• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Yin Peng, Liu Xiao, Lan Baoliang, Cui Yu, Xu Jichen. Sequence and functional analysis of mobile mRNAs in the heterologous grafted plants[J]. Journal of Beijing Forestry University, 2022, 44(5): 8-18. DOI: 10.12171/j.1000-1522.20210085
Citation: Yin Peng, Liu Xiao, Lan Baoliang, Cui Yu, Xu Jichen. Sequence and functional analysis of mobile mRNAs in the heterologous grafted plants[J]. Journal of Beijing Forestry University, 2022, 44(5): 8-18. DOI: 10.12171/j.1000-1522.20210085

Sequence and functional analysis of mobile mRNAs in the heterologous grafted plants

More Information
  • Received Date: March 10, 2021
  • Revised Date: April 13, 2021
  • Available Online: May 10, 2022
  • Published Date: May 24, 2022
  •   Objective  This paper intends to analyze the mobile mRNA in heterologous grafted plants, explore the effects of sequence and functional characteristics on mRNA transfer, reveal the principle of mRNA transfer, and provide a theoretical basis for the directional regulation of grafting.
      Method  With the transcriptome data of the various grafts, the coding region length and GC content of transfer mRNAs were calculated by Tbtools software and their correlation with mRNA transfer was further analyzed by Excel software. The sequence identity analysis via BLASTP was applied to find out the co-transfer mRNAs in different grafts. Function annotation and metabolic pathways analysis of the mRNAs were conducted through GO and KEGG database.
      Result  (1) The average length of root-to-shoot or shoot-to-root transfer mRNA was 1 573 and 1 547, respectively. The mRNA transfer ratio increased progressively along with the mRNA length increasing. Obviously, the transfer ratio of the root-to-shoot mRNA was larger than that of the shoot-to-root mRNAs, and the tendency was more significant with the mRNA length increasing. (2) When the GC content was 52% − 54%, the mRNA transfer rate from stem to root was the highest (3.66%), and when the GC content was 46% − 48%, the mRNA transfer rate from root to stem was the highest (4.71%). (3) Co-transfer mRNA analysis showed 1 032 root to shoot and 1 727 shoot to root mRNA were present in at least 2 grafts, which mainly participated in carbon metabolism, amino acid synthesis, and signal transduction. Even, 5 root-to-shoot mRNA and 2 shoot-to-root mRNA were commonly present in 7 grafts that mainly involved in hormone transport and basic metabolism.
      Conclusion  mRNA transfer in heterologous grafted plants is closely related to mRNA length, GC content, gene function and action position. mRNA differences and exchanges between heterologous plants give grafted plants new phenotypes.
  • [1]
    Mudge K, Janick J, Scofield S, et al. A history of grafting[J]. Horticultural Reviews, 2009, 35: 437−493.
    [2]
    李晓锐, 周 樊, 冯 刚, 等. 砧木对薄壳山核桃嫁接苗光合及荧光特性的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(2): 84−90.

