Citation: | Yin Peng, Liu Xiao, Lan Baoliang, Cui Yu, Xu Jichen. Sequence and functional analysis of mobile mRNAs in the heterologous grafted plants[J]. Journal of Beijing Forestry University, 2022, 44(5): 8-18. DOI: 10.12171/j.1000-1522.20210085 |
[1] |
Mudge K, Janick J, Scofield S, et al. A history of grafting[J]. Horticultural Reviews, 2009, 35: 437−493.
|
[2] |
李晓锐, 周 樊, 冯 刚, 等. 砧木对薄壳山核桃嫁接苗光合及荧光特性的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(2): 84−90.
Li X R, Zhou F, Feng G, et al. Photosynthetic and fluorescence characteristics of pecan grafting seedlings grafted on different rootstocks[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2020, 44(2): 84−90.
|
[3] |
Darikova J A, Savva S A, Vaganov E A, et al. Grafts of woody plants and the problem of incompatibility between scion and rootstock[J]. Journal of Siberian Federal University Biology, 2011, 1(4): 54−63.
|
[4] |
Kim M, Canio W, Kessler S, et al. Developmental changes due to long-distance movement of a homeobox fusion transcript in tomato[J]. Science, 2001, 293: 287−289. doi: 10.1126/science.1059805
|
[5] |
Gaion L A, Braz L T, Carvalho R F. Grafting in vegetable crops: a great technique for agriculture[J]. International Journal of Vegetable Science, 2018, 56: 637−667.
|
[6] |
Ham B K, Lucas W J. Phloem-mobile RNAs as systemic signaling agents[J]. Annual Review of Plant Biology, 2016, 68(1): 173−195.
|
[7] |
Banerjee A K, Chatterjee M, Yu Y, et al. Dynamics of a mobile RNA of potato involved in a long-distance signaling pathway[J]. Plant Cell, 2006, 18(12): 3443−3457.
|
[8] |
Pooja S, Tian L, Carolina G, et al. The BEL1-like family of transcription factors in potato[J]. Journal of Experimental Botany, 2014, 65(2): 709−723. doi: 10.1093/jxb/ert432
|
[9] |
Thieme C J, Rojas-Triana M, Stecyk E, et al. Endogenous Arabidopsis messenger RNAs transported to distant tissues[J]. Nature Plants, 2015, 1(4): 15025. doi: 10.1038/nplants.2015.25
|
[10] |
Zhang Z, Zheng Y, Ham B K, et al. Vascular-mediated signaling involved in early phosphate stress response in plants[J]. Nature Plants, 2016, 2(4): 16033. doi: 10.1038/nplants.2016.33
|
[11] |
Wang Y, Wang L, Xing N, et al. A universal pipeline for mobile mRNA detection and insights into heterografting advantages under chilling stress[J]. Horticulture Research, 2020, 7: 76. doi: 10.1038/s41438-020-0313-5
|
[12] |
Hao L, Zhang Y, Wang S, et al. A constitutive and drought-responsive mRNA undergoes long-distance transport in pear (Pyrus betulaefolia) phloem[J]. Plant Science, 2020, 293: 110419. doi: 10.1016/j.plantsci.2020.110419
|
[13] |
Yang L, Perrera V, Saplaoura E, et al. m5C methylation guides systemic transport of messenger RNA over graft junctions in plants[J]. Current Biology, 2019, 29(15): 2465−2476. doi: 10.1016/j.cub.2019.06.042
|
[14] |
Zhang W, Thieme C J, Kollwig G, et al. tRNA-related sequences trigger systemic mRNA transport in plants[J]. Plant Cell, 2016, 28(6): 1237−1249. doi: 10.1105/tpc.15.01056
|
[15] |
Michitaka N, Tetsuya H, Takamasa S. Identification of mRNAs that move over long distances using an RNA-Seq analysis of Arabidopsis/Nicotiana benthamiana heterografts[J]. Plant Cell Physiology, 2015, 56(2): 311−321. doi: 10.1093/pcp/pcu210
|
[16] |
Yang Y, Mao L, Jittayasothorn Y, et al. Messenger RNA exchange between scions and rootstocks in grafted grapevines[J]. BMC Plant Biology, 2015, 15(1): 251. doi: 10.1186/s12870-015-0626-y
|
[17] |
