• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Li Sizheng, Yao Quan, Li He. Functional analysis of BRLZ motif of the transcription factor CfHac1 in Colletotrichum fructicola[J]. Journal of Beijing Forestry University, 2021, 43(9): 70-76. DOI: 10.12171/j.1000-1522.20210087
Citation: Li Sizheng, Yao Quan, Li He. Functional analysis of BRLZ motif of the transcription factor CfHac1 in Colletotrichum fructicola[J]. Journal of Beijing Forestry University, 2021, 43(9): 70-76. DOI: 10.12171/j.1000-1522.20210087

Functional analysis of BRLZ motif of the transcription factor CfHac1 in Colletotrichum fructicola

More Information
  • Received Date: March 10, 2021
  • Revised Date: May 04, 2021
  • Available Online: June 20, 2021
  • Published Date: October 14, 2021
  •   Objective  Colletotrichum fructicola is a major pathogen causing anthracnose on Camellia oleifera, and leads to substantial losses annually. The domain analysis of transcription factor CfHac1 will help us understanding the CfHac1-regulated pathogenic mechanism of the pathogen and provide new insights to control this disease.
      Method  We constructed the domain deletion vector using point mutation technology and introduced it into the ΔCfhac1 mutant through the PEG-mediated protoplast transformation. The strains were selected by bleomycin and fluorescence, then the function was analyzed in C. fructicola.
      Result  The structure prediction revealed that CfHac1 contained one basic region-leucine zipper motif (BRLZ), which contained 58 amino acid residues. Comparing to the wide type and complemented strains, the mycelial growth rate, conidiation and appressorium formation rate of the Cfhac1ΔBRLZ were significantly reduced, and the Cfhac1ΔBRLZ strain was sensitive to dithiothreitol. The pathogenicity test showed that the Cfhac1ΔBRLZ lost the ability to infect C. oleifera leaves, whose phenotype is consistent with ΔCfhac1 mutant.
      Conclusion  The results show that BRLZ is an important domain of CfHac1 and is essential for normal function of CfHac1 in C. fructicola.
  • [1]
    Li H, Zhou G Y, Liu J A, et al. Population genetic analyses of the fungal pathogen Colletotrichum fructicola on oil-tea trees in China[J]. PLoS One, 2016, 11(6): 1−24.
    [2]
    李河, 李司政, 王悦辰, 等. 油茶苗圃炭疽病原菌鉴定及抗药性[J]. 林业科学, 2019, 55(5):85−94. doi: 10.11707/j.1001-7488.20190510

    Li H, Li S Z, Wang Y C, et al. Identification of the pathogens causing anthracnose of Camellia oleifera in nursery and their resistence to fungicides[J]. Scientia Silvae Sinicae, 2019, 55(5): 85−94. doi: 10.11707/j.1001-7488.20190510
    [3]
    李河, 周国英, 徐建平, 等. 一种油茶新炭疽病原的多基因系统发育分析鉴定[J]. 植物保护学报, 2014, 41(5):602−607.

    Li H, Zhou G Y, Xu J P, et al. Pathogen identification of a new anthracnose of Camellia oleifera in China based on multiple-gene phylogeny[J]. Journal of Plant Protection, 2014, 41(5): 602−607.
    [4]
    李河, 李杨, 蒋仕强, 等. 湖南省油茶炭疽病病原鉴定[J]. 林业科学, 2017, 53(8):43−53. doi: 10.11707/j.1001-7488.20170806

    Li H, Li Y, Jiang S Q, et al. Pathogen of oil-tea trees anthracnose caused by Colletotrichum spp. in Hunan Province[J]. Scientia Silvae Sinicae, 2017, 53(8): 43−53. doi: 10.11707/j.1001-7488.20170806
    [5]
    李河. 油茶炭疽病菌群体遗传及MAPK基因CfPMK1功能研究[D]. 长沙: 中南林业科技大学, 2018.

    Li H. Population genetic analyses of the fungal pathogen Colletotrichum on oil-tea trees in China and characterization of a MAPK gene CfPMK1 in the pathogen[D]. Changsha: Central South University of Forestry and Technology, 2018.
    [6]
    朱丹雪, 周国英, 徐建平, 等. 果生刺盘孢菌Colletotrichum fructicola群体遗传结构研究[J]. 菌物学报, 2015, 34(3):366−374.

    Zhu D X, Zhou G Y, Xu J P, et al. Population genetic structure of Colletotrichum fructicola[J]. Mycosystema, 2015, 34(3): 366−374.
    [7]
    Zhang S P, Guo Y, Li S Z, et al. Functional analysis of CfSnf1 in the development and pathogenicity of anthracnose fungus Colletotrichum fructicola on tea-oil tree[J]. BMC Genetics, 2019, 20(1): 94−103. doi: 10.1186/s12863-019-0796-y
    [8]
    Guo M, Chen Y, Du Y, et al. The bZIP transcription factor MoAP1 mediates the oxidative stress response and is critical for pathogenicity of the rice blast fungus Magnaporthe oryzae[J]. PLoS Pathogens, 2011, 7(2): 1−21.
    [9]
    姚权, 郭源, 魏丰园, 等. bZIP转录因子CfHac1参与调控果生刺盘孢菌的生长发育和致病力[J]. 菌物学报, 2019, 38(10):1643−1652.

