• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Song Tingting, Liang Nansong, Lü Yipin, Cui Jinghong, Yu Lei, Zhao Fujiang, Xu Liang, Zhan Yaguang. Identification and expression analysis of FmPLT gene family of Fraxinus mandschurica[J]. Journal of Beijing Forestry University, 2022, 44(2): 11-21. DOI: 10.12171/j.1000-1522.20210105
Citation: Song Tingting, Liang Nansong, Lü Yipin, Cui Jinghong, Yu Lei, Zhao Fujiang, Xu Liang, Zhan Yaguang. Identification and expression analysis of FmPLT gene family of Fraxinus mandschurica[J]. Journal of Beijing Forestry University, 2022, 44(2): 11-21. DOI: 10.12171/j.1000-1522.20210105

Identification and expression analysis of FmPLT gene family of Fraxinus mandschurica

More Information
  • Received Date: March 18, 2021
  • Revised Date: April 10, 2021
  • Available Online: January 17, 2022
  • Published Date: February 24, 2022
  •   Objective  PLT transcription factor family plays an important role in plant growth and organ formation and participates in the regeneration progress. This paper aims to explore the function of PLT transcription factors in the growth and abiotic stress in Fraxinus mandshurica, in order to provide more ideas for forest tree gene selection work.
      Method  By using homologous alignment and cloning techniques, we obtained and identified all members of FmPLT gene family. We conducted detailed bioinformatics analysis of FmPLTs, including physicochemical properties, phylogenetic relationships and gene structure, etc. Besides, we measured the gene expression levels of FmPLTs members in different tissues and seeds during germination, and the expression levels under abiotic stresses (NaCl, PEG6000, NaHCO3, and low temperature 4 ℃) and signal hormone treatmentes (ABA, GA3, IAA, SA and MeJA).
      Result  We revealed that the F. mandshurica genome contained 9 members, which were named as FmPLT2, FmPLT3, FmPLT4, FmPLT4A, FmPLT5, FmPLT5A, FmPLT7, FmPLT8 and FmPLT9, respectively, based on phylogenetic relationship, that could be further divided into 5 groups. The expression of PLT family members was the highest in roots and the lowest in leaves. On the fourth day of seed germination, cotyledons turned green, hypocotyls elongated, most members showed highest expression levels, in response to different hormones and abiotic stresses, FmPLTs showed significant responses to low temperature, drought, salt stress and MeJA treatment.
      Conclusion  FmPLTs are involved in seed germination and organ development of Fraxinus mandshurica, response to plant hormone signaling, and actively participate in the regulation of plant abiotic stress tolerance, including low temperature, high salt and drought stress. This study preliminarily reveals that the expression pattern of FmPLTs in response to both signal hormone treatmentes and abiotic stress, and lays a foundation for in-depth analysis of the basic functions and regulatory mechanisms of FmPLT gene family.
  • [1]
    Horstman A, Willemsen V, Boutilier K, et al. AINTEGUMENTA-LIKE proteins: hubs in a plethora of networks[J]. Trends in Plant Science, 2014, 19(3): 146−157. doi: 10.1016/j.tplants.2013.10.010
    [2]
    Aida M, Beis D, Heidstra R, et al. The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche[J]. Cell, 2004, 119(1): 109−120. doi: 10.1016/j.cell.2004.09.018
    [3]
    Krizek B A. AINTEGUMENTA utilizes a mode of DNA recognition distinct from that used by proteins containing a single AP2 domain[J]. Nucleic Acids Research, 2003, 31(7): 1859−1868. doi: 10.1093/nar/gkg292
    [4]
    Nole-Wilson S, Krizek B A. DNA binding properties of the Arabidopsis floral development protein AINTEGUMENTA[J]. Nucleic Acids Research, 2000, 21(28): 4076−4082.
    [5]
    Okamuro J K, Caster B, Villarroel R, et al. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(13): 7076−7081. doi: 10.1073/pnas.94.13.7076
    [6]
    Berg C V D, Willemsen V, Hendriks G, et al. Short-range control of cell differentiation in the Arabidopsis root meristem[J]. Nature, 1997, 390: 287−289. doi: 10.1038/36856
    [7]
    Akie S, Renze H, Ikram B, et al. Root stem cell niche organizer specification by molecular convergence of PLETHORA and SCARECROW transcription factor modules[J]. Genes, 2018, 32(15−16): 1085−1100. doi: 10.1101/gad.314096.118
    [8]
    Galinha C, Hofhuis H, Luijten M, et al. PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development[J]. Nature, 2007, 449: 1053−1057. doi: 10.1038/nature06206
    [9]
    Maehoenen A P, Tusscher K T, Siligato R, et al. PLETHORA gradient formation mechanism separates auxin responses[J]. Nature, 2014, 515: 125−129. doi: 10.1038/nature13663
    [10]
    Blilou I, Xu J, Wildwater M, et al. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots[J]. Nature, 2005, 433: 39−44.
    [11]
    Chen Q, Sun J, Zhai Q, et al. The basic helix-loop-helix transcription factor MYC2 directly represses PLETHORA expression during jasmonate-mediated modulation of the root stem cell niche in Arabidopsis[J]. The Plant Cell, 2011, 23(9): 3335−3352. doi: 10.1105/tpc.111.089870
    [12]
    Mudunkothge J S, Krizek B A. Three Arabidopsis AIL/PLT genes act in combination to regulate shoot apical meristem function[J]. The Plant Journal, 2012, 71(1): 108−121. doi: 10.1111/j.1365-313X.2012.04975.x
    [13]
    Prasad K, Grigg S P, Barkoulas M, et al. Arabidopsis PLETHORA transcription factors control phyllotaxis[J]. Current Biology, 2011, 21(13): 1123−1128. doi: 10.1016/j.cub.2011.05.009
    [14]
    Hofhuis H, Laskowski M, Du Y, et al. Phyllotaxis and rhizotaxis in Arabidopsis are modified by three PLETHORA transcription factors[J]. Current Biology, 2013, 23(11): 956−962. doi: 10.1016/j.cub.2013.04.048
    [15]
    Elliott R C, Betzner A S, Huttner E, et al. AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth[J]. The Plant Cell, 1996, 2(8): 155−168.
    [16]
    Bowman J L, Drews G N, Meyerowitz E M. Expression of the Arabidopsis floral homeotic gene Agamous is restricted to specific cell types late in flower development[J]. The Plant Cell, 1991, 3(8): 749−758.
    [17]
    Krizek B A. Ectopic expression of AINTEGUMENTA in Arabidopsis plants results in increased growth of floral organs[J]. Developmental Genetics, 2015, 25(3): 224−236.
    [18]
    Hu L J, Uchiyama K, Shen H L, et al. Nuclear DNA microsatellites reveal genetic variation but a lack of phylogeographical structure in an endangered species, Fraxinus mandshurica, across Northeast China[J]. Annals of Botany, 2008, 102(2): 195−205. doi: 10.1093/aob/mcn074
    [19]
    林士杰, 张忠辉, 谢朋, 等. 中国水曲柳基因资源的保护与利用[J]. 中国农学通报, 2009, 25(24): 158−162.

