• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wang Lina, Wu Junwen, Dong Qiong, Shi Zhuogong, Hu Haocheng, Wu Danzi, Li Luping. Effects of tending and thinning on non-structural carbon and stoichiometric characteristics of Pinus yunnanensis[J]. Journal of Beijing Forestry University, 2021, 43(8): 70-82. DOI: 10.12171/j.1000-1522.20210115
Citation: Wang Lina, Wu Junwen, Dong Qiong, Shi Zhuogong, Hu Haocheng, Wu Danzi, Li Luping. Effects of tending and thinning on non-structural carbon and stoichiometric characteristics of Pinus yunnanensis[J]. Journal of Beijing Forestry University, 2021, 43(8): 70-82. DOI: 10.12171/j.1000-1522.20210115

Effects of tending and thinning on non-structural carbon and stoichiometric characteristics of Pinus yunnanensis

More Information
  • Received Date: March 24, 2021
  • Revised Date: May 25, 2021
  • Available Online: July 09, 2021
  • Published Date: August 30, 2021
  •   Objective  Our objective was to explore the mechanism of the effects of thinning on non-structural carbon (NSC), carbon (C), nitrogen (N) and phosphorus (P) stoichiometry of Pinus yunnanensis.
      Method  The middle-aged P. yunnanensis forests were chosen in the Baima River forest area of Yongren County, Yunnan Province of southwestern China, and two experimental sample plots of thinning (thinning intensity of 35.4%) and control were set up to analyze the effects of thinning on NSC and CNP stoichiometric characteristics of P. yunnanensis forests.
      Result  (1) Tending thinning significantly affected the NSC content of needles and branches of P. yunnanensis (P < 0.01), whereas no significant difference on roots was observed. In addition, the NSC content of branch increased by 9.30%, while the NSC content in needles decreased by 3.57%. (2) Thinning had a significant effect on C content of P. yunnanensis branch, P content in needles and stems (P < 0.05), and a highly significant effect on N content in needles (P < 0.01), however, no significant effect was observed on C, N and P content in roots. After thinning, the C content of P. yunnanensis branch increased by 12.93%; the N content in needles increased by 18.04%, and the P content in needles and stems decreased by 27.78% and 55.56%, respectively. (3) The NSC, CNP stoichiometric characteristics showed significant differences among P. yunnanensis organs (P < 0.05). Correlation analysis showed that the P content in needles and roots was significantly positively correlated with soluble sugar content (P < 0.05), while C content in needles was significantly negatively correlated with soluble sugar content (P < 0.05).
      Conclusion  Thinning promots the accumulation of NSC content in stem, branch and root and C content in each organ, whereas needle NSC and P content decreased in each organ, furthermore, distribution pattern of C, N and P in each organ was affected; the growth of P. yunnanensis plantation in this area was limited by N to some extent, and appropriate application of N fertilizer will promote the improvement of stand quality.
  • [1]
    Russell E S, Liu H P, Thistle H, et al. Effects of thinning a forest stand on sub-canopy turbulence[J]. Agricultural and Forest Meteorology, 2018, 248: 295−305. doi: 10.1016/j.agrformet.2017.10.019
    [2]
    王凯, 赵成姣, 张日升, 等. 不同密度樟子松人工林土壤碳氮磷化学计量特征[J]. 生态学杂志, 2020, 39(3):741−748.

    Wang K, Zhao C J, Zhang R S, et al. Soil carbon, nitrogen and phosphorus stoichiometry of Pinus sylvestris var. mongolica plantations with different densities[J]. Chinese Journal of Ecology, 2020, 39(3): 741−748.
    [3]
    郭子武, 陈双林, 杨清平, 等. 密度对四季竹叶片 C、N、P 化学计量和养分重吸收特征的影响[J]. 应用生态学报, 2013, 24(4):893−899.

    Guo Z W, Chen S L, Yang Q P, et al. Effects of stand density on Oligostachyum lubricum leaf carbon, nitrogen, and phosphorus stoichiometry and nutrient resorption[J]. Chinese Journal of Applied Ecology, 2013, 24(4): 893−899.
    [4]
    Yang Y, Liu B. Effects of planting Caragana shrubs on soil nutrients and stoichiometries in desert steppe of northwest China[J]. Catena, 2019, 183: 104213. doi: 10.1016/j.catena.2019.104213
    [5]
    杜尧, 韩轶, 王传宽. 干旱对兴安落叶松枝叶非结构性碳水化合物的影响[J]. 生态学报, 2014, 34(21):6090−6100.

