• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wang Xuanying, Zhang Yi, Fan Xiuhua. Response of photosynthetic and fluorescence characteristics to nitrogen addition by seedlings of four dominant tree species in broadleaved-Korean pine forest[J]. Journal of Beijing Forestry University, 2024, 46(3): 69-79. DOI: 10.12171/j.1000-1522.20220488
Citation: Wang Xuanying, Zhang Yi, Fan Xiuhua. Response of photosynthetic and fluorescence characteristics to nitrogen addition by seedlings of four dominant tree species in broadleaved-Korean pine forest[J]. Journal of Beijing Forestry University, 2024, 46(3): 69-79. DOI: 10.12171/j.1000-1522.20220488

Response of photosynthetic and fluorescence characteristics to nitrogen addition by seedlings of four dominant tree species in broadleaved-Korean pine forest

More Information
  • Received Date: November 30, 2022
  • Revised Date: April 03, 2023
  • Available Online: February 28, 2024
  • Objective 

    This paper aims to explore the effects of various nitrogen (N) addition levels on photosynthetic and fluorescence characteristics of the seedlings of four main tree species at different succession stages of broadleaved-Korean pine forest. To reveal the response mechanisms of different tree species seedlings to N addition, this paper provides some reference for the application of artificial afforestation tree species, and to make predictions on the forest succession situation in Northeast China against the background of increased N deposition.

    Method 

    Betula platyphylla, Quercus mongolica, Tilia amurensis and Pinus koraiensis were selected as the research objects in Shulan City of Jilin Province of northeastern China. The levels of N addition were 0, 50, 100 kg/(year·ha), respectively. The plant photosynthetic parameters, spectral reflectance parameters, fluorescence parameters and other indicators under different N treatments were measured, and variance analysis and mean multiple comparison were performed.

    Result 

    The net photosynthetic rate of B. platyphylla remained the highest under different N conditions, and was less affected by N. The net photosynthetic rate of Q. mongolica increased significantly under LN due to the increase of chlorophyll content, and decreased significantly under HN due to the restriction of stomata and electron transport ability. T. amurensis had low maximum quantum yield (Fv/Fm), poor electron transport activity, and it was strongly inhibited by light, the net photosynthetic rate was the lowest under different N conditions, and there was no significant difference under different N treatments. The net photosynthetic rate of P. koraiensis decreased under N application due to the reduced electron transport rate.

    Conclusion 

    It is speculated that the growth of Q. mongolica will occupy a great advantage under LN concentration, while the broadleaved-Korean pine forest will still be dominated by B. platyphylla in the early stage under high N concentration, while Q. mongolica will be suppressed in the middle stage, T. amurensis will occupy the advantage, and the growth of P. koraiensis will also be inhibited by high N in the later stage.

  • [1]
    Liu X, Duan L, Mo J, et al. Nitrogen deposition and its ecological impact in China: an overview[J]. Environmental Pollution, 2011, 159(10): 2251−2264. doi: 10.1016/j.envpol.2010.08.002
    [2]
    毛晋花, 邢亚娟, 马宏宇, 等. 氮沉降对植物生长的影响研究进展[J]. 中国农学通报, 2017, 33(29): 42−48. doi: 10.11924/j.issn.1000-6850.casb16110061

    Mao J H, Xing Y J, Ma H Y, et al. Research progress of nitrogen deposition effect on plant growth[J]. Chinese Agricultural Science Bulletin, 2017, 33(29): 42−48. doi: 10.11924/j.issn.1000-6850.casb16110061
    [3]
    吴茜, 丁佳, 闫慧, 等. 模拟降水变化和土壤施氮对浙江古田山5个树种幼苗生长和生物量的影响[J]. 植物生态学报, 2011, 35(3): 256−267. doi: 10.3724/SP.J.1258.2011.00256

    Wu Q, Ding J, Yan H, et al. Effects of simulated precipitation and nitrogen addition on seedling growth and biomass in five tree species in Gutian Mountain, Zhejiang Province, China[J]. Chinese Journal of Plant Ecology, 2011, 35(3): 256−267. doi: 10.3724/SP.J.1258.2011.00256
    [4]
    孙金伟, 吴家兵, 任亮, 等. 氮添加对长白山阔叶红松林2 种树木幼苗光合生理生态特征的影响[J]. 生态学报, 2016, 36(21): 6777−6785.

    Sun J W, Wu J B, Ren L, et al. Response of photosynthetic physiological characteristics to nitrogen addition by seedlings of two dominant tree species in a broadleaved-Korean pine mixed forest on Changbai Mountain[J]. Acta Ecologica Sinica, 2016, 36(21): 6777−6785.
    [5]
    王玲. 长白山阔叶红松林群落树种关联及演替特征的研究[D]. 吉林: 北华大学, 2017.

