• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Li Sizheng, Yao Quan, Li He. Functional analysis of BRLZ motif of the transcription factor CfHac1 in Colletotrichum fructicola[J]. Journal of Beijing Forestry University, 2021, 43(9): 70-76. DOI: 10.12171/j.1000-1522.20210087
Citation: Li Sizheng, Yao Quan, Li He. Functional analysis of BRLZ motif of the transcription factor CfHac1 in Colletotrichum fructicola[J]. Journal of Beijing Forestry University, 2021, 43(9): 70-76. DOI: 10.12171/j.1000-1522.20210087

Functional analysis of BRLZ motif of the transcription factor CfHac1 in Colletotrichum fructicola

More Information
  • Received Date: March 10, 2021
  • Revised Date: May 04, 2021
  • Available Online: June 20, 2021
  • Published Date: October 14, 2021
  •   Objective  Colletotrichum fructicola is a major pathogen causing anthracnose on Camellia oleifera, and leads to substantial losses annually. The domain analysis of transcription factor CfHac1 will help us understanding the CfHac1-regulated pathogenic mechanism of the pathogen and provide new insights to control this disease.
      Method  We constructed the domain deletion vector using point mutation technology and introduced it into the ΔCfhac1 mutant through the PEG-mediated protoplast transformation. The strains were selected by bleomycin and fluorescence, then the function was analyzed in C. fructicola.
      Result  The structure prediction revealed that CfHac1 contained one basic region-leucine zipper motif (BRLZ), which contained 58 amino acid residues. Comparing to the wide type and complemented strains, the mycelial growth rate, conidiation and appressorium formation rate of the Cfhac1ΔBRLZ were significantly reduced, and the Cfhac1ΔBRLZ strain was sensitive to dithiothreitol. The pathogenicity test showed that the Cfhac1ΔBRLZ lost the ability to infect C. oleifera leaves, whose phenotype is consistent with ΔCfhac1 mutant.
      Conclusion  The results show that BRLZ is an important domain of CfHac1 and is essential for normal function of CfHac1 in C. fructicola.
  • [1]
    Li H, Zhou G Y, Liu J A, et al. Population genetic analyses of the fungal pathogen Colletotrichum fructicola on oil-tea trees in China[J]. PLoS One, 2016, 11(6): 1−24.
    [2]
    李河, 李司政, 王悦辰, 等. 油茶苗圃炭疽病原菌鉴定及抗药性[J]. 林业科学, 2019, 55(5):85−94. doi: 10.11707/j.1001-7488.20190510

    Li H, Li S Z, Wang Y C, et al. Identification of the pathogens causing anthracnose of Camellia oleifera in nursery and their resistence to fungicides[J]. Scientia Silvae Sinicae, 2019, 55(5): 85−94. doi: 10.11707/j.1001-7488.20190510
    [3]
    李河, 周国英, 徐建平, 等. 一种油茶新炭疽病原的多基因系统发育分析鉴定[J]. 植物保护学报, 2014, 41(5):602−607.

    Li H, Zhou G Y, Xu J P, et al. Pathogen identification of a new anthracnose of Camellia oleifera in China based on multiple-gene phylogeny[J]. Journal of Plant Protection, 2014, 41(5): 602−607.
    [4]
    李河, 李杨, 蒋仕强, 等. 湖南省油茶炭疽病病原鉴定[J]. 林业科学, 2017, 53(8):43−53. doi: 10.11707/j.1001-7488.20170806

    Li H, Li Y, Jiang S Q, et al. Pathogen of oil-tea trees anthracnose caused by Colletotrichum spp. in Hunan Province[J]. Scientia Silvae Sinicae, 2017, 53(8): 43−53. doi: 10.11707/j.1001-7488.20170806
    [5]
    李河. 油茶炭疽病菌群体遗传及MAPK基因CfPMK1功能研究[D]. 长沙: 中南林业科技大学, 2018.

