• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Chen Qiaoling, Wang Libin, Cheng Yanxia. Effects of cutting intensity on photosynthetic physiological characteristics of natural and transplanted Pinus koraiensis seedlings[J]. Journal of Beijing Forestry University, 2022, 44(9): 21-29. DOI: 10.12171/j.1000-1522.20210088
Citation: Chen Qiaoling, Wang Libin, Cheng Yanxia. Effects of cutting intensity on photosynthetic physiological characteristics of natural and transplanted Pinus koraiensis seedlings[J]. Journal of Beijing Forestry University, 2022, 44(9): 21-29. DOI: 10.12171/j.1000-1522.20210088

Effects of cutting intensity on photosynthetic physiological characteristics of natural and transplanted Pinus koraiensis seedlings

More Information
  • Received Date: March 11, 2021
  • Revised Date: September 27, 2021
  • Accepted Date: August 02, 2022
  • Available Online: August 05, 2022
  • Published Date: September 24, 2022
  •   Objective  The mixed-broadleaved Korean pine (Pinus koraiensis) forest is a zonal climax in mountainous area in eastern part of northeastern China, however, due to the unreasonable utilization in the 1950s, most of the mixed-broadleaved Korean pine forests in China were replaced by natural secondary forests, over-cutting forests and planted forests. The recovery of understory Korean pine and succession process of mixed-broadleaved Korean pine forests can be accelerated by artificial promotion of natural regeneration of P. koraiensis, so it is very important to study the photosynthetic physiological mechanism of P. koraiensis.
      Method  In order to explore the feasibility of artificial promotion of natural regeneration of P. koraiensis and the physiological effects of different cutting intensities on transplanted P. koraiensis seedlings, three sample plots with different cutting intensities (the cutting intensities of the sample plots were 0, 17% and 35%) were selected in this study, and the photosynthetic physiology of the transplanted P. koraiensis seedlings and the natural P. koraiensis seedlings was compared.
      Result  (1) There was no significant difference in photosynthetic efficiency and most chlorophyll fluorescence parameters between 6-year-old transplanted seedlings of P. koraiensis and 6-year-old natural seedlings of P. koraiensis, including net photosynthetic rate, water use efficiency, carbon assimilation quantum efficiency, maximum photochemical efficiency, actual photochemical efficiency, electron transfer efficiency, open PSII excitation energy capture efficiency, and non-photochemical quenching coefficient. (2) From the perspective of light response parameters, the light compensation point and dark respiration rate of transplanted P. koraiensis seedlings were higher than those of natural P. koraiensis seedlings, but the difference was not significant. (3) The maximum photochemical efficiency of transplanted and natural P. koraiensis seedlings under 35% cutting intensity (canopy density 0.6) was the lowest (P < 0.05), indicating that the two P. koraiensis seedlings were subjected to a certain degree of stress under 35% cutting intensity. (4) The net photosynthetic rate, maximum net photosynthetic rate, photochemical quenching coefficient and light saturation point of the transplanted seedlings of P. koraiensis increased first and then decreased with the increase of cutting intensity, reaching the maximum at 17% cutting intensity (canopy density 0.8).
      Conclusion  There is no significant difference in photosynthetic physiology between 6-year-old transplanted seedlings of P. koraiensis and 6-year-old natural seedlings of P. koraiensis. The transplanted P. koraiensis seedlings under canopy could well adapt to the forest environment; the regeneration of P. koraiensis under canopy does not advocate afforestation under the condition of post-cutting canopy density of 0.6, and P. koraiensis seedlings can be transplanted under the condition of post-cutting canopy density of 0.8.
  • [1]
    马建路, 庄丽文, 陈动, 等. 红松的地理分布[J]. 东北林业大学学报, 1992, 20(5): 40−48.

    Ma J L, Zhuang L W, Chen D, et al. Geographic distribution of Pinus koraiensis in the world[J]. Journal of Northeast Forestry University, 1992, 20(5): 40−48.
    [2]
    屈红军, 叶林, 牟长城. 东北林区过伐林生态系统研究概述[J]. 林业资源管理, 2012(3): 45−50. doi: 10.3969/j.issn.1002-6622.2012.03.011

    Qu H J, Ye L, Mou C C. Research summary on over cutting forest ecosystem in the northeast forest area[J]. Forest Resources Management, 2012(3): 45−50. doi: 10.3969/j.issn.1002-6622.2012.03.011
    [3]
    于大炮, 周旺明, 周莉, 等. 长白山区阔叶红松林经营历史与研究历程[J]. 应用生态学报, 2019, 30(5): 1426−1434.

