• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Fan Zhihui, Li Suyan, Sun Xiangyang, Qu Bingpeng, Zheng Yi, Zhou Wei, Du Tiantian. Effects of mulching on fungal diversity and community structure in urban exposed soil[J]. Journal of Beijing Forestry University, 2022, 44(8): 98-106. DOI: 10.12171/j.1000-1522.20210129
Citation: Fan Zhihui, Li Suyan, Sun Xiangyang, Qu Bingpeng, Zheng Yi, Zhou Wei, Du Tiantian. Effects of mulching on fungal diversity and community structure in urban exposed soil[J]. Journal of Beijing Forestry University, 2022, 44(8): 98-106. DOI: 10.12171/j.1000-1522.20210129

Effects of mulching on fungal diversity and community structure in urban exposed soil

More Information
  • Received Date: April 07, 2021
  • Revised Date: May 26, 2021
  • Accepted Date: July 07, 2022
  • Available Online: July 11, 2022
  • Published Date: August 24, 2022
  •   Objective  The purpose of this experiment was to explore the effects of different mulching materials on soil fungal diversity and community structure.
      Method  Through controlled experiments, the Illumina MiSeq high-throughput sequencing technology was used to determine the soil fungal communities under organic mulch mat prepared with urea-formaldehyde resin as adhesive (NQ), organic mulch (Y), bark (S), wood chips (M), pebbles (E), pottery (T) and non-mulch (CK), and to analyze their diversity and community structure.
      Result  Among the 6 mulch materials, the species diversity and richness of soil fungal communities were the highest under S treatment and the lowest under NQ treatment. There were differences in fungal species and dominant species in soil under different mulching treatments. At the phylum level, Ascomycetes was the most dominant phylum, with a relative abundance of 70.84% to 86.86%, which was much higher than Basidiomycetes (relative abundance of 3.27% to 12.78%). At the level of genus, in the NQ, E, T, S, and CK treatments, the most dominant genus was g_unclassified_o_Hypocreales; in M treatment, the most dominant genus was Chaetomium; and in Y treatment, the most dominant genus was g_unclassified_o_Eurotiales. The results of correlation analysis showed that the content of soil available phosphorus was highly significantly negatively correlated with the diversity of soil fungi (P < 0.01) and significantly negatively correlated with the abundance of soil fungi (P < 0.05); the soil organic matter content was negatively correlated with the soil fungal diversity (P < 0.05), and highly significantly negatively correlated with the abundance of soil fungi (P < 0.01). Chaetomium, g_norank_p_Mucoromycota, g_unclassified_f_Pyronemataceae, and Fusarium were greatly affected by environmental factors.
      Conclusion  Mulching measures can affect soil fungal diversity, richness and community structure. Different mulching materials have different effects on the species diversity, richness and community structure of soil fungal community. Soil available phosphorus and organic matter content are important factors affecting soil fungal diversity and richness. Different species also have varied responses to environmental factors. Among the six mulching material set in this study, the soil fungal diversity and richness are the highest under the treatment of bark as mulch.
  • [1]
    周伟, 王文杰, 张波, 等. 长春城市森林绿地土壤肥力评价[J]. 生态学报, 2017, 37(4): 1211−1220.

    Zhou W, Wang W J, Zhang B, et al. Soil fertility evaluation for urban forests and green spaces in Changchun City[J]. Acta Ecologica Sinica, 2017, 37(4): 1211−1220.
    [2]
    苏泳娴, 黄光庆, 陈修治, 等. 城市绿地的生态环境效应研究进展[J]. 生态学报, 2011, 31(23): 7287−7300.

    Su Y X, Huang G Q, Chen X Z, et al. Research progress in the eco-environmental effects of urban green spaces[J]. Acta Ecologica Sinica, 2011, 31(23): 7287−7300.
    [3]
    Carrus G, Scopelliti M, Lafortezza R, et al. Go greener, feel better? The positive effects of biodiversity on the well-being of individuals visiting urban and peri-urban green areas[J]. Landscape and Urban Plan, 2015, 134: 221−228. doi: 10.1016/j.landurbplan.2014.10.022
    [4]
    秦娟, 许克福. 我国城市绿地土壤质量研究综述与展望[J]. 生态科学, 2008, 37(1): 200−210. doi: 10.14108/j.cnki.1008-8873.2018.01.027

    Qin J, Xu K F. Research summary and prospect of urban green space soil quality in China[J]. Ecological Science, 2008, 37(1): 200−210. doi: 10.14108/j.cnki.1008-8873.2018.01.027
    [5]
    Kabisch N, Haase D. Green spaces of European cities revisited for 1990−2006[J]. Landscape and Urban Planning, 2013, 110: 113−122. doi: 10.1016/j.landurbplan.2012.10.017
    [6]
    张骅, 王心语, 张骏达, 等. 北京地区五环内冬季园林绿地中裸土调研及其分布特征[J]. 中国水土保持科学, 2017, 15(2): 79−84.