Chao X, Yi Z, Huang J, et al. Elucidation of the mechanisms of long-distance mRNA movement in a Nicotiana benthamiana/tomato heterograft system[J]. Plant Physiology, 2018, 177(2): 745−758. doi: 10.1104/pp.17.01836
|
[18] |
Liu W, Xiang C, Li X, et al. Identification of long-distance transmissible mRNA between scion and rootstock in Cucurbit seedling heterografts[J]. International Journal of Molecular Sciences, 2020, 21(15): 5253. doi: 10.3390/ijms21155253
|
[19] |
Chen C, Chen H, Zhang Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194−1202. doi: 10.1016/j.molp.2020.06.009
|
[20] |
Ghate T H, Sharma P, Kirtikumar R K, et al. The mobile RNAs, StBEL11 and StBEL29, suppress growth of tubers in potato[J]. Plant Molecular Biology, 2017, 93(6): 563−578. doi: 10.1007/s11103-016-0582-4
|
[21] |
Ruiz-Medrano R, Xoconostle-Cázares B, Lucas W J. Phloem long-distance transport of CmNACP mRNA: implications for supracellular regulation in plants[J]. Development, 1999, 126(20): 4405−4419. doi: 10.1242/dev.126.20.4405
|
[22] |
Courtois-Verniquet F, Douce R. Lack of aconitase in glyoxysomes and peroxisomes[J]. Biochemical Journal, 1993, 294(1): 103−107. doi: 10.1042/bj2940103
|
[23] |
Beatriz G, Pablo V. Folate metabolism interferes with plant immunity through 1C methionine synthase-directed genome-wide DNA methylation enhancement[J]. Molecular Plant, 2019, 12(9): 1227−1242. doi: 10.1016/j.molp.2019.04.013
|
[24] |
Li J, Yang H, Wendy A P, et al. Arabidopsis H+-PPase AVP1 regulates auxin-mediated organ development[J]. Science, 2005, 310: 121−125. doi: 10.1126/science.1115711
|
[25] |
Francesca E M, Helen W. Types of ubiquitin ligases[J]. Cell, 2016, 165(1): 248−248.el. doi: 10.1016/j.cell.2016.03.003
|
[26] |
Smalle J, Vierstra R D. The ubiquitin 26S proteasome proteolytic pathway[J]. Annual Review of Plant Biology, 2004, 55: 555−590. doi: 10.1146/annurev.arplant.55.031903.141801
|
[27] |
Aaron S, Mark E. The ubiquitin-proteasome system regulates plant hormone signaling[J]. Plant Journal, 2010, 61(6): 1029−1040. doi: 10.1111/j.1365-313X.2010.04112.x
|
[28] |
Muthugapatti K K, Elizabeth C M, Richard B M. A single vegetative actin isovariant overexpressed under the control of multiple regulatory sequences is sufficient for normal Arabidopsis development[J]. Plant Cell, 2009, 21(3): 701−718. doi: 10.1105/tpc.108.061960
|
[29] |
Nathan N, Charles F Y. Structure and function of photosystems Ⅰ and Ⅱ[J]. Annual Review of Plant Biology, 2006, 57(1): 521−565. doi: 10.1146/annurev.arplant.57.032905.105350
|
[30] |
Carvalho J F D, Madgwick P J, Powers S J, et al. An engineered pathway for glyoxylate metabolism in tobacco plants aimed to avoid the release of ammonia in photorespiration[J]. BMC Biotechnology, 2011, 11: 111. doi: 10.1186/1472-6750-11-111
|
[31] |
Paradez A, Wright A, Ehrhardt D W. Microtubule cortical array organization and plant cell morphogenesis[J]. Current Opinion in Plant Biology, 2006, 9(6): 571−578. doi: 10.1016/j.pbi.2006.09.005
|
[32] |
Günther O, Schock G, Trischler M, et al. Complexity and expression of the glutamine synthetase multigene family in the amphidiploid crop Brassica napus[J]. Plant Molecular Biology, 1999, 39(3): 395−405. doi: 10.1023/A:1006193717093
|
[33] |
Luo J, Zhou J, Zhang J. Aux/IAA gene family in plants: molecular structure, regulation, and function[J]. International Journal of Molecular Sciences, 2018, 19(1): 259. doi: 10.3390/ijms19010259
|
[34] |
Marchant A, Kargul J, May S T, et al. AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues[J]. EMBO Journal, 1999, 18(8): 2066−2073. doi: 10.1093/emboj/18.8.2066
|