    Yu D P, Zhou W M, Zhou L, et al. Exploring the history of the management theory and technology of broad-leaved Korean pine (Pinus koraiensis Sieb. et Zucc.) forest in Changbai Mountain Region, Northeast China[J]. Chinese Journal of Applied Ecology, 2019, 30(5): 1426−1434.
    [4]
    北华大学.林冠下红松造林技术规程: DB 22/T 3129—2020[S]. 吉林: 吉林省地方标准, 2020.

    Beihua University. Technical regulations of afforestation in canopy base for Pinus koraiensis: DB 22/T 3129−2020[S]. Jilin: Local standards of Jilin Province, 2020.
    [5]
    张勇. 红松大苗移植技术探讨[J]. 种子科技, 2019, 37(13): 82−83. doi: 10.3969/j.issn.1005-2690.2019.13.048

    Zhang Y. Discussion on transplantation technology of Pinus koraiensis seedlings[J]. Seed Science & Technology, 2019, 37(13): 82−83. doi: 10.3969/j.issn.1005-2690.2019.13.048
    [6]
    崔文革, 张钦亮, 刘振文, 等. 红松直播造林与植苗更新的对照试验[J]. 林业勘查设计, 2012, 162(2): 62−63. doi: 10.3969/j.issn.1673-4505.2012.02.030

    Cui W G, Zhang Q L, Liu Z W, et al. Contrast test of direct seeding afforestation and stock planting renewal of Korean pine[J]. Forest Investigation Design, 2012, 162(2): 62−63. doi: 10.3969/j.issn.1673-4505.2012.02.030
    [7]
    何怀江. 采伐干扰对吉林蛟河针阔混交林碳储量和碳平衡的影响[D]. 北京: 北京林业大学, 2020.

    He H J. Effects of thinning disturbance on carbon storage and carbon balance in coniferous and broad-leaved mixed forest in Jiaohe, Jilin Province[D]. Beijing: Beijing Forestry University, 2020.
    [8]
    刘慎谔. 关于大小兴安岭的森林更新问题[J]. 林业科学, 1957(3): 17−34.

    Liu S E. Forest regeneration in Xing’an Mountains[J]. Scientia Silvae Sinicae, 1957(3): 17−34.
    [9]
    Zhang M, Zhu J J, Yan Q L. Different light acclimation strategies of two coexisting tree species seedlings in a temperate secondary forest along five natural light levels[J]. Forest Ecology and Management, 2013, 306: 234−242.
    [10]
    周光. 林下红松生存策略与季节光环境驱动机制[D]. 北京: 北京林业大学, 2020.

    Zhou G. Survival strategy of understory Korean pine driven by seasonal light availability [D]. Beijing: Beijing Forestry University, 2020.
    [11]
    张群, 范少辉, 沈海龙, 等. 次生林林木空间结构等对红松幼树生长的影响[J]. 林业科学研究, 2004, 17(4): 405−412. doi: 10.3321/j.issn:1001-1498.2004.04.001

    Zhang Q, Fan S H, Shen H L, et al. Influence of the spatial structure of tress, etc. on the young trees of Pinus koraiensis under natural secondary forest[J]. Forest Research, 2004, 17(4): 405−412. doi: 10.3321/j.issn:1001-1498.2004.04.001
    [12]
    孙一荣, 朱教君, 于立忠, 等. 不同光环境对红松幼苗光合生理特征的影响[J]. 生态学杂志, 2009, 28(5): 850−857.

    Sun Y R, Zhu J J, Yu L Z, et al. Photosynthetic characteristics of Pinus koraiensis seedlings under different light regimes[J]. Chinese Journal of Ecology, 2009, 28(5): 850−857.
    [13]
    Sun Y R, Zhu J J, Sun O J X, et al. Photosynthetic and growth responses of Pinus koraiensis seedlings to canopy openness: implications for the restoration of mixed-broadleaved Korean pine forests[J]. Environmental and Experimental Botany, 2016, 129: 118−126.
    [14]
    宋德利. 落叶松−红松复层林培育技术及效益分析[J]. 防护林科技, 2016(5): 29−31.

    Song D L. Cultivation technology and benefit analysis of larch-Korean pine multilayer forest[J]. Protection Forest Science and Technology, 2016(5): 29−31.
    [15]
    李建胜, 郭颖峰, 李庚奇. 不同郁闭度对红松更新状况的影响[J]. 吉林林业科技, 2013, 42(3): 53. doi: 10.3969/j.issn.1005-7129.2013.03.018

    Li J S, Guo Y F, Li G Q. Effects of different canopy densities on the regeneration status of Pinus koraiensis[J]. Journal of Jilin Forestry Science and Technology, 2013, 42(3): 53. doi: 10.3969/j.issn.1005-7129.2013.03.018
    [16]
    石君杰, 陈忠震, 王广海, 等. 间伐对杨桦次生林冠层结构及林下光照的影响[J]. 应用生态学报, 2019, 30(6): 1956−1964.