    Du Y, Han Y, Wang C K. The influence of drought on non-structural carbohydrates in the needle and twigs of Larix gmelinii[J]. Acta Ecologica Sinica, 2014, 34(21): 6090−6100.
    [6]
    韩发, 贲桂英, 师生波. 青藏高原不同海拔矮嵩草抗逆性的比较研究[J]. 生态学报, 1998, 18(6):92−97.

    Han F, Ben G Y, Shi S B. Comparative study on the resistance of Kobresia humilis grown at different altitudes in Qinghai-Xizang Plateau[J]. Acta Ecologica Sinica, 1998, 18(6): 92−97.
    [7]
    贺金生, 韩兴国. 生态化学计量学: 探索从个体到生态系统的统一化理论[J]. 植物生态学报, 2010, 34 (1):2−6. doi: 10.3773/j.issn.1005-264x.2010.01.002

    He J S, Han X G. Ecological stoichiometry: searching for unifying principles from individuals to ecosystems[J]. Chinese Journal of Plant Ecology, 2010, 34 (1): 2−6. doi: 10.3773/j.issn.1005-264x.2010.01.002
    [8]
    黄小波. 云南松天然次生林生态化学计量学研究[D]. 北京: 中国林业科学研究院, 2016.

    Huang X B. Stoichiometry of Pinus yunnanensis natural secondary forest[D]. Beijing: Chinese Academy of Forestry, 2016.
    [9]
    王凯, 沈潮, 曹鹏, 等. 沙地樟子松幼苗干旱致死过程中非结构性碳水化合物的变化[J]. 应用生态学报, 2018, 29(11): 3513−3520.

    Wang K, Shen C, Cao P, et al. Changes of non-structural carbohydrates of Pinus sylvestris var. mongolica seedlings in the process of drought-induced mortality[J]. Chinese Journal of Applied Ecology, 2018,29(11): 3513−3520.
    [10]
    成向荣, 虞木奎, 葛乐, 等. 不同间伐强度下麻栎人工林碳密度及其空间分布[J]. 应用生态学报, 2012, 23(5):1175−1180.

    Cheng X R, Yu M K, Ge L, et al. Carbon density and its spatial distribution in Quercus acutissima plantations under different thinning intensities[J]. Chinese Journal of Applied Ecology, 2012, 23(5): 1175−1180.
    [11]
    刘莉, 蔡锰柯, 刘旭军, 等. 间伐对华北落叶松人工林叶、根及林下土壤C、N、P化学计量特征影响[J]. 东北林业大学学报, 2019, 47(8):1−7. doi: 10.3969/j.issn.1000-5382.2019.08.001

    Liu L, Cai M K, Liu X J, et al. Effects of thinning on ecological stoichiometry C, N and P in leaves, roots and soil of Larix principis-rupprechtii plantation[J]. Journal of Northeast Forestry University, 2019, 47(8): 1−7. doi: 10.3969/j.issn.1000-5382.2019.08.001
    [12]
    邱勇斌, 凌高潮, 郑文华, 等. 间伐对杉木人工林不同组分碳、氮、磷含量及其生态化学计量关系的影响[J]. 林业科学研究, 2019, 32(4):64−69.

    Qiu Y B, Ling G C, Zheng W H, et al. Effects of thinning on contents and stoichiometry of C, N, and P in different components of Chinese fir plantation[J]. Forest Research, 2019, 32(4): 64−69.
    [13]
    王晓荣, 雷蕾, 曾立雄, 等. 不同抚育间伐措施对马尾松林土壤活性有机碳的短期影响[J/OL]. 生态学杂志, 2021, 40(4): 1−18 [2021−07−02]. https://doi.org/10.13292/j.1000-4890.202104.008.