    Zhang H, Wang X Y, Zhang J D, et al. Investigation and distributions of the bare lands among gardens and greenbelts in winter within the 5th Ring of Beijing[J]. Science of Soil and Water Conservation, 2017, 15(2): 79−84.
    [7]
    顾兵, 吕子文, 梁晶, 等. 绿化植物废弃物覆盖对上海城市林地土壤肥力的影响[J]. 林业科学, 2010, 46(3): 9−15. doi: 10.11707/j.1001-7488.20100302

    Gu B, Lü Z W, Liang J, et al. Effect of mulching greenery waste on soil fertility of municipal forest land from Shanghai[J]. Scientia Silvae Sinicae, 2010, 46(3): 9−15. doi: 10.11707/j.1001-7488.20100302
    [8]
    徐严. 若尔盖高原湿地土壤真菌的初步研究[D]. 雅安: 四川农业大学, 2008.

    Xu Y. Preliminary study on soil fungi in the Zoige Plateau Wetland [D]. Ya’an: Sichuan Agricultural University, 2008.
    [9]
    Maestre F T. Increasing aridity reduces soil microbial diversity and abundance in global drylands[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(51): 缺页码, 如果没有页码请贴上网址, 下同.

    Maestre F T. Increasing aridity reduces soil microbial diversity and abundance in global drylands[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(51): 15684−15689.
    [10]
    孙倩, 吴宏亮, 陈阜, 等. 宁夏中部干旱带不同作物根际土壤真菌群落多样性及群落结构[J]. 微生物学通报, 2019, 46(11): 2963−2972.

    Sun Q, Wu H L, Chen F, et al. Fungal community diversity and structure in rhizosphere soil of different crops in the arid zone of central Ningxia[J]. Microbiology China, 2019, 46(11): 2963−2972.
    [11]
    Qiu Y, Lv W C, Wang X P, et al. Long-term effects of gravel mulching and straw mulching on soil physicochemical properties and bacterial and fungal community composition in the Loess Plateau of China[J]. European Journal of Soil Biology, 2020, 98缺页码.

    Qiu Y, Lü W C, Wang X P, et al. Long-term effects of gravel mulching and straw mulching on soil physicochemical properties and bacterial and fungal community composition in the Loess Plateau of China[J]. European Journal of Soil Biology, 2020, 98: 103188.
    [12]
    Huang F Y, Liu Z H, Mou H Y, et al. Effects of different long-term farmland mulching practices on the loessial soil fungal community in a semiarid region of China[J]. Applied Soil Ecology, 2019, 137页码.

    Huang F Y, Liu Z H, Mou H Y, et al. Effects of different long-term farmland mulching practices on the loessial soil fungal community in a semiarid region of China[J]. Applied Soil Ecology, 2019: 137: 111−119.
    [13]
    曲炳鹏, 孙向阳, 李素艳, 等. 园林废弃物生态覆盖垫的制备及其水分特性[J]. 北京林业大学学报, 2018, 40(10): 77−85.

    Qu B P, Sun X Y, Li S Y, et al. Manufacturing process and hydrological characteristics of ecological mulching mats made from green waste[J]. Journal of Beijing Forestry University, 2018, 40(10): 77−85.
    [14]
    贠炳辉, 李素艳, 曲炳鹏, 等. 不同覆盖材料对城市树穴土壤理化性质的影响[J]. 西北林学院学报, 2017, 32(6): 34−39. doi: 10.3969/j.issn.1001-7461.2017.06.05

    Yun B H, Li S Y, Qu B P, et al. Effects of different mulching materials on the soil physicochemical property of the plant pits in the cities[J]. Journal of Northwest Forestry University, 2017, 32(6): 34−39. doi: 10.3969/j.issn.1001-7461.2017.06.05
    [15]
    全妙华, 佘朝文, 陈东明, 等. 基于高通量测序的两种典型忽地笑栽培土壤根际真菌群落多样性[J]. 微生物学通报, 2012, 45(10): 2105−2111.

    Quan M H, She C W, Chen D M, et al. Fungal diversity in two typical types of rhizosphere cultivation soil of Lycoris aurea based on high-throughput sequencing[J]. Microbiology China, 2012, 45(10): 2105−2111.
    [16]
    Caporaso J G, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 2010, 7(5): 335−336. doi: 10.1038/nmeth.f.303
    [17]
    Chao A. Nonparametric estimation of the number of classes in a population[J]. Scandinavian Journal of Statistics, 1984, 11(4): 265−270.
    [18]
    Chao A, Yang M C K. Stopping rules and estimation for recapture debugging with unequal failure rates[J]. Biometrika, 1993, 80(1): 193−201. doi: 10.1093/biomet/80.1.193
    [19]
    Shannon C E. A mathematical theory of communication[J]. Bell System Technical Journal, 1948, 27(3): 379−423. doi: 10.1002/j.1538-7305.1948.tb01338.x
    [20]
    Simpson E H. Measurement of diversity[J]. Nature, 1949, 163: 688. doi: 10.1038/163688a0
    [21]
    任玉连, 范方喜, 彭淑娴, 等. 纳帕海沼泽化草甸不同季节土壤真菌群落结构与理化性质的关系[J]. 中国农学通报, 2018, 34(29): 69−75. doi: 10.11924/j.issn.1000-6850.casb17080110