    Shi J J, Chen Z Z, Wang G H, et al. Impacts of thinning on canopy structure and understory light in secondary poplar-birch forests[J]. Chinese Journal of Applied Ecology, 2019, 30(6): 1956−1964.
    [17]
    刘志理, 金光泽, 周明. 利用直接法和间接法测定针阔混交林叶面积指数的季节动态[J]. 植物生态学报, 2014, 38(8): 843−856. doi: 10.3724/SP.J.1258.2014.00079

    Liu Z L, Jin G Z, Zhou M. Measuring seasonal dynamics of leaf area index in a mixed conifer-broadleaved forest with direct and indirect methods[J]. Chinese Journal of Plant Ecology, 2014, 38(8): 843−856. doi: 10.3724/SP.J.1258.2014.00079
    [18]
    Sylvain P, Christian M. A simple and efficient method to estimate microsite light availability under a forest canopy[J]. Canadian Journal of Forest Research, 1996, 26(1): 151−154. doi: 10.1139/x26-017
    [19]
    Berry Z C, Goldsmith G R. Diffuse light and wetting differentially affect tropical tree leaf photosynthesis[J]. New Phytologist, 2020, 225(1): 143−153.
    [20]
    胡乘风, 陈巧玲, 乔雪涛, 等. 阔叶红松林主要树种光合与光谱反射特性及初级生产力研究[J]. 北京林业大学学报, 2020, 42(5): 12−24. doi: 10.12171/j.1000-1522.20190364

    Hu C F, Chen Q L, Qiao X T, et al. Photosynthetic, spectral reflectance characteristics and primary productivity of main tree species in broadleaved Korean pine forest[J]. Journal of Beijing Forestry University, 2020, 42(5): 12−24. doi: 10.12171/j.1000-1522.20190364
    [21]
    杜澜, 夏捷, 李海花, 等. 逐步失水过程中绿竹光响应进程及其拟合[J]. 应用生态学报, 2019, 30(6): 2011−2020.

    Du L, Xia J, Li H H, et al. Light response process and simulation of Dendrocalamopsis oldhami in the process of gradual water loss[J]. Chinese Journal of Applied Ecology, 2019, 30(6): 2011−2020.
    [22]
    李昕, 戴洪才, 章依平, 等. 次生林下栽植红松及其调控的研究[J]. 应用生态学报, 1993, 4(4): 364−367. doi: 10.3321/j.issn:1001-9332.1993.04.014

    Li X, Dai H C, Zhang Y P, et al. Plantation of Korean pine under secondary forest and its regulation[J]. Chinese Journal of Applied Ecology, 1993, 4(4): 364−367. doi: 10.3321/j.issn:1001-9332.1993.04.014
    [23]
    朱济凡, 刘慎谔, 王战, 等. 小兴安领红松针阔叶混交林[J]. 林业科学, 1958(4): 1−15.

    Zhu J F, Liu S E, Wang Z, et al. Mixed coniferous and broad-leaved forest of Pinus Koraiensis in Xiaoxingan[J]. Scientia Silvae Sinicae, 1958(4): 1−15.
    [24]
    张群, 范少辉, 沈海龙. 红松混交林中红松幼树生长环境的研究进展及展望[J]. 林业科学研究, 2003, 16(2): 216−224. doi: 10.3321/j.issn:1001-1498.2003.02.016

    Zhang Q, Fan S H, Shen H L. Research and development on the growth environment of the young tree of Pinus koraiensis in Pinus koraiensis-broadleaved mixed forest[J]. Forest Research, 2003, 16(2): 216−224. doi: 10.3321/j.issn:1001-1498.2003.02.016
    [25]
    张春锋. 人工诱导阔叶红松林抚育间伐效果分析和红松苗遮荫效应的研究[D]. 沈阳: 沈阳农业大学, 2007.