    Wang X R, Lei L, Zeng L X, et al. Short-term effects of different tending thinning practices on soil labile organic carbon of Pinus massoniana stands[J]. Chinese Journal of Ecology, 2021, 40(4): 1−18 [2021−07−02]. https://doi.org/10.13292/j.1000-4890.202104.008.
    [14]
    郑云普, 王贺新, 娄鑫, 等. 木本植物非结构性碳水化合物变化及其影响因子研究进展[J]. 应用生态学报, 2014, 25(4):1188−1196.

    Zheng Y P, Wang H X, Lou X, et al. Changes of non-structural carbohydrates and its impact factors in trees: a review[J]. Chinese Journal of Applied Ecology, 2014, 25(4): 1188−1196.
    [15]
    黄小波, 李帅锋, 苏建荣, 等. 云南松天然次生林物种丰富度与生态系统多功能性的关系[J]. 生物多样性, 2017, 25(11):42−51.

    Huang X B, Li S F, Su J R, et al. Relationship between species richness and ecosystem multifunctionality of natural secondary forest of Pinus yunnanensis[J]. Biodiversity Science, 2017, 25(11): 42−51.
    [16]
    张育梅, 及利, 和春庭. 抚育间伐对云南松中幼林的影响[J]. 森林工程, 2017, 33(1):7−11. doi: 10.3969/j.issn.1006-8023.2017.01.003

    Zhang Y M, Ji L, He C T. Effect of thinning on mid-young Pinus yunnanensis plantations[J]. Forest Engineering, 2017, 33(1): 7−11. doi: 10.3969/j.issn.1006-8023.2017.01.003
    [17]
    韩明跃, 李莲芳, 郑畹, 等. 间伐强度对云南松中龄低产林分结构的调整研究[J]. 中南林业科技大学学报, 2011, 31(2):27−33.

    Han M Y, Li L F, Zheng W, et al. Effects of different intensity of thinning on the improvement of middle-aged Yunnan pine stand[J]. Journal of Central South University of Forestry & Technology, 2011, 31(2): 27−33.
    [18]
    杨剑辉, 欧弢, 陈金龙, 等. 不同间伐梯度下云南松幼林林分结构及林木生长变化[J]. 浙江林业科技, 2015, 35(6):54−57. doi: 10.3969/j.issn.1001-3776.2015.06.010

    Yang J H, Ou T, Chen J L, et al. Stand structure and tree growth of young growth of Pinus yunnanensis under different thinning intensities[J]. Journal of Zhejiang Forestry Science and Technology, 2015, 35(6): 54−57. doi: 10.3969/j.issn.1001-3776.2015.06.010
    [19]
    高成杰, 唐国勇, 刘方炎, 等. 林分结构调整对云南松次生林生长和土壤性质的影响[J]. 林业科学研究, 2017, 30(5):841−847.

    Gao C J, Tang G Y, Liu F Y, et al. Effects of stand structural adjustment on growth and soil properties of Pinus yunnanensis secondary forest[J]. Forest Research, 2017, 30(5): 841−847.
    [20]
    王学奎, 黄见良. 植物生理生化实验原理和技术[M].3 版. 北京: 高等教育出版社, 2018.

    Wang X K, Huang J L. Principles and techniques of plant physiological and biochemical experiments [M]. 3rd ed. Beijing: Higher Education Press, 2018.
    [21]
    鲍士旦. 土壤农化分析[M]. 3 版. 北京: 中国农业出版社, 2000.

    Bao S D. Soil agrochemical analysis[M]. 3rd ed. Beijing: China Agricultural Press, 2000.
    [22]
    Chantuma P, Lacointe A, Kasemsap P, et al. Carbohydrate storage in wood and bark of rubber trees submitted to different level of C demand induced by latex tapping[J]. Tree Physiology, 2009, 29: 1021−1031. doi: 10.1093/treephys/tpp043
    [23]
    霍常富, 孙海龙, 王政权, 等. 光照和氮营养对水曲柳苗木生长及碳-氮代谢的影响[J]. 林业科学, 2009, 45(7):38−44. doi: 10.3321/j.issn:1001-7488.2009.07.007

    Huo C F, Sun H L, Wang Z Q, et al. Effects of light and nitrogen on growth, carbon and nitrogen metabolism of Fraxinus mandshurica seedlings[J]. Scientia Silvae Sinicae, 2009, 45(7): 38−44. doi: 10.3321/j.issn:1001-7488.2009.07.007
    [24]
    王子纯, 李耀翔, 孟永斌, 等. 抚育间伐对针阔混交天然次生林生物量及碳密度的影响[J]. 东北林业大学学报, 2021, 49(4):5−11. doi: 10.3969/j.issn.1000-5382.2021.04.002