    Li H. Population genetic analyses of the fungal pathogen Colletotrichum on oil-tea trees in China and characterization of a MAPK gene CfPMK1 in the pathogen[D]. Changsha: Central South University of Forestry and Technology, 2018.
    [6]
    朱丹雪, 周国英, 徐建平, 等. 果生刺盘孢菌Colletotrichum fructicola群体遗传结构研究[J]. 菌物学报, 2015, 34(3):366−374.

    Zhu D X, Zhou G Y, Xu J P, et al. Population genetic structure of Colletotrichum fructicola[J]. Mycosystema, 2015, 34(3): 366−374.
    [7]
    Zhang S P, Guo Y, Li S Z, et al. Functional analysis of CfSnf1 in the development and pathogenicity of anthracnose fungus Colletotrichum fructicola on tea-oil tree[J]. BMC Genetics, 2019, 20(1): 94−103. doi: 10.1186/s12863-019-0796-y
    [8]
    Guo M, Chen Y, Du Y, et al. The bZIP transcription factor MoAP1 mediates the oxidative stress response and is critical for pathogenicity of the rice blast fungus Magnaporthe oryzae[J]. PLoS Pathogens, 2011, 7(2): 1−21.
    [9]
    姚权, 郭源, 魏丰园, 等. bZIP转录因子CfHac1参与调控果生刺盘孢菌的生长发育和致病力[J]. 菌物学报, 2019, 38(10):1643−1652.

    Yao Q, Guo Y, Wei F Y, et al. A bZIP-type transcription factor CfHac1 is involved in regulating development and pathogenesis in Colletotrichum fructicola[J]. Mycosystema, 2019, 38(10): 1643−1652.
    [10]
    李司政, 李河. 果生刺盘孢CfHAC1调控应答二硫苏糖醇胁迫的转录组分析[J]. 菌物学报, 2020, 39(10):1886−1896.

    Li S Z, Li H. Genome-wide transcriptome analysis of Colletotrichum fructicola CfHAC1 deletion mutant in response to dithiothreitol stress[J]. Mycosystema, 2020, 39(10): 1886−1896.
    [11]
    冯若, 张娓, 杨继要, 等. 二硫苏糖醇诱导Eca109细胞凋亡及P38磷酸化检测[J]. 郑州大学学报(医学版), 2005, 40(5):833−834.

    Feng R, Zhang W, Yang J Y, et al. Detection of phosphory lated P38MAP kinase in human esophageal carci-noma Eca109 apoptotic cells induced by DTT[J]. Journal of Zhengzhou University: Medical Sciences, 2005, 40(5): 833−834.
    [12]
    Huang L, Li Q C, Zhang Y. Colletotrichum gloeosporioides sensu stricto is a pathogen of leaf anthracnose on evergreen spindle tree (Euonymus japonicus)[J]. Plant Disease, 2016, 100(4): 672−678. doi: 10.1094/PDIS-07-15-0740-RE
    [13]
    Fang Y L, Xia L M, Wang P. The MAPKKK CgMck1 is required for cell wall integrity, appressorium development, and pathogenicity in Colletotrichum gloeosporioides[J]. Genes, 2018, 9(11): 543. doi: 10.3390/genes9110543
    [14]
    Yang J Y, Fang Y L, Wang P, et al. Pleiotropic roles of ChSat4 in asexual development, cell wall integrity maintenance, and pathogenicity in Colletotrichum higginsianum[J]. Frontiers in Microbiology, 2018, 9(10): 2311.
    [15]
    Mori K, Ogawa N, Kawahara T, et al. Palindrome with spacer of one nucleotide is characteristic of the cis-acting unfolded protein response element in Saccharomyces cerevisiae[J]. Journal of Biological Chemistry, 1998, 273(16): 9912−9929. doi: 10.1074/jbc.273.16.9912
    [16]
    Joubert A, Simoneau P, Campion C, et al. Impact of the unfolded protein response on the pathogenicity of the necrotrophic fungus Alternaria brassicicola[J]. Molecular Microbiology, 2011, 79(5): 1305−1324. doi: 10.1111/j.1365-2958.2010.07522.x
    [17]
    汤蔚. 非折叠蛋白反应相关基因MoHAC1和MoIRE1在稻瘟病菌生长发育和致病过程中的功能分析[D]. 南京: 南京农业大学, 2015.