    Yao Q, Guo Y, Wei F Y, et al. A bZIP-type transcription factor CfHac1 is involved in regulating development and pathogenesis in Colletotrichum fructicola[J]. Mycosystema, 2019, 38(10): 1643−1652.
    [10]
    李司政, 李河. 果生刺盘孢CfHAC1调控应答二硫苏糖醇胁迫的转录组分析[J]. 菌物学报, 2020, 39(10):1886−1896.

    Li S Z, Li H. Genome-wide transcriptome analysis of Colletotrichum fructicola CfHAC1 deletion mutant in response to dithiothreitol stress[J]. Mycosystema, 2020, 39(10): 1886−1896.
    [11]
    冯若, 张娓, 杨继要, 等. 二硫苏糖醇诱导Eca109细胞凋亡及P38磷酸化检测[J]. 郑州大学学报(医学版), 2005, 40(5):833−834.

    Feng R, Zhang W, Yang J Y, et al. Detection of phosphory lated P38MAP kinase in human esophageal carci-noma Eca109 apoptotic cells induced by DTT[J]. Journal of Zhengzhou University: Medical Sciences, 2005, 40(5): 833−834.
    [12]
    Huang L, Li Q C, Zhang Y. Colletotrichum gloeosporioides sensu stricto is a pathogen of leaf anthracnose on evergreen spindle tree (Euonymus japonicus)[J]. Plant Disease, 2016, 100(4): 672−678. doi: 10.1094/PDIS-07-15-0740-RE
    [13]
    Fang Y L, Xia L M, Wang P. The MAPKKK CgMck1 is required for cell wall integrity, appressorium development, and pathogenicity in Colletotrichum gloeosporioides[J]. Genes, 2018, 9(11): 543. doi: 10.3390/genes9110543
    [14]
    Yang J Y, Fang Y L, Wang P, et al. Pleiotropic roles of ChSat4 in asexual development, cell wall integrity maintenance, and pathogenicity in Colletotrichum higginsianum[J]. Frontiers in Microbiology, 2018, 9(10): 2311.
    [15]
    Mori K, Ogawa N, Kawahara T, et al. Palindrome with spacer of one nucleotide is characteristic of the cis-acting unfolded protein response element in Saccharomyces cerevisiae[J]. Journal of Biological Chemistry, 1998, 273(16): 9912−9929. doi: 10.1074/jbc.273.16.9912
    [16]
    Joubert A, Simoneau P, Campion C, et al. Impact of the unfolded protein response on the pathogenicity of the necrotrophic fungus Alternaria brassicicola[J]. Molecular Microbiology, 2011, 79(5): 1305−1324. doi: 10.1111/j.1365-2958.2010.07522.x
    [17]
    汤蔚. 非折叠蛋白反应相关基因MoHAC1和MoIRE1在稻瘟病菌生长发育和致病过程中的功能分析[D]. 南京: 南京农业大学, 2015.

    Tang W. Functional analysis of unfolded protein response associated genes MOHAC1 and MOIRE1 in Magnaporthe oryzae[D]. Nanjing: Nanjing Agricultural University, 2015.
    [18]
    Chen L L, Ma Y M, Zhao J Y, et al. The bZIP transcription factor FpAda1 is essential for fungal growth and conidiation in Fusariumpseudo graminearum[J]. Current Genetics, 2019, 66(3): 507−515.
    [19]
    张金龙. 稻瘟病菌bZIP转录因子MoGcn4的生物学功能分析及化合物sporothriolide对稻瘟病菌的影响研究[D]. 南京: 南京农业大学, 2015.

    Zhang J L. Characterization of bzip transcription factor MoGcn4 in Magnaporthe oryzae and effect of compound sporothriolide on Magnaporthe oryzae[D]. Nanjing: Nanjing Agricultural University, 2015.
    [20]
    朱倩. 4个bZIP转录因子在稻瘟病菌生长发育及致病过程中的功能研究[D]. 南京: 南京 农业大学, 2014.

    Zhu Q. Functional analysis of 4 bzip transcriptional factors during the development and pathogenicity of Magnaporthe oryzae[D]. Nanjing: Nanjing Agricultural University, 2014.
    [21]
    Qi X Z, Guo L J, Yang L Y, et al. Foatf1, a bZIP transcription factor of Fusarium oxysporum f. sp. cubense, is involved in pathogenesis by regulating the oxidative stress responses of Cavendish banana (Musa spp.)[J]. Physiological and Molecular Plant Pathology, 2013, 84(4): 76−85.
    [22]
    盖云鹏. 链格孢菌比较基因组及bZIP转录因子功能研究[D]. 杭州: 浙江大学, 2019.