    Wang Z C, Li Y X, Meng Y B, et al. Effect of thinning on biomass and carbon density of mixed conifer and broadleaf secondary natural forest[J]. Journal of Northeast Forestry University, 2021, 49(4): 5−11. doi: 10.3969/j.issn.1000-5382.2021.04.002
    [25]
    Michaels A F. The ratios of life[J]. Science, 2003, 300: 906−907. doi: 10.1126/science.1083140
    [26]
    邬畏, 何兴东, 周启星. 生态系统氮磷比化学计量特征研究进展[J]. 中国沙漠, 2010, 30(2):296−302.

    Wu W, He X D, Zhou Q X. Review on N∶P stoichiometry in ecosystem[J]. Journal of Desert Research, 2010, 30(2): 296−302.
    [27]
    Dey D C, Parker W C. Overstorey density affects field performance of underplanted red oak (Quercus rubra) in Ontario[J]. Northern Journal of Applied Forestry, 1997, 14(3): 120−125. doi: 10.1093/njaf/14.3.120
    [28]
    方海波, 田大伦, 康文星, 等. 间伐后杉木人工林生态系统养分动态的研究[J]. 中南林学院学报, 1999, 19(2):15−22.

    Fang H B, Tian D L, Kang W X, et al. Nutrient dynamics of Cunninghamia lanceolata plantation forest ecosystems after thinning[J]. Journal of Central South University of Forestry & Technology, 1999, 19(2): 15−22.
    [29]
    管惠文, 董希斌, 张甜, 等. 抚育间伐后落叶松天然次生林生境恢复效果的评价[J]. 东北林业大学学报, 2019, 47(7):6−13, 24. doi: 10.3969/j.issn.1000-5382.2019.07.002

    Guan H W, Dong X B, Zhang T, et al. Evaluation of ecological environment restoration of thinning intensity on larch natural secondary forest in Daxing’an Mountains[J]. Journal of Northeast Forestry University, 2019, 47(7): 6−13, 24. doi: 10.3969/j.issn.1000-5382.2019.07.002
    [30]
    Thompson K E N, Parkinson J A, Band S R, et al. A comparative study of leaf nutrient concentrations in a regional herbaceous flora[J]. New Phytologist, 1997, 136(4): 679−689. doi: 10.1046/j.1469-8137.1997.00787.x
    [31]
    孙小妹, 何明珠, 周彬, 等. 霸王根茎叶非结构性碳与C∶N∶P计量特征对干旱的响应[J]. 干旱区地理, 2021, 44(1):240−249.

    Sun X M, He M Z, Zhou B, et al. Non-structural carbohydrates and C∶N∶P stoichiometry of roots, stems, and leaves of Zygophyllum xanthoxylon in responses to xeric condition[J]. Arid Land Geography, 2021, 44(1): 240−249.
    [32]
    熊静, 虞木奎, 成向荣, 等. 光照和氮磷供应比对木荷生长及化学计量特征的影响[J]. 生态学报, 2021, 41(6):2140−2150.

    Xiong J, Yu M K, Cheng X R, et al. Effects of light and N-P supply ratios on growth and stoichiometric of Schima superba[J]. Acta Ecologica Sinica, 2021, 41(6): 2140−2150.
    [33]
    Fife D N, Nambiar E K S, Saur E. Retranslocation of foliar nutrients in evergreen tree species planted in a Mediterranean environment[J]. Tree Physiology, 2008, 28: 187−196. doi: 10.1093/treephys/28.2.187
    [34]
    Makino W, Cotner J B, Sterner R W, et al. Are bacteria more like plants or animals? Growth rate and resource dependence of bacterial C∶N∶P stoichiometry[J]. Functional Ecology, 2003, 17(1): 121−130. doi: 10.1046/j.1365-2435.2003.00712.x
    [35]
    Koerselman W, Meuleman A F M. The vegetation N∶P ratios: a new tool to detect the nature of nutrient limitation[J]. Journal of Applied Ecology, 1996, 33: 1441−1450. doi: 10.2307/2404783
    [36]
    Han W, Fang J, Guo D, et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J]. New Phytologist, 2005, 168: 377−385. doi: 10.1111/j.1469-8137.2005.01530.x
    [37]
    崔宁洁, 刘小兵, 张丹桔, 等. 不同林龄马尾松人工林碳氮磷分配格局及化学计量特征[J]. 生态环境学报, 2014, 23(2):188−195. doi: 10.3969/j.issn.1674-5906.2014.02.002