    Li X R, Zhou F, Feng G, et al. Photosynthetic and fluorescence characteristics of pecan grafting seedlings grafted on different rootstocks[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2020, 44(2): 84−90.
    [3]
    Darikova J A, Savva S A, Vaganov E A, et al. Grafts of woody plants and the problem of incompatibility between scion and rootstock[J]. Journal of Siberian Federal University Biology, 2011, 1(4): 54−63.
    [4]
    Kim M, Canio W, Kessler S, et al. Developmental changes due to long-distance movement of a homeobox fusion transcript in tomato[J]. Science, 2001, 293: 287−289. doi: 10.1126/science.1059805
    [5]
    Gaion L A, Braz L T, Carvalho R F. Grafting in vegetable crops: a great technique for agriculture[J]. International Journal of Vegetable Science, 2018, 56: 637−667.
    [6]
    Ham B K, Lucas W J. Phloem-mobile RNAs as systemic signaling agents[J]. Annual Review of Plant Biology, 2016, 68(1): 173−195.
    [7]
    Banerjee A K, Chatterjee M, Yu Y, et al. Dynamics of a mobile RNA of potato involved in a long-distance signaling pathway[J]. Plant Cell, 2006, 18(12): 3443−3457.
    [8]
    Pooja S, Tian L, Carolina G, et al. The BEL1-like family of transcription factors in potato[J]. Journal of Experimental Botany, 2014, 65(2): 709−723. doi: 10.1093/jxb/ert432
    [9]
    Thieme C J, Rojas-Triana M, Stecyk E, et al. Endogenous Arabidopsis messenger RNAs transported to distant tissues[J]. Nature Plants, 2015, 1(4): 15025. doi: 10.1038/nplants.2015.25
    [10]
    Zhang Z, Zheng Y, Ham B K, et al. Vascular-mediated signaling involved in early phosphate stress response in plants[J]. Nature Plants, 2016, 2(4): 16033. doi: 10.1038/nplants.2016.33
    [11]
    Wang Y, Wang L, Xing N, et al. A universal pipeline for mobile mRNA detection and insights into heterografting advantages under chilling stress[J]. Horticulture Research, 2020, 7: 76. doi: 10.1038/s41438-020-0313-5
    [12]
    Hao L, Zhang Y, Wang S, et al. A constitutive and drought-responsive mRNA undergoes long-distance transport in pear (Pyrus betulaefolia) phloem[J]. Plant Science, 2020, 293: 110419. doi: 10.1016/j.plantsci.2020.110419
    [13]
    Yang L, Perrera V, Saplaoura E, et al. m5C methylation guides systemic transport of messenger RNA over graft junctions in plants[J]. Current Biology, 2019, 29(15): 2465−2476. doi: 10.1016/j.cub.2019.06.042
    [14]
    Zhang W, Thieme C J, Kollwig G, et al. tRNA-related sequences trigger systemic mRNA transport in plants[J]. Plant Cell, 2016, 28(6): 1237−1249. doi: 10.1105/tpc.15.01056
    [15]
    Michitaka N, Tetsuya H, Takamasa S. Identification of mRNAs that move over long distances using an RNA-Seq analysis of Arabidopsis/Nicotiana benthamiana heterografts[J]. Plant Cell Physiology, 2015, 56(2): 311−321. doi: 10.1093/pcp/pcu210
    [16]
    Yang Y, Mao L, Jittayasothorn Y, et al. Messenger RNA exchange between scions and rootstocks in grafted grapevines[J]. BMC Plant Biology, 2015, 15(1): 251. doi: 10.1186/s12870-015-0626-y
    [17]
    Chao X, Yi Z, Huang J, et al. Elucidation of the mechanisms of long-distance mRNA movement in a Nicotiana benthamiana/tomato heterograft system[J]. Plant Physiology, 2018, 177(2): 745−758. doi: 10.1104/pp.17.01836
    [18]
    Liu W, Xiang C, Li X, et al. Identification of long-distance transmissible mRNA between scion and rootstock in Cucurbit seedling heterografts[J]. International Journal of Molecular Sciences, 2020, 21(15): 5253. doi: 10.3390/ijms21155253
    [19]
    Chen C, Chen H, Zhang Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194−1202. doi: 10.1016/j.molp.2020.06.009
    [20]
    Ghate T H, Sharma P, Kirtikumar R K, et al. The mobile RNAs, StBEL11 and StBEL29, suppress growth of tubers in potato[J]. Plant Molecular Biology, 2017, 93(6): 563−578. doi: 10.1007/s11103-016-0582-4
    [21]
    Ruiz-Medrano R, Xoconostle-Cázares B, Lucas W J. Phloem long-distance transport of CmNACP mRNA: implications for supracellular regulation in plants[J]. Development, 1999, 126(20): 4405−4419. doi: 10.1242/dev.126.20.4405
    [22]
    Courtois-Verniquet F, Douce R. Lack of aconitase in glyoxysomes and peroxisomes[J]. Biochemical Journal, 1993, 294(1): 103−107. doi: 10.1042/bj2940103
    [23]
    Beatriz G, Pablo V. Folate metabolism interferes with plant immunity through 1C methionine synthase-directed genome-wide DNA methylation enhancement[J]. Molecular Plant, 2019, 12(9): 1227−1242. doi: 10.1016/j.molp.2019.04.013
    [24]
    Li J, Yang H, Wendy A P, et al. Arabidopsis H+-PPase AVP1 regulates auxin-mediated organ development[J]. Science, 2005, 310: 121−125. doi: 10.1126/science.1115711
    [25]
    Francesca E M, Helen W. Types of ubiquitin ligases[J]. Cell, 2016, 165(1): 248−248.el. doi: 10.1016/j.cell.2016.03.003
    [26]
    Smalle J, Vierstra R D. The ubiquitin 26S proteasome proteolytic pathway[J]. Annual Review of Plant Biology, 2004, 55: 555−590. doi: 10.1146/annurev.arplant.55.031903.141801
    [27]
    Aaron S, Mark E. The ubiquitin-proteasome system regulates plant hormone signaling[J]. Plant Journal, 2010, 61(6): 1029−1040. doi: 10.1111/j.1365-313X.2010.04112.x
    [28]
    Muthugapatti K K, Elizabeth C M, Richard B M. A single vegetative actin isovariant overexpressed under the control of multiple regulatory sequences is sufficient for normal Arabidopsis development[J]. Plant Cell, 2009, 21(3): 701−718. doi: 10.1105/tpc.108.061960
    [29]
    Nathan N, Charles F Y. Structure and function of photosystems Ⅰ and Ⅱ[J]. Annual Review of Plant Biology, 2006, 57(1): 521−565. doi: 10.1146/annurev.arplant.57.032905.105350
    [30]
    Carvalho J F D, Madgwick P J, Powers S J, et al. An engineered pathway for glyoxylate metabolism in tobacco plants aimed to avoid the release of ammonia in photorespiration[J]. BMC Biotechnology, 2011, 11: 111. doi: 10.1186/1472-6750-11-111
    [31]
    Paradez A, Wright A, Ehrhardt D W. Microtubule cortical array organization and plant cell morphogenesis[J]. Current Opinion in Plant Biology, 2006, 9(6): 571−578. doi: 10.1016/j.pbi.2006.09.005
    [32]
    Günther O, Schock G, Trischler M, et al. Complexity and expression of the glutamine synthetase multigene family in the amphidiploid crop Brassica napus[J]. Plant Molecular Biology, 1999, 39(3): 395−405. doi: 10.1023/A:1006193717093
    [33]
    Luo J, Zhou J, Zhang J. Aux/IAA gene family in plants: molecular structure, regulation, and function[J]. International Journal of Molecular Sciences, 2018, 19(1): 259. doi: 10.3390/ijms19010259
    [34]
    Marchant A, Kargul J, May S T, et al. AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues[J]. EMBO Journal, 1999, 18(8): 2066−2073. doi: 10.1093/emboj/18.8.2066
  • Cited by