    Ren Y L, Fan F X, Peng S X, et al. Relationship between soil fungal community structure and physical and chemical properties of different seasons swamp meadow in Napahai Wetland[J]. Chinese Agricultural Science Bulletin, 2018, 34(29): 69−75. doi: 10.11924/j.issn.1000-6850.casb17080110
    [22]
    徐雪雪, 王东, 秦舒浩, 等. 沟垄覆膜连作马铃薯根际土壤真菌多样性分析[J]. 水土保持学报, 2015, 29(6): 301−306, 310.

    Xu X X, Wang D, Qin S H, et al. Diversity analysis of fungal communities in potato continuous cropping soil under different patterns of ridge-furrow film mulching[J]. Journal of Soil and Water Conservation, 2015, 29(6): 301−306, 310.
    [23]
    曲炳鹏. 以园林废弃物为原料的覆盖垫的制备及应用研究[D]. 北京: 北京林业大学, 2018.

    Qu B P. Study on the manufacturing process of ecological mulching mats that made of green waste and their application to cover urban bare soil [D]. Beijing: Beijing Forestry University, 2018.
    [24]
    刘倩. 有机覆盖对三七生长和土壤养分及微生物多样性的影响[D]. 昆明: 云南中医药大学, 2019.

    Liu Q. Effects of organic mulching on growth and soil nutrient and microbial diversity of Panax notoginseng (Burk.) F. H. Chen [D]. Kunming: Yunnan University of Chinese Medicine, 2019.
    [25]
    邓娇娇, 周永斌, 殷有, 等. 辽东山区两种针叶人工林土壤真菌群落结构特征[J]. 北京林业大学学报, 2019, 41(9): 130−138.

    Deng J J, Zhou Y B, Yin Y, et al. Characteristics of soil fungal community structure at two coniferous plantations in mountainous region of eastern Liaoning Province, northeastern China[J]. Journal of Beijing Forestry University, 2019, 41(9): 130−138.
    [26]
    Liu Z F, Fu B J, Zheng X X, et al. Plant biomass, soil water content and soil N: P ratio regulating soil microbial functional diversity in a temperate steppe: a regional scale study[J]. Soil Biology and Biochemistry, 2010, 42(3): 445−450. doi: 10.1016/j.soilbio.2009.11.027
    [27]
    Jansa J, Oberholzer H R, Egli S. Environmental determinants of the arbuscular mycorrhizal fungal infectivity of Swiss agricultural soils[J]. European Journal of Soil Biology, 2009, 45(5/6): 400−408.
    [28]
    赵兴鸽, 张世挺, 牛克昌. 青藏高原高寒草甸土壤真菌多样性与植物群落功能性状和土壤理化特性的关系[J]. 应用与环境生物学报, 2020, 26(1): 1−9.

    Zhao X G, Zhang S T, Niu K C. Relationships between soil fungal diversity, plant community functional traits, and soil attributes in Tibetan alpine meadows[J]. Chinese Journal of Applied and Environmental Biology, 2020, 26(1): 1−9.
  • Cited by

    Periodical cited type(6)

    1. 袁昱纬,卫强,杨亚鹏,夏明卓. 基于Hadoop的海量卫星影像大数据管理系统设计与实现. 科技视界. 2022(15): 5-7 .
    2. 刘鲁霞,庞勇,桑国庆,李增元,胡波. 普洱季风常绿阔叶林乔木物种多样性高分辨率遥感估测. 生态学报. 2022(20): 8398-8413 .
    3. 田佳玉,王彬,张志明,林露湘. 光谱多样性在植物多样性监测与评估中的应用. 植物生态学报. 2022(10): 1129-1150 .
    4. 万华伟,张志如,夏霖,刘玉平,侯鹏,孙晨曦,金岩丽. 1980—2015年西北地区脊椎动物种群数量及生境变化分析. 干旱区地理. 2021(06): 1740-1749 .
    5. 莫素芬,胡宝清. 桂西南喀斯特—北部湾地区国土空间景观格局变化与人为干扰度分析. 广西科学院学报. 2021(04): 380-388 .
    6. 刘鲁霞,庞勇,任海保,李增元. 基于高分2号遥感数据估测中亚热带天然林木本植物物种多样性. 林业科学. 2019(02): 61-74 .

    Other cited types(5)

Catalog

    Article views (830) PDF downloads (73) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return