    Wang L. Study on correlation and succession characteristics of tree species in broad-leaved Korean pine forest in Changbai Mountain[D]. Jilin: Beihua University, 2017.
    [6]
    于美佳, 叶彦辉, 韩艳英, 等. 氮沉降对森林生态系统影响的研究进展[J]. 安徽农业科学, 2021, 49(3): 19−24, 27.

    Yu M J, Ye Y H, Han Y Y, et al. Research progress on the effects of nitrogen deposition on forest ecosystem[J]. Journal of Anhui Agricultural Sciences, 2021, 49(3): 19−24, 27.
    [7]
    郝龙飞, 王庆成, 刘婷岩. 东北地区4种林分土壤呼吸及温、湿度敏感性对氮添加的短期响应[J]. 生态学报, 2020, 40(2): 560−567.

    Hao L F, Wang Q C, Liu T Y. Short-term responses of soil respiration, temperature and humidity sensitivity to nitrogen addition in four forests of Northeast China[J]. Acta Ecologica Sinica, 2020, 40(2): 560−567.
    [8]
    Sims D A, Gamon J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages[J]. Remote Sensing of Environment, 2002, 81(2-3): 337−354. doi: 10.1016/S0034-4257(02)00010-X
    [9]
    Merzlyak M N, Gitelson A A, Chivkunova O B, et al. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening[J]. Physiologia Plantarum, 1999, 106: 135-141.
    [10]
    李鹏民, 高辉远, Reto J. Strasser. 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用[J]. 植物生理与分子生物学学报, 2005, 31(6): 559−566.

    Li P M, Gao H Y, Strasser R J. Application of the fast hlorophyll fluorescence induction dynamics analysis in photosynthesis study[J]. Physiology and Molecular Biology of Plants, 2005, 31(6): 559−566.
    [11]
    鲁显楷,莫江明,张炜,等. 模拟大气氮沉降对中国森林生态系统影响的研究进展[J]. 热带亚热带植物学报, 2019, 27(5): 500−522.

    Lu X K, Mo J M, Zhang W, et al. Effects of simulated atmospheric nitrogen deposition on forest ecosystems in China: an overview[J]. Journal of Tropical and Subtropical Botany, 2019, 27(5): 500−522.
    [12]
    Andrews M, Raven J, Lea P J. Do plants need nitrate? The mechanisms by which nitrogen form affects plants[J]. Annals of Applied Biology, 2013, 163(2): 174−199.
    [13]
    张晓晓, 殷小琳, 李红丽, 等. NaCl 胁迫对不同白榆品系生物量及光合作用的影响[J]. 生态学报, 2017, 37(21): 7258−7265.

    Zhang X X, Yin X L, Li H L, et al. Effect of salt stress on the biomass and photosynthetic characteristics of Ulmus pumila L. strains[J]. Acta Ecologica Sinica, 2017, 37(21): 7258−7265.
    [14]
    热比古丽·亚森, 王世伟, 马彬, 等. 供氮水平对核桃幼苗叶片光合特性的影响[J]. 北方园艺, 2021(16): 56−61.

    Yasen R, Wang S W, Ma B, et al. Effects of different nitrogen supply levels on photosynthetic characteristics of walnut seedling leaves[J]. Northern Horticulture, 2021(16): 56−61.
    [15]
    王芳, 张军辉, 谷越, 等. 氮添加对树木光合速率影响的meta分析[J]. 生态学杂志, 2017, 36(6): 1539−1547.

    Wang F, Zhang J H, Gu Y, et al. Meta-analysis of the effects of nitrogen addition on photosynthesis of forests[J]. Chinese Journal of Ecology, 2017, 36(6): 1539−1547.
    [16]
    田博宇, 牟长城, 李佳欣, 等. 小兴安岭白桦次生林内红松光合对林隙大小与林隙内位置的适应性研究[J]. 中南林业科技大学学报, 2022, 42(9): 159−170.

    Tian B Y, Mu C C, Li J X, et al. Study on the photosynthetic adaptability of Pinus koraiensis to the forest gaps in different sizes and at various positions of the Betula platyphylla secondary forest in the Xiaoxing’an Mountains[J]. Journal of Central South University of Forestry & Technology, 2022, 42(9): 159−170.
    [17]
    李娜. 落叶松幼苗对干旱胁迫及氮添加的生理生态响应[D]. 哈尔滨: 东北林业大学, 2014.

    Li N. Physiologicaland ecological response of Larix gmelinii seedlings under soil drought stress and different ntrogen levels[D]. Harbin: Northeast Forestry University, 2014.
    [18]
    张云飞. 木荷对氮水交互作用的生理生态响应[D]. 福州: 福建师范大学, 2017.