    Periodical cited type(9)

    1. ZHANG Kai,ZHANG Hailong,TIAN Jianjin,QU Jianjun,ZHANG Xingxin,WANG Zhenghui,XIAO jianhua. Flow field, sedimentation, and erosion characteristics around folded linear HDPE sheet sand fence: Numerical simulation study. Journal of Mountain Science. 2024(01): 113-130 .
    2. 马泽,蒙仲举,罗建国,阿拉腾陶格苏,赵东颖. 乌兰布和沙漠典型沿黄段格状沙障防风固沙效应. 水土保持通报. 2024(02): 1-10+21 .
    3. 闫德仁,黄海广,闫婷. 纱网沙障研究进展. 内蒙古林业科技. 2024(03): 50-53 .
    4. 潘加朋,张克存,安志山,张宏雪,薛承杰. 基于风洞模拟试验的典型机械防沙工程防护效益对比. 水土保持学报. 2023(06): 104-110 .
    5. 张帅,原伟杰,刘卉,王海霞,官昊慧,王鹿振. 附面层位移厚度对沙障防风效益评价的适用性研究——以聚乳酸(PLA)沙障为例. 干旱区地理. 2023(12): 1973-1983 .
    6. 李双立,黄海广,党晓宏,郭跃,万俊华. 基于CNKI数据库文献计量视角下沙障研究现状. 防护林科技. 2022(05): 75-78+85 .
    7. 韩雪莹,王涛,杨文斌,贾光普,刘静,杨宇. 中国沙障研究进展与热点分析:基于Vosviewer和Citespace的图谱量化分析. 中国沙漠. 2021(02): 153-163 .
    8. 祁帅,汪季,党晓宏,魏亚娟,丁奋谦. 3种低立式沙障内表层沉积物粒度特征研究. 干旱区研究. 2021(03): 875-881 .
    9. 厉静文,Dosmanbetov D A,郭浩,辛智鸣,刘朋飞,刘明虎. 不同配置乔灌混交林防风效益的风洞试验. 农业工程学报. 2020(11): 95-102 .

    Other cited types(7)

Catalog

    Article views (829) PDF downloads (78) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return