Citation: | Song Tingting, Liang Nansong, Lü Yipin, Cui Jinghong, Yu Lei, Zhao Fujiang, Xu Liang, Zhan Yaguang. Identification and expression analysis of FmPLT gene family of Fraxinus mandschurica[J]. Journal of Beijing Forestry University, 2022, 44(2): 11-21. DOI: 10.12171/j.1000-1522.20210105 |
[1] |
Horstman A, Willemsen V, Boutilier K, et al. AINTEGUMENTA-LIKE proteins: hubs in a plethora of networks[J]. Trends in Plant Science, 2014, 19(3): 146−157. doi: 10.1016/j.tplants.2013.10.010
|
[2] |
Aida M, Beis D, Heidstra R, et al. The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche[J]. Cell, 2004, 119(1): 109−120. doi: 10.1016/j.cell.2004.09.018
|
[3] |
Krizek B A. AINTEGUMENTA utilizes a mode of DNA recognition distinct from that used by proteins containing a single AP2 domain[J]. Nucleic Acids Research, 2003, 31(7): 1859−1868. doi: 10.1093/nar/gkg292
|
[4] |
Nole-Wilson S, Krizek B A. DNA binding properties of the Arabidopsis floral development protein AINTEGUMENTA[J]. Nucleic Acids Research, 2000, 21(28): 4076−4082.
|
[5] |
Okamuro J K, Caster B, Villarroel R, et al. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(13): 7076−7081. doi: 10.1073/pnas.94.13.7076
|
[6] |
Berg C V D, Willemsen V, Hendriks G, et al. Short-range control of cell differentiation in the Arabidopsis root meristem[J]. Nature, 1997, 390: 287−289. doi: 10.1038/36856
|
[7] |
Akie S, Renze H, Ikram B, et al. Root stem cell niche organizer specification by molecular convergence of PLETHORA and SCARECROW transcription factor modules[J]. Genes, 2018, 32(15−16): 1085−1100. doi: 10.1101/gad.314096.118
|
[8] |
Galinha C, Hofhuis H, Luijten M, et al. PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development[J]. Nature, 2007, 449: 1053−1057. doi: 10.1038/nature06206
|
[9] |
Maehoenen A P, Tusscher K T, Siligato R, et al. PLETHORA gradient formation mechanism separates auxin responses[J]. Nature, 2014, 515: 125−129. doi: 10.1038/nature13663
|
[10] |
Blilou I, Xu J, Wildwater M, et al. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots[J]. Nature, 2005, 433: 39−44.
|
[11] |
Chen Q, Sun J, Zhai Q, et al. The basic helix-loop-helix transcription factor MYC2 directly represses PLETHORA expression during jasmonate-mediated modulation of the root stem cell niche in Arabidopsis[J]. The Plant Cell, 2011, 23(9): 3335−3352. doi: 10.1105/tpc.111.089870
|
[12] |
Mudunkothge J S, Krizek B A. Three Arabidopsis AIL/PLT genes act in combination to regulate shoot apical meristem function[J]. The Plant Journal, 2012, 71(1): 108−121. doi: 10.1111/j.1365-313X.2012.04975.x
|
[13] |
Prasad K, Grigg S P, Barkoulas M, et al. Arabidopsis PLETHORA transcription factors control phyllotaxis[J]. Current Biology, 2011, 21(13): 1123−1128. doi: 10.1016/j.cub.2011.05.009
|
[14] |
Hofhuis H, Laskowski M, Du Y, et al. Phyllotaxis and rhizotaxis in Arabidopsis are modified by three PLETHORA transcription factors[J]. Current Biology, 2013, 23(11): 956−962. doi: 10.1016/j.cub.2013.04.048
|
[15] |
Elliott R C, Betzner A S, Huttner E, et al. AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth[J]. The Plant Cell, 1996, 2(8): 155−168.
|
[16] |
Bowman J L, Drews G N, Meyerowitz E M. Expression of the Arabidopsis floral homeotic gene Agamous is restricted to specific cell types late in flower development[J]. The Plant Cell, 1991, 3(8): 749−758.
|
[17] |
Krizek B A. Ectopic expression of AINTEGUMENTA in Arabidopsis plants results in increased growth of floral organs[J]. Developmental Genetics, 2015, 25(3): 224−236.
|
[18] |
Hu L J, Uchiyama K, Shen H L, et al. Nuclear DNA microsatellites reveal genetic variation but a lack of phylogeographical structure in an endangered species, Fraxinus mandshurica, across Northeast China[J]. Annals of Botany, 2008, 102(2): 195−205. doi: 10.1093/aob/mcn074
|
[19] |
林士杰, 张忠辉, 谢朋, 等. 中国水曲柳基因资源的保护与利用[J]. 中国农学通报, 2009, 25(24): 158−162.