    Zhang Y F. Ecophysiological responses of Schima superba to nitrogen and water deposition[D]. Fuzhou: Fujian Normal University, 2017.
    [19]
    胡乘风. 阔叶红松林冠层树种光合特性及光合生产潜力研究[D]. 北京: 北京林业大学, 2020.

    Hu C F. Study on photosynthetic characteristics and potential productivity of canopy tree species in broad-leaved Korean pine forest[D]. Beijing: Beijing Forestry University, 2020.
    [20]
    温云梦, 张冬冬, 王家强. 干旱胁迫对胡杨叶片色素及光谱特征影响的研究进展[J]. 绿色科技, 2022, 24(1): 6−10. doi: 10.3969/j.issn.1674-9944.2022.01.003

    Wen Y M, Zhang D D, Wang J Q. Research progress on effects of drought stress on pigment and spectral characteristics of Populus euphratica leaves[J]. Journal of Green Science and Technology, 2022, 24(1): 6−10. doi: 10.3969/j.issn.1674-9944.2022.01.003
    [21]
    李瑾瑾, 张强, 方炎明. 植物叶黄素循环及其光保护作用的研究进展[J]. 安徽农业科学, 2016, 44(5): 1−3. doi: 10.3969/j.issn.0517-6611.2016.05.001

    Li J J, Zhang Q, Fang Y M. Research progress of xanthophyll cycle and its function in light protection[J]. Journal of Anhui Agricultural Sciences, 2016, 44(5): 1−3. doi: 10.3969/j.issn.0517-6611.2016.05.001
    [22]
    张放, 胡万良, 孔祥文. 辽东天然次生林中五种阔叶树生理特征比较研究[J]. 生态学杂志, 2004, 23(5): 106−110. doi: 10.3321/j.issn:1000-4890.2004.05.021

    Zhang F, Hu W L, Kong X W. Comparison of five broad-leaved seedlings’physiological characteristics in natural secondary forest of eastern Liaoning[J]. Chinese Journal of Ecology, 2004, 23(5): 106−110. doi: 10.3321/j.issn:1000-4890.2004.05.021
    [23]
    宋航, 闫庆伟, 巴雅尔图, 等. 水氮交互对草地早熟禾叶绿素荧光和RuBisCO酶活力的影响[J]. 中国草地学报, 2017, 39(5): 31−38.

    Song H, Yan Q W, Bayet, et al. Effects of water and nitrogen interaction on chlorophyll fluorescence parameters and RuBisCO activity in kentucky bluegrass[J]. Chinese Journal of Grassland, 2017, 39(5): 31−38.
    [24]
    田明爽, 宋美珍, 范术丽, 等. 棉花早熟芽黄突变体叶绿素荧光动力学特性研究[J]. 棉花学报, 2011, 23(5): 414−421. doi: 10.3969/j.issn.1002-7807.2011.05.005

    Tian M S, Song M Z, Fan S L, et al. Research of chlorophyll fluorescence dynamic characteristic in a cotton virescent mutant[J]. Cotton Science, 2011, 23(5): 414−421. doi: 10.3969/j.issn.1002-7807.2011.05.005
    [25]
    Dai Y, Shen Z, Liu Y, et al. Effects of shade treatments on the photosynthetic capacity, chlorophyll fluorescence, and chlorophyll content of Tetrastigma hemsleyanum Diels et Gilg[J]. Environmental and Experimental Botany, 2009, 65(2−3): 177−182. doi: 10.1016/j.envexpbot.2008.12.008
    [26]
    张守仁. 叶绿素荧光动力学参数的意义及讨论[J]. 植物学通报, 1999, 16(4): 444.

    Zhang S R. A discussion on chlorophyll flourescence kinetics parameters and their significance[J]. Chinese Bulletin of Botany, 1999, 16(4): 444.
    [27]
    师生波, 尚艳霞, 师瑞, 等. 高山植物美丽风毛菊PSⅡ光化学效率和光合色素对短期增补UV-B辐射的响应[J]. 植物生态学报, 2012, 36(5): 420−430.

    Shi S B, Shang Y X, Shi R, et al. Responses of PSⅡ photochemistry efficiency and photosynthetic pigments of Saussurea superba to short-term UV-B-supplementation[J]. Chinese Journal of Plant Ecology, 2012, 36(5): 420−430.
    [28]
    邱念伟, 周峰, 顾祝军, 等. 5种松属树种光合功能及叶绿素快相荧光动力学特征比较[J]. 应用生态学报, 2012, 23(5): 1181−1187.

    Qiu N W, Zhou F, Gu Z J, et al. Photosynthetic functions and chlorophyll fast fluorescence characteristics of five Pinus species[J]. Chinese Journal of Applied Ecology, 2012, 23(5): 1181−1187.
    [29]
    张会慧, 张秀丽, 许楠, 等. 外源钙对干旱胁迫下烤烟幼苗光系统Ⅱ功能的影响[J]. 应用生态学报, 2011, 22(5): 1195−1200.