    Cui N J, Liu X B, Zhang D J, et al. The Distribution pattern of carbon, nitrogen and phosphorus and the stoichiometry characteristics of Pinus massoniana plantation in different ages[J]. Ecology and Environmental Sciences, 2014, 23(2): 188−195. doi: 10.3969/j.issn.1674-5906.2014.02.002
    [38]
    Xiao L, Liu G B, Li P, et al. Nitrogen addition has a stronger effect on stoichiometries of non-structural carbohydrates, nitrogen and phosphorus in Bothriochloa ischaemum than elevated CO2[J]. Plant Growth Regulation, 2017, 83(2): 325−334. doi: 10.1007/s10725-017-0298-8
    [39]
    印婧婧, 郭大立, 何思源, 等. 内蒙古半干旱区树木非结构性碳、氮、磷的分配格局[J]. 北京大学学报(自然科学版), 2009, 45(3):519−527.

    Yin J J, Guo D L, He S Y, et al. Non-structural carbohydrate, N, and P allocation patterns of two temperate tree species in a semi-arid region of Inner Mongolia[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2009, 45(3): 519−527.
    [40]
    Lambers H, Chapin F, Pons T. Plant physiological ecology[M]. New York: Springer-Verlag, 1998.
    [41]
    王凯, 雷虹, 夏扬, 等. 杨树幼苗非结构性碳水化合物对增加降水和氮添加的响应[J]. 应用生态学报, 2017, 28(2):399−407.

    Wang K, Lei H, Xia Y, et al. Responses of non-structural carbohydrates of poplar seedlings to increased precipitation and nitrogen addition[J]. Chinese Journal of Applied Ecology, 2017, 28(2): 399−407.
    [42]
    宋同清. 西南喀斯特植物与环境[M]. 北京: 科学出版社, 2014.

    Song T Q. Karst plants and environment in southwest China[M]. Beijing: Science Press, 2014.
    [43]
    王淳, 冀盼盼, 刘璇, 等. 华北落叶松不同器官碳氮磷化学计量特征[J]. 干旱区资源与环境, 2020, 34(11):176−181.

    Wang C, Ji P P, Liu X, et al. Ecological C, N and P stoichiometry of the needle, twigs and fine roots in pure and mixed stands of Larix principis-rupprechtii[J]. Journal of Arid Land Resources and Environment, 2020, 34(11): 176−181.
    [44]
    盘金文, 郭其强, 孙学广, 等. 不同林龄马尾松人工林碳、氮、磷、钾养分含量及其生态化学计量特征[J]. 植物营养与肥料学报, 2020, 26(4):746−756. doi: 10.11674/zwyf.19272

    Pan J W, Guo Q Q, Sun X G, et al. Contents and stoichiometric characteristics of C, N, P and K under different stand ages of Pinus massoninana plantations[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(4): 746−756. doi: 10.11674/zwyf.19272
    [45]
    贺合亮, 阳小成, 李丹丹, 等. 青藏高原东部窄叶鲜卑花碳、氮、磷化学计量特征[J]. 植物生态学报, 2017, 41(1):126−135.

    He H L, Yang X C, Li D D, et al. Stoichiometric characteristics of carbon, nitrogen and phosphorus of Xianbei flower in east Qinghai-Tibet Plateau[J]. Chinese Journal of Plant Ecology, 2017, 41(1): 126−135.
    [46]
    孙小妹, 何明珠, 杨睿哲. 白刺器官间非结构性碳水化合与C∶N∶P计量比的关联性[J]. 生态学报, 2021, 41(3):1−11.

