insect of the half-sib families of Pinus koraiensis superior trees[J]. Chinese Journal of Applied Ecology, 2019, 30(5): 1679−1686.
    [30]
    Meena B L, Das S P, Meena S K, et al. Assessment of GCV, PCV, heritability and genetic advance for yield and its components in field pea (Pisum sativum L.)[J]. International Journal of Current Microbiology and Applied Sciences, 2017, 6(5): 1025−1033. doi: 10.20546/ijcmas.2017.605.111
    [31]
    Fukatsu E, Hiraoka Y, Matsunaga K, et al. Genetic relationship between wood properties and growth traits in Larix kaempferi obtained from a diallel mating test[J]. Journal of Wood Science, 2015, 61(1): 10−18. doi: 10.1007/s10086-014-1436-9
    [32]
    Anjani K, Singh D N, Krishna P, et al. Comparing correlation coefficients and path analysis in different populations of rice (Oryza sativa L.)[J]. Current Journal of Applied Science and Technology, 2020, 39(37): 1−11.
    [33]
    王璧莹, 赵曦阳, 王洪武, 等. 依据生长性状对红松半同胞家系的评价选择[J]. 东北林业大学学报, 2019, 47(4):8−11, 20.

    Wang B Y, Zhao X Y, Wang H W, et al. Variance analysis of growth characteristics of 30 Pinus koraiensis half-sib families[J]. Journal of Northeast Forestry University, 2019, 47(4): 8−11, 20.
    [34]
    Zhang H, Zhang Y H Y, Zhang D W, et al. Progeny performance and selection of superior trees within families in Larix olgensis[J]. Euphytica, 2020, 216(3): 212−222.
    [35]
    赵吉平, 任杰成, 郭鹏燕, 等. 我国小麦育种方向的创新与实践分析[J]. 山西农业科学, 2019, 47(1):139−142. doi: 10.3969/j.issn.1002-2481.2019.01.34

    Zhao J P, Ren J C, Guo P Y, et al. Innovation and practice analysis of wheat breeding direction in China[J]. Journal of Shanxi Agricultural Sciences, 2019, 47(1): 139−142. doi: 10.3969/j.issn.1002-2481.2019.01.34
    [36]
    Max H, Karl S. Combining focused identification of germplasm and core collection strategies to identify genebank accessions for central European soybean breeding[J]. Plant Cell and Environment, 2020, 43(6): 1421−1436. doi: 10.1111/pce.13761
  • Cited by

    Periodical cited type(4)

    1. 熊海贝,武喆,陈佳炜. 正交胶合木新型抗剪及抗拉连接耗能特性试验. 同济大学学报(自然科学版). 2024(05): 684-696+652 .
    2. 张晋,姜坤,陆川. 正交胶合木墙体-楼板角撑连接节点受火后受剪承载力计算方法. 东南大学学报(自然科学版). 2022(01): 65-73 .
    3. 常程,方毅飞,刘义凡,阙泽利. 斜螺钉在正交胶合木中的抗拔性能研究. 建筑技术. 2019(04): 416-418 .
    4. 刁玥,贾贺然,孟鑫淼,高颖,张佳男. CLT墙体-楼板T型连接抗剪性能特征值分析方法对比研究. 北京林业大学学报. 2019(08): 147-153 . 本站查看

    Other cited types(7)

Catalog

    Article views (1943) PDF downloads (57) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return