    Zhang H H, Zhang X L, Xu N, et al. Effects of exogenous CaCl2 on the functions of flue-cured tobacco seedlings leaf photosystem Ⅱ under drought stress[J]. Chinese Journal of Applied Ecology, 2011, 22(5): 1195−1200.
    [30]
    贾浩, 郝建博, 曹洪波, 等. 遮荫对‘保佳红’桃树叶片快速叶绿素荧光诱导动力学曲线的影响[J]. 西北植物学报, 2015, 35(9): 1861−1867. doi: 10.7606/j.issn.1000-4025.2015.09.1861

    Jia H, Hao J B, Cao H B, et al. Effects of shading on fast chlorophyll fluorescence induction dynamics of ‘Baojiahong’ peach leaves[J]. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(9): 1861−1867. doi: 10.7606/j.issn.1000-4025.2015.09.1861
  • Related Articles

    [1]Zhang Meng, Fan Xiuhua. Factors affecting individual growth of Pinus koraiensis and Tilia amurensis in coniferous and broadleaved mixed forests in Jiaohe, Jilin Province of northeastern China[J]. Journal of Beijing Forestry University, 2024, 46(9): 26-34. DOI: 10.12171/j.1000-1522.20230317
    [2]Xu Yujin, Li Xiang, Li Yan, Jiang Luping, Zhang Feifan, Wang Qi, Wang Lixing, Zhao Xiyang. Dynamic changes in seed, cone traits and nutritional components of Pinus koraiensis[J]. Journal of Beijing Forestry University, 2024, 46(7): 67-76. DOI: 10.12171/j.1000-1522.20220148
    [3]Liu Xiaoting, Wei Jiatong, Wu Peili, Wu Lin, Xu Qingshan, Fang Yanlin, Yang Bin, Zhao Xiyang. Phenotypic variation and diversity of natural Pinus koraiensis populations in Jilin Province of northern China[J]. Journal of Beijing Forestry University, 2021, 43(4): 25-34. DOI: 10.12171/j.1000-1522.20200250
    [4]Zhu Yihong, Gao Lushuang, Jia Bo, Zhang Pingrui, Wang Yinpeng, Ou Lijin. Dynamic characteristics and its influencing factors of the volatile carbon content of Pinus koraiensis at different diameter classes[J]. Journal of Beijing Forestry University, 2019, 41(1): 10-19. DOI: 10.13332/j.1000-1522.20180289
    [5]LIANG De-yang, JIN Yun-zhe, ZHAO Guang-hao, DONG Yuan-hai, LENG Wei-wei, CHEN Chang-lin, WANG Huan, ZHAO Xi-yang. Variance analyses of growth and wood characteristics of 50 Pinus koraiensis clones[J]. Journal of Beijing Forestry University, 2016, 38(6): 51-59. DOI: 10.13332/j.1000-1522.20150465
    [6]ZANG Hao, LEI Xiang-dong, ZHANG Hui-ru, LI Chun-ming, LU Jun. Nonlinear mixed-effects height-diameter model of Pinus koraiensis[J]. Journal of Beijing Forestry University, 2016, 38(6): 8-9. DOI: 10.13332/j.1000-1522.20160008
    [7]GAO Hui-lin, LI Feng-ri, DONG Li-hu. Crown-shape model of a Pinus koraiensis plantation in northeastern China[J]. Journal of Beijing Forestry University, 2015, 37(3): 76-83. DOI: 10.13332/j.1000-1522.20140324
    [8]ZHANG Zhen, ZHANG Han-guo, ZHOU Yu, LIU Ling, YU Hong-ying, WANG Xu, FENG Wan-ju. Variation of seed characters in Korean pine (Pinus koraiensis ) multi-clonal populations[J]. Journal of Beijing Forestry University, 2015, 37(2): 67-78. DOI: 10.13332/j.cnki.jbfu.2015.02.020
    [9]LIU Ran, WANG Zhen-yu, CUI Jie, DENG Xin-rui, LU Jing. Effects of precursors and elicitations on the synthesis polyphenols of Pinus koraiensis.[J]. Journal of Beijing Forestry University, 2013, 35(5): 22-27.
    [10]CHEN Lie, ZHAO Xiu-hai, ZHANG Yun. Spatial distribution patterns and associations of Pinus koraiensis and Tilia amurensis in Tilia-Korean pine forest on the north slope of Changbai Mountain,northeastern China.[J]. Journal of Beijing Forestry University, 2009, 31(3): 6-10.

Catalog

    Article views (261) PDF downloads (46) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return