    Lin S J, Zhang Z H, Xie P, et al. Conservation and application of the genetic resource of Fraxinus mandshurica in China[J]. Chinese Agricultural Science Bulletin, 2009, 25(24): 158−162.
    [20]
    Hu L J, Uchiyama K, Shen H L, et al. Multiple-scaled spatial genetic structures of Fraxinus mandshurica over a riparian-mountain landscape in Northeast China[J]. Conservation Genetics, 2010, 11(1): 77−87. doi: 10.1007/s10592-009-0004-0
    [21]
    Zeng F S, Zhou S, Zhan Y G, et al. Drought resistance and DNA methylation of interspecific hybrids between Fraxinus mandshurica and Fraxinus americana[J]. Trees, 2014, 28(6): 1679−1692. doi: 10.1007/s00468-014-1077-z
    [22]
    卫星. 干旱胁迫对水曲柳苗木细根衰老的影响[D]. 哈尔滨: 东北林业大学, 2008.

    Wei X. Fine root senescence of manchurian ash seedlings under droughtstress[D]. Harbin: Northeast Forestry University, 2008.
    [23]
    丁一巍, 詹亚光, 张佳薇, 等. 水曲柳2个PLT转录因子基因的克隆及表达分析[J]. 植物研究, 2019, 39(1): 139−147. doi: 10.7525/j.issn.1673-5102.2019.01.017

    Ding Y W, Zhan Y G, Zhang J W, et al. Cloning and expression analysis of two PLT transcription factors genes in Fraxinus mandshurica[J]. Bulletin of Botanical Research, 2019, 39(1): 139−147. doi: 10.7525/j.issn.1673-5102.2019.01.017
    [24]
    Mcphie P. The protein protocols handbook[J]. Analytical Biochemistry, 2003, 315(2): 289.
    [25]
    Tamura K, Peterson D, Peterson N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Molecular Biology Evolution, 2011, 28(10): 2731–2739. doi: 10.1093/molbev/msr121
    [26]
    Bailey T L, Johnson J, Grant C E, et al. The MEME suite[J]. Nucleic Acids Research, 2015, 43(W1): W39−W49. doi: 10.1093/nar/gkv416
    [27]
    Caffrey D R, Dana P H, Mathur V, et al. PFAAT version 2.0: a tool for editing, annotating, and analyzing multiple sequence alignments[J/OL]. BMC Bioinformatics, 2007, 8(1): 381[2021−01−01]. http://doi.org/10.1186/1471-2105-8-381.
    [28]
    任小龙, 詹亚光, 梁雪, 等. 水曲柳花发育过程中AG, SOC1基因表达的qRT-PCR分析[J]. 植物研究, 2015, 35(4): 612−617. doi: 10.7525/j.issn.1673-5102.2015.04.021