    Gai Y P. Two tales of Alterharia alternata: comnarative genomics and function of bZIP transcription factor[D]. Hangzhou: Zhejiang University, 2019.
    [23]
    高亚兰, 何苑皋, 李河. 调控油茶果生刺盘孢bZIP转录因子CfAp1的生物学功能[J]. 林业科学, 2020, 56(9):30−39. doi: 10.11707/j.1001-7488.20200904

    Gao Y L, He Y H, Li H. Biological function bZIP-Type transcription factor CfAp1 in Colletotrichum fructicola[J]. Scientia Silvae Sinicae, 2020, 56(9): 30−39. doi: 10.11707/j.1001-7488.20200904
    [24]
    Weir B S, Johnston P R, Damm U. The Colletotrichum gloeosporioides species complex[J]. Studies in Mycology, 2012, 73(1): 115−180.
  • Related Articles

    [1]Liu Cuishuang, Li Jihong, Niu Muge, Sun Maotong, Liu Yuan, Liu Laishuo, Guo Liyang, Wang Jinnan. Preliminary study on pollen vitality, stigma receptivity and distant hybridization between different genera of Chionanthus retusus[J]. Journal of Beijing Forestry University, 2024, 46(4): 14-27. DOI: 10.12171/j.1000-1522.20230292
    [2]Xia Xi, Gong Rui, Feng Shucheng, Zhang Chunying. Types and quantitative analysis of anthocyanins in F1 hybrid among varieties in Rhododendron subgenus Tsutsusi[J]. Journal of Beijing Forestry University, 2022, 44(5): 105-114. DOI: 10.12171/j.1000-1522.20210060
    [3]Zhang Shuai, Ding Guodong, Gao Guanglei, Sun Guili, Zhao Yuanyuan, Yu Minghan, Cong Zhijie, Bao Yanfeng. Wind tunnel test on windproof benefit of horniness HDPE sand barrier[J]. Journal of Beijing Forestry University, 2020, 42(3): 127-133. DOI: 10.12171/j.1000-1522.20180282
    [4]SUN Hao, LIU Jin-hao, HUANG Qing-qing, ZHAO Ke. Research on the windproof efficiency of polygonal straw sand barrier[J]. Journal of Beijing Forestry University, 2017, 39(10): 90-94. DOI: 10.13332/j.1000-1522.20170173
    [5]LIU Jian-xin, YANG Liu-hui, WEI Dong-xia, YU Xiao-nan. Intrasectional and intersectional cross breeding of Paeonia and karyotype analysis and SSR identification of some hybrids[J]. Journal of Beijing Forestry University, 2017, 39(4): 72-78. DOI: 10.13332/j.1000-1522.20160181
    [6]DANG Xiao-hong, GAO Yong, YU Yi, LI Qian, WANG Shan, WU Hao, WANG Hong-xia, ZHAO Peng-yu. Windproof efficiency with new biodegradable PLA sand barrier and traditional straw sand barrier[J]. Journal of Beijing Forestry University, 2015, 37(3): 118-125. DOI: 10.13332/j.1000-1522.20140245
    [7]ZHAO Xi-yang, ZHANG Zhi-yi. Model construction of seedling growth for hybrid clones of Populus tomentosa.[J]. Journal of Beijing Forestry University, 2013, 35(5): 15-21.
    [8]WEI Zun-zheng, ZHANG Jin-feng, ZHANG De-qiang, LI Dan, WANG Lu, GUO Li-qin.. Immature ovule culture of intersectional hybrids between (Populus tomentosa×P. bolleana) and P. simonii and molecular identification of the hybrid filial generation[J]. Journal of Beijing Forestry University, 2008, 30(5): 73-77.
    [9]LIU Jin-hao, SHU Qing. Virtual prototype of straw-checkerboard sand barriers paving robot and ride comfort[J]. Journal of Beijing Forestry University, 2007, 29(4): 72-74. DOI: 10.13332/j.1000-1522.2007.04.017
  • Cited by

    Periodical cited type(3)

    1. 叶佳伟,高晓磊,周璇,袁德义,邹锋. 攸县油茶远缘杂交亲和性的解剖学研究. 江西农业大学学报. 2024(03): 558-571 .
    2. 刘乐乐,曹效东,徐正茹,张君芳,吴永华. 喜盐鸢尾花部特征与交配系统研究. 草地学报. 2021(12): 2733-2741 .
    3. 苏晓倩,鲍仁蕾,胡凤荣. 不同风信子品种杂交亲和性及胚拯救. 东北林业大学学报. 2019(03): 27-30 .

    Other cited types(7)

Catalog

    Article views (1313) PDF downloads (64) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return