    Sun X M, He M Z, Yang R Z. Correlation of non-structural carbohydrates with C∶N∶P stoichiometry among the organs of Nitraria tangutorum[J]. Acta Ecologica Sinica, 2021, 41(3): 1−11.
    [47]
    Theodorou M, Plaxton W. Metabolic adaptations of plant respiration to nutritional phosphate deprivation[J]. Plant Physiology, 1993, 101: 339−344. doi: 10.1104/pp.101.2.339
  • Related Articles

    [1]Wang Rongfang, Zhang Ziyan, Li Dehai. Effects of extraction methods on extraction components and antioxidant activity of Quercus mongolica shell[J]. Journal of Beijing Forestry University, 2022, 44(5): 150-160. DOI: 10.12171/j.1000-1522.20210352
    [2]Deng Wenhong, Zhao Xinrui, Zhang Junqi, Guo Huihong. Determination of plant hormones in plant tissues by UPLC-MS/MS[J]. Journal of Beijing Forestry University, 2019, 41(8): 154-160. DOI: 10.13332/j.1000-1522.20190052
    [3]WANG Wu-hao, QI Qi, LI Yun, GAI Ying. Internal-standard quantitative determination of chlorogenic acid in Eucommia ulmoides plant by CE-MS[J]. Journal of Beijing Forestry University, 2017, 39(4): 115-119. DOI: 10.13332/j.1000-1522.20160030
    [4]LI Ran, QI Qi, LI Yun, CHEN Xue-mei, GAI Ying. A method of HPLC-MS/MS to determine chlorogenic acid and other three kinds of active components in Eucommia ulmoids[J]. Journal of Beijing Forestry University, 2016, 38(6): 123-129. DOI: 10.13332/j.1000-1522.20160105
    [5]LI Jin-ke, DENG Wen-hong, CHEN Shao-liang. Quantitative analysis of gibberellins in plant tissues by GPC-HPLC-LC/MS.[J]. Journal of Beijing Forestry University, 2014, 36(6): 171-178. DOI: 10.13332/j.cnki.jbfu.2014.06.027
    [6]YANG Li-bin, SONG Rui-qing, LI Chong-wei. Effects of ethyl acetate extract of Trichoderma harzianum fermentation liquid on physiological index of Phytophthora infestans[J]. Journal of Beijing Forestry University, 2013, 35(2): 92-96.
    [7]LI Jin-ke, CHEN Hua-jun, CHEN Shao-liang. Quantitative analysis of jasmonic acids, indole-3-acetic acid and abscisic acid in plant tissues by GC-MS[J]. Journal of Beijing Forestry University, 2010, 32(5): 143-148.
    [8]JI Hong-fang, ZHANG Ling-wen, SONG Rui-qing. Effects of Lactarius vellereus fermenting liquor extraction on the activity of several impo rtant enzymes in mycelia of Alternaria alternata[J]. Journal of Beijing Forestry University, 2009, 31(4): 51-54.
    [9]JI Hong-fang, ZHANG Ling-wen, SONG Rui-qing. Inhibiting mechanism of the extraction of Lactarius vellereus fermenting liquid on Alternaria alternata in poplar[J]. Journal of Beijing Forestry University, 2008, 30(4): 146-149.
    [10]JI Hong-fang, SONG Rui-qing, YANG Qian. Effects of extraction from Lactarius vellereus fermenting liquor on the activity of protective enzymes, content of MDA and conductivity ratio in Alternaria alternata(Fr.) Keissler[J]. Journal of Beijing Forestry University, 2007, 29(6): 156-160. DOI: 10.13332/j.1000-1522.2007.06.022
  • Cited by

    Periodical cited type(3)

    1. 王家强,郑锋振. 耐热嗜酸β-甘露聚糖酶TaMan5A在毕赤酵母中高效表达及酶学性质研究. 食品与发酵工业. 2024(03): 52-58 .
    2. 王旭洁,姚三川,雒翠梅,母军,漆楚生. 路易斯酸预处理对木材热降解特性的影响. 北京林业大学学报. 2024(11): 133-140 . 本站查看
    3. 蔡金澄,雒翠梅,王旭洁,母军. 高温热处理对挪威云杉及泡桐木振动性能和化学组分的影响. 林产工业. 2023(11): 14-20 .

    Other cited types(4)

Catalog

    Article views (1253) PDF downloads (135) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return