Lin S J, Zhang Z H, Xie P, et al. Conservation and application of the genetic resource of Fraxinus mandshurica in China[J]. Chinese Agricultural Science Bulletin, 2009, 25(24): 158−162.
|
[20] |
Hu L J, Uchiyama K, Shen H L, et al. Multiple-scaled spatial genetic structures of Fraxinus mandshurica over a riparian-mountain landscape in Northeast China[J]. Conservation Genetics, 2010, 11(1): 77−87. doi: 10.1007/s10592-009-0004-0
|
[21] |
Zeng F S, Zhou S, Zhan Y G, et al. Drought resistance and DNA methylation of interspecific hybrids between Fraxinus mandshurica and Fraxinus americana[J]. Trees, 2014, 28(6): 1679−1692. doi: 10.1007/s00468-014-1077-z
|
[22] |
卫星. 干旱胁迫对水曲柳苗木细根衰老的影响[D]. 哈尔滨: 东北林业大学, 2008.
Wei X. Fine root senescence of manchurian ash seedlings under droughtstress[D]. Harbin: Northeast Forestry University, 2008.
|
[23] |
丁一巍, 詹亚光, 张佳薇, 等. 水曲柳2个PLT转录因子基因的克隆及表达分析[J]. 植物研究, 2019, 39(1): 139−147. doi: 10.7525/j.issn.1673-5102.2019.01.017
Ding Y W, Zhan Y G, Zhang J W, et al. Cloning and expression analysis of two PLT transcription factors genes in Fraxinus mandshurica[J]. Bulletin of Botanical Research, 2019, 39(1): 139−147. doi: 10.7525/j.issn.1673-5102.2019.01.017
|
[24] |
Mcphie P. The protein protocols handbook[J]. Analytical Biochemistry, 2003, 315(2): 289.
|
[25] |
Tamura K, Peterson D, Peterson N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Molecular Biology Evolution, 2011, 28(10): 2731–2739. doi: 10.1093/molbev/msr121
|
[26] |
Bailey T L, Johnson J, Grant C E, et al. The MEME suite[J]. Nucleic Acids Research, 2015, 43(W1): W39−W49. doi: 10.1093/nar/gkv416
|
[27] |
Caffrey D R, Dana P H, Mathur V, et al. PFAAT version 2.0: a tool for editing, annotating, and analyzing multiple sequence alignments[J/OL]. BMC Bioinformatics, 2007, 8(1): 381[2021−01−01]. http://doi.org/10.1186/1471-2105-8-381.
|
[28] |
任小龙, 詹亚光, 梁雪, 等. 水曲柳花发育过程中AG, SOC1基因表达的qRT-PCR分析[J]. 植物研究, 2015, 35(4): 612−617. doi: 10.7525/j.issn.1673-5102.2015.04.021
Ren X L, Zhan Y G, Liang X, et al. QRT-PCR analysis of gene expression of AG and SOC1 during flower development of Fraxinus mandshurica Rupr.[J]. Bulletin of Botanical Research, 2015, 35(4): 612−617. doi: 10.7525/j.issn.1673-5102.2015.04.021
|
[29] |
Jofuku K D, Boer B G D, Montagu M V, et al. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2[J]. The Plant Cell, 1994, 9(6): 1211−1225.
|
[30] |
Weigel D. The APETALA2 domain is related to a novel type of DNA binding domain[J]. The Plant Cell, 1995, 7(4): 388−389.
|
[31] |
Ohme-Takagi M, Shinshi H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element[J]. The Plant Cell, 1995, 2(7): 173−182.
|
[32] |
Fujimoto S Y, Ohta M, Usui A, et al. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression[J]. The Plant Cell, 2000, 3(12): 393−404.