    Tang W. Functional analysis of unfolded protein response associated genes MOHAC1 and MOIRE1 in Magnaporthe oryzae[D]. Nanjing: Nanjing Agricultural University, 2015.
    [18]
    Chen L L, Ma Y M, Zhao J Y, et al. The bZIP transcription factor FpAda1 is essential for fungal growth and conidiation in Fusariumpseudo graminearum[J]. Current Genetics, 2019, 66(3): 507−515.
    [19]
    张金龙. 稻瘟病菌bZIP转录因子MoGcn4的生物学功能分析及化合物sporothriolide对稻瘟病菌的影响研究[D]. 南京: 南京农业大学, 2015.

    Zhang J L. Characterization of bzip transcription factor MoGcn4 in Magnaporthe oryzae and effect of compound sporothriolide on Magnaporthe oryzae[D]. Nanjing: Nanjing Agricultural University, 2015.
    [20]
    朱倩. 4个bZIP转录因子在稻瘟病菌生长发育及致病过程中的功能研究[D]. 南京: 南京 农业大学, 2014.

    Zhu Q. Functional analysis of 4 bzip transcriptional factors during the development and pathogenicity of Magnaporthe oryzae[D]. Nanjing: Nanjing Agricultural University, 2014.
    [21]
    Qi X Z, Guo L J, Yang L Y, et al. Foatf1, a bZIP transcription factor of Fusarium oxysporum f. sp. cubense, is involved in pathogenesis by regulating the oxidative stress responses of Cavendish banana (Musa spp.)[J]. Physiological and Molecular Plant Pathology, 2013, 84(4): 76−85.
    [22]
    盖云鹏. 链格孢菌比较基因组及bZIP转录因子功能研究[D]. 杭州: 浙江大学, 2019.

    Gai Y P. Two tales of Alterharia alternata: comnarative genomics and function of bZIP transcription factor[D]. Hangzhou: Zhejiang University, 2019.
    [23]
    高亚兰, 何苑皋, 李河. 调控油茶果生刺盘孢bZIP转录因子CfAp1的生物学功能[J]. 林业科学, 2020, 56(9):30−39. doi: 10.11707/j.1001-7488.20200904

    Gao Y L, He Y H, Li H. Biological function bZIP-Type transcription factor CfAp1 in Colletotrichum fructicola[J]. Scientia Silvae Sinicae, 2020, 56(9): 30−39. doi: 10.11707/j.1001-7488.20200904
    [24]
    Weir B S, Johnston P R, Damm U. The Colletotrichum gloeosporioides species complex[J]. Studies in Mycology, 2012, 73(1): 115−180.
  • Cited by

    Periodical cited type(21)