    Zhang C F. Analysis of effects of intermediate felling on artificially induced broadleaved Korean pine forest and studies on seedlings of Pinus koraiensis with different shading treatments [D]. Shenyang: Shenyang Agricultural University, 2007.
    [26]
    徐振邦, 代力民, 陈吉泉, 等. 长白山红松阔叶混交林森林天然更新条件的研究[J]. 生态学报, 2001, 21(9): 1413−1420. doi: 10.3321/j.issn:1000-0933.2001.09.003

    Xu Z B, Dai L M, Chen J Q, et al. Natural regeneration condition in Pinus koraiensis broadleaved mixed forest[J]. Acta Ecologica Sinica, 2001, 21(9): 1413−1420. doi: 10.3321/j.issn:1000-0933.2001.09.003
    [27]
    张守仁. 叶绿素荧光动力学参数的意义及讨论[J]. 植物学通报, 1999, 16(4): 444−448.

    Zhang S R. A discussion on chlorophyll fluorescence kinetics parameters and their significance[J]. Chinese Bulletin of Botany, 1999, 16(4): 444−448.
  • Related Articles

    [1]Wang Xuanying, Zhang Yi, Fan Xiuhua. Response of photosynthetic and fluorescence characteristics to nitrogen addition by seedlings of four dominant tree species in broadleaved-Korean pine forest[J]. Journal of Beijing Forestry University, 2024, 46(3): 69-79. DOI: 10.12171/j.1000-1522.20220488
    [2]Liu Jiuqing, Gui Kang, Yang Chunmei. Design and research on rack and pinion seedling supporting mechanism of poplar seedling transplanter[J]. Journal of Beijing Forestry University, 2022, 44(6): 146-155. DOI: 10.12171/j.1000-1522.20210542
    [3]Meng Zhaojun, Lin Jian, Wang Qi, Lu Yifang, Wang Lei, Yan Shanchun. Behavioral responses of Dendrolimus superans to Larix olgensis seedlings treated with methyl jasmonate[J]. Journal of Beijing Forestry University, 2018, 40(12): 60-67. DOI: 10.13332/j.1000-1522.20180036
    [4]ZHOU Zhi-qiang, PENG Ying-li, SUN Ming-long, ZHANG Yu-hong, LIU Tong. Effects of nitrogen levels on photosynthetic and fluorescence characteristics in seedlings of endangered plant Phellodendron amurense.[J]. Journal of Beijing Forestry University, 2015, 37(12): 17-23. DOI: 10.13332/j.1000-1522.20150281
    [5]LIU Fang-chun, XING Shang-jun, MA Hai-lin, DU Zhen-yu, MA Bing-yao. Effects of drought stress on growth, nutrition and physiological characteristics of Platycladus orientalis container and bareroot seedlings.[J]. Journal of Beijing Forestry University, 2014, 36(5): 68-73. DOI: 10.13332/j.cnki.jbfu.2014.05.020
    [6]ZHAO Juan, SONG Yuan, MAO Zi-jun. Response in photosynthesis and chlorophyll fluorescence of Quercus mongolica seedlings to the interaction of temperature and precipitation[J]. Journal of Beijing Forestry University, 2013, 35(1): 64-71.
    [7]YAO Li-xin, PANG Xiao-ming, KANG Xiang-yang, ZHU Rui, MA Wen-yan, XU Jiu-ru.. Contrasting studies on photosynthetic characteristics of Zizyphus jujuba cv. Dongzao grafted seedlings from different producing places[J]. Journal of Beijing Forestry University, 2010, 32(5): 107-110.
    [8]ZHANG Peng-chong, HU Zeng-hui, SHEN Ying-bai, GAO Rong-fu. Effects of three types of wound on photosynthetic activity of Populus simonii × P. pyramidalis ‘Opera 8277’ seedlings[J]. Journal of Beijing Forestry University, 2010, 32(1): 35-38.
    [9]YING Ye-qing, GUO Jing, WEI Jian-fen, ZOU Yi-qiao, HU Dong-chun, FANG Wei.. Photosynthetic and chlorophyll fluorescent responses of Phyllostachys pubescens seedlings to water deficiency stress.[J]. Journal of Beijing Forestry University, 2009, 31(6): 128-133.
    [10]ZHANG Jin-feng, ZHANG Hua-li, WANG Jun-hui, CHEN Yong-guo, HU Wen-zhong. Effects of extended photoperiod on the growth of Abies concolor seedlings[J]. Journal of Beijing Forestry University, 2006, 28(1): 107-110.
  • Cited by

    Periodical cited type(1)

    1. 吴雨蹊,唐克,王蕊,张莉莉,房磊,李鹏举,侯帅,宋明明. 黑龙江省农业科学院沙棘优良品种特性分析. 黑龙江农业科学. 2025(03): 33-38 .

    Other cited types(1)

Catalog

    Article views (690) PDF downloads (118) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return