|
[33] |
Stockinger E J, Gilmour S J, Thomashow M F. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 3(94): 1035−1040.
|
[34] |
Liu Q, Kasuga M, Sakuma Y, et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought and low-temperature-responsive gene expression, respectively, in Arabidopsis[J]. The Plant Cell, 1998, 8(10): 1391−1406.
|
[35] |
Gilmour S J, Zarka D G, Stockinger E J, et al. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression[J]. The Plant Journal, 1998, 4(16): 433−442.
|
[36] |
Kagaya Y, Ohmiya K, Hattori T. RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants[J]. Nucleic Acids Research, 1999, 2(27): 470−478.
|
[37] |
Mittler R, Blumwald E. The roles of ROS and ABA in systemic acquired acclimation[J]. The Plant Cell, 2015, 27(1): 64−70. doi: 10.1105/tpc.114.133090
|
[38] |
Xue H. Structural characterization and expression pattern analysis of the rice PLT gene family[J]. Acta Biochimica et Biophysica Sinica, 2011, 43(9): 688–697. doi: 10.1093/abbs/gmr068
|
[39] |
徐伟, 严善春. 茉莉酸在植物诱导防御中的作用[J]. 生态学报, 2005, 25(8): 2074−2082. doi: 10.3321/j.issn:1000-0933.2005.08.035
Xu W, Yan S C. The function of Jasmonic acid in induced plant defence[J]. Acta Ecologica Sinica, 2005, 25(8): 2074−2082. doi: 10.3321/j.issn:1000-0933.2005.08.035
|
1. |
赵钰婷,陈冬瑶,杨柳,李晶楠,宁广亮,姜静. 白桦四倍体×紫雨桦二倍体杂交种子活力及杂种子代生长特性分析. 温带林业研究. 2025(01): 1-8 .
![]() | |
2. |
任亚超,张军,王进茂,杨敏生. 科研反哺教学在林木育种学教学中的探索与实践. 安徽农业科学. 2024(10): 278-282 .
![]() | |
3. |
杨琦,王湘莹,王晓明,乔中全,唐丽. 大花紫薇ב丹红紫叶’紫薇杂交F_1代不育株转录组测序. 东北林业大学学报. 2024(09): 25-29 .
![]() | |
4. |
赵一帆,孔博,程雪桐,李亮,凌傲宇,李智群,康向阳,张平冬. 赤霉素喷洒处理诱导新疆杨2n花粉产生及其对微管骨架的影响. 北京林业大学学报. 2023(01): 40-50 .
![]() | |
5. |
李智群,孔博,程雪桐,李亮,张平冬. 高温诱导银灰杨花粉败育的细胞学机理研究. 北京林业大学学报. 2023(05): 25-34 .
![]() | |
6. |
刘春洋,彭朝凤,程世平,姚鹏强,耿喜宁,谢丽华. 高温诱导‘凤丹’牡丹2n雌配子创制三倍体. 园艺学报. 2023(07): 1455-1466 .
![]() | |
7. |
刘宣晨,刘彩霞,张世凯,李开隆,曲冠证. 大青杨×小黑杨异源三倍体新种质创制. 东北林业大学学报. 2023(10): 19-27 .
![]() | |
8. |
周炳秀,刘勇,彭玉信,张劲,赵建松,朱轶超,赵巧玲,王硕,陶靖,孟路. 雄性毛白杨无性系苗期表型和生理变异的早期综合评价. 东北林业大学学报. 2023(11): 1-9 .
![]() | |
9. |
吴婷,贾瑞冬,杨树华,赵鑫,于晓南,国圆,葛红. 蝴蝶兰多倍体育种研究进展与展望. 园艺学报. 2022(02): 448-462 .
![]() | |
10. |
张新宇,董阳,王梦蕾,孙照斌. 银腺杨解剖及理化性能研究. 林业科技. 2022(05): 33-36 .
![]() | |
11. |
陈赢男,韦素云,曲冠正,胡建军,王军辉,尹佟明,潘惠新,卢孟柱,康向阳,李来庚,黄敏仁,王明庥. 现代林木育种关键核心技术研究现状与展望. 南京林业大学学报(自然科学版). 2022(06): 1-9 .
![]() |