    1. 彭小静,黄海山,严芝银,邹星晨,贺康宁,程唱,王作枭,李睿,刘婧雯,石正阳,刘仟仟. 祁连山东部地区不同林分密度白桦天然林土壤理化性质特征. 生态学报. 2025(02): 743-756 .
    2. 张佳凝,张建军,赖宗锐,赵炯昌,胡亚伟,李阳,卫朝阳. 林分密度对刺槐人工林土壤养分和微生物群落的影响. 干旱区研究. 2025(02): 274-288 .
    3. 武燕,李歆玉,张奕婷,丁波,张运林,符裕红,刘讯. 西南喀斯特地区不同龄组马尾松人工林枯落物碳氮磷化学计量特征及其影响因子. 北京林业大学学报. 2024(02): 87-94 . 本站查看
    4. 巩大鹏,毕华兴,王劲峰,赵丹阳,黄靖涵,宋艺琳. 晋西黄土区不同密度刺槐人工林叶片-枯落物-土壤化学计量特征. 林业科学研究. 2024(02): 156-164 .
    5. 陈宇,庞涛,瞿相,彭建,杨汉波,代林利,辜云杰. 造林密度对楠木幼龄林生长、土壤理化性质与酶活性的影响. 四川林业科技. 2024(03): 9-20 .
    6. 龚世豪,查同刚,张晓霞,张恒硕,高连炜,于洋. 晋西黄土区典型林分凋落物-土壤养分对降雨再分配变化的响应. 生态学报. 2024(17): 7748-7759 .
    7. 窦金萍,武小钢,杨秀云,陈冠光,靳雅君,吴茜. 不同类型豆科植物群落凋落物对城市土壤质量的影响. 林业调查规划. 2024(05): 198-204 .
    8. 贾亚倢,杨建英,张建军,胡亚伟,张犇,赵炯昌,李阳,唐鹏. 晋西黄土区林分密度对油松人工林生物量及土壤理化性质的影响. 浙江农林大学学报. 2024(06): 1211-1221 .
    9. 陈涛,王露露,王思崇,朱学灵,叶永忠. 河南省丘陵低山区刺槐人工林立地分类及立地质量评价. 西北林学院学报. 2023(01): 153-159 .
    10. 高利强,刘莹,王国梁. 人工和天然油松林表层土壤不同粒径团聚体有机碳及其组分分布特征. 水土保持学报. 2023(02): 320-328 .
    11. 孙阔,袁兴中,王晓锋,袁嘉,候春丽,魏丽景. 三峡水库消落带土壤养分含量及生态化学计量特征. 长江流域资源与环境. 2023(02): 403-414 .
    12. 张誉. 不同造林技术对水土保持林土壤特性的影响研究. 广东蚕业. 2023(03): 50-52 .
    13. 钟欢,董文渊,浦婵,谢泽轩,张炜,郑静楠,夏莉. 滇东北4种类型筇竹林分土壤碳氮磷生态化学计量特征研究. 西南林业大学学报(自然科学). 2023(03): 111-119 .
    14. 魏亚娟,刘美英,解云虎,李星. 吉兰泰盐湖防护体系建立38 a以来土壤养分特征. 干旱区研究. 2023(05): 747-755 .
    15. 党记刚. 陕西黄土区典型人工林分结构与水土保持功能耦合关系研究. 科技创新与生产力. 2023(08): 47-50 .
    16. 朱燕,翟博超,孙美美,罗伶书,王瑛,杜盛. 黄土丘陵区不同密度刺槐和油松人工林土壤理化性质与化学计量特征. 水土保持研究. 2023(06): 160-167 .
    17. 兰道云,毕华兴,赵丹阳,王宁,云慧雅,王珊珊,崔艳红. 晋西黄土区不同密度油松人工林保育土壤功能评价. 水土保持学报. 2022(02): 189-196 .
    18. 郭强,官凤英,辉朝茂,刘蔚漪,邹学明. 密度和施肥调控对巨龙竹新竹生长及生物量特征的影响. 北京林业大学学报. 2022(04): 95-106 . 本站查看
    19. 张恒宇,孙树臣,吴元芝,安娟,宋红丽. 黄土高原不同植被密度条件下土壤水、碳、氮分布特征. 生态环境学报. 2022(05): 875-884 .
    20. 郭鑫,魏天兴,陈宇轩,沙国良,任康,于欢. 黄土丘陵区典型退耕恢复植被土壤生态化学计量特征. 干旱区地理. 2022(06): 1899-1907 .
    21. 梁广国,陶建元,郭坤,王子旗,张艳明,王金颖. 不同林型、不同林分密度植被下土壤养分及其化学计量比研究. 吉林林业科技. 2021(06): 14-21 .

    Other cited types(13)

Catalog

    Article views (1313) PDF downloads (64) Cited by(34)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return