    Ren X L, Zhan Y G, Liang X, et al. QRT-PCR analysis of gene expression of AG and SOC1 during flower development of Fraxinus mandshurica Rupr.[J]. Bulletin of Botanical Research, 2015, 35(4): 612−617. doi: 10.7525/j.issn.1673-5102.2015.04.021
    [29]
    Jofuku K D, Boer B G D, Montagu M V, et al. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2[J]. The Plant Cell, 1994, 9(6): 1211−1225.
    [30]
    Weigel D. The APETALA2 domain is related to a novel type of DNA binding domain[J]. The Plant Cell, 1995, 7(4): 388−389.
    [31]
    Ohme-Takagi M, Shinshi H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element[J]. The Plant Cell, 1995, 2(7): 173−182.
    [32]
    Fujimoto S Y, Ohta M, Usui A, et al. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression[J]. The Plant Cell, 2000, 3(12): 393−404.
    [33]
    Stockinger E J, Gilmour S J, Thomashow M F. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 3(94): 1035−1040.
    [34]
    Liu Q, Kasuga M, Sakuma Y, et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought and low-temperature-responsive gene expression, respectively, in Arabidopsis[J]. The Plant Cell, 1998, 8(10): 1391−1406.
    [35]
    Gilmour S J, Zarka D G, Stockinger E J, et al. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression[J]. The Plant Journal, 1998, 4(16): 433−442.
    [36]
    Kagaya Y, Ohmiya K, Hattori T. RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants[J]. Nucleic Acids Research, 1999, 2(27): 470−478.
    [37]
    Mittler R, Blumwald E. The roles of ROS and ABA in systemic acquired acclimation[J]. The Plant Cell, 2015, 27(1): 64−70. doi: 10.1105/tpc.114.133090
    [38]
    Xue H. Structural characterization and expression pattern analysis of the rice PLT gene family[J]. Acta Biochimica et Biophysica Sinica, 2011, 43(9): 688–697. doi: 10.1093/abbs/gmr068
    [39]
    徐伟, 严善春. 茉莉酸在植物诱导防御中的作用[J]. 生态学报, 2005, 25(8): 2074−2082. doi: 10.3321/j.issn:1000-0933.2005.08.035

    Xu W, Yan S C. The function of Jasmonic acid in induced plant defence[J]. Acta Ecologica Sinica, 2005, 25(8): 2074−2082. doi: 10.3321/j.issn:1000-0933.2005.08.035
  • Cited by

    Periodical cited type(11)

    1. 赵钰婷,陈冬瑶,杨柳,李晶楠,宁广亮,姜静. 白桦四倍体×紫雨桦二倍体杂交种子活力及杂种子代生长特性分析. 温带林业研究. 2025(01): 1-8 .
    2. 任亚超,张军,王进茂,杨敏生. 科研反哺教学在林木育种学教学中的探索与实践. 安徽农业科学. 2024(10): 278-282 .
    3. 杨琦,王湘莹,王晓明,乔中全,唐丽. 大花紫薇ב丹红紫叶’紫薇杂交F_1代不育株转录组测序. 东北林业大学学报. 2024(09): 25-29 .
    4. 赵一帆,孔博,程雪桐,李亮,凌傲宇,李智群,康向阳,张平冬. 赤霉素喷洒处理诱导新疆杨2n花粉产生及其对微管骨架的影响. 北京林业大学学报. 2023(01): 40-50 . 本站查看
    5. 李智群,孔博,程雪桐,李亮,张平冬. 高温诱导银灰杨花粉败育的细胞学机理研究. 北京林业大学学报. 2023(05): 25-34 . 本站查看
    6. 刘春洋,彭朝凤,程世平,姚鹏强,耿喜宁,谢丽华. 高温诱导‘凤丹’牡丹2n雌配子创制三倍体. 园艺学报. 2023(07): 1455-1466 .
    7. 刘宣晨,刘彩霞,张世凯,李开隆,曲冠证. 大青杨×小黑杨异源三倍体新种质创制. 东北林业大学学报. 2023(10): 19-27 .
    8. 周炳秀,刘勇,彭玉信,张劲,赵建松,朱轶超,赵巧玲,王硕,陶靖,孟路. 雄性毛白杨无性系苗期表型和生理变异的早期综合评价. 东北林业大学学报. 2023(11): 1-9 .
    9. 吴婷,贾瑞冬,杨树华,赵鑫,于晓南,国圆,葛红. 蝴蝶兰多倍体育种研究进展与展望. 园艺学报. 2022(02): 448-462 .
    10. 张新宇,董阳,王梦蕾,孙照斌. 银腺杨解剖及理化性能研究. 林业科技. 2022(05): 33-36 .
    11. 陈赢男,韦素云,曲冠正,胡建军,王军辉,尹佟明,潘惠新,卢孟柱,康向阳,李来庚,黄敏仁,王明庥. 现代林木育种关键核心技术研究现状与展望. 南京林业大学学报(自然科学版). 2022(06): 1-9 .

    Other cited types(14)

Catalog

    Article views (1084) PDF downloads (103) Cited by(25)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return