• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhang Ye, Xu Feiyang, Yang Hongda, Meng Xinmiao, Gao Ying. Experimental and numerical investigation of steel-timber composite beams under concentrated load[J]. Journal of Beijing Forestry University, 2021, 43(8): 127-136. DOI: 10.12171/j.1000-1522.20210135
Citation: Zhang Ye, Xu Feiyang, Yang Hongda, Meng Xinmiao, Gao Ying. Experimental and numerical investigation of steel-timber composite beams under concentrated load[J]. Journal of Beijing Forestry University, 2021, 43(8): 127-136. DOI: 10.12171/j.1000-1522.20210135

Experimental and numerical investigation of steel-timber composite beams under concentrated load

More Information
  • Received Date: April 11, 2021
  • Revised Date: June 02, 2021
  • Available Online: July 01, 2021
  • Published Date: August 30, 2021
  •   Objective  Replacing the web of I-shaped timber beam with steel can solve the problems of web shear failure and low bending stiffness of bare timber beam. This helps to reduce the component size and increase its application in large-span buildings.
      Method  The steel-timber composite (STC) beam was prepared by connecting two timber slabs on the H-shaped steel flanges with bolts. The influence of different bolt spacing and shear-span ratio on the structural behavior (failure modes, stiffness and load capacity) of STC beams were studied. Three-point bending tests were carried out on 11 STC beams. Four push-out tests were carried out to investigate steel-timber interface slip.
      Result  The bending stiffness of the STC beams was 201% higher than that of the rectangular timber beam with the same section size. The steel upper flange was prone to buckle by concentrate load. Increasing the shear-span ratio, the failure converts from brittle to ductile, the initial failure transforms from top timber slab to bottom. Increasing the shear-span ratio or decreasing the bolt spacing, the bending stiffness was declined, the ductility coefficient was improved and the peak load decreased by more than 15%. The formulations of yield load and mid-span deflection considering interface slip between steel and timber were proposed, the error of most specimens was less than 10% between calculated and experimental results. In addition, referencing material properties and push-out test, the finite element models of STC beams were established. The errors between simulated and experimental values of bending stiffness and yield load were basically within 10%.
      Conclusion  Steel used as the web can significantly improve the bending stiffness of beams and prevent shear failure of webs. Considering the interface slip, the theoretical calculation and simulation results of flexural performance of STC beams are accurate.
  • [1]
    谌晓梦. 建筑用木材的使用初探[J]. 中国建材科技, 2020, 29(1):105−107.

    Shen X M. Brief discussion on use of building timber[J]. China Building Materials Science & Technology, 2020, 29(1): 105−107.
    [2]
    简伟通, 沈冬儿. 建筑工业化背景下我国木结构的发展趋势[J]. 重庆建筑, 2018, 17(8):10−11. doi: 10.3969/j.issn.1671-9107.2018.08.10

    Jian W T, Shen D E. Development trend of wood structure in China under the background of architectural industrialization[J]. Chongqing Architecture, 2018, 17(8): 10−11. doi: 10.3969/j.issn.1671-9107.2018.08.10
    [3]
    吴树栋. 木材在建筑节能和优化社会材料结构中的作用[J]. 木材工业, 2008(3):1−4.

    Wu S D. Role of wood products in energy saving for buildings[J]. China Wood Industry, 2008(3): 1−4.
    [4]
    龚迎春, 娄万里, 李明月, 等. 我国木结构产业发展展望[J]. 木材工业, 2019, 33(5):20−24.

    Gong Y C, Lou W L, Li M Y, et al. Prospects for timber structure industry in China[J]. China Wood Industry, 2019, 33(5): 20−24.
    [5]
    张如玉, 杨宝磊, 李国东, 等. 钢木组合结构研究综述[J]. 山西建筑, 2019, 45(11):52−53. doi: 10.3969/j.issn.1009-6825.2019.11.027

    Zhang R Y, Yang B L, Li G D, et al. Research review of steel-wood composite structure[J]. Shanxi Architecture, 2019, 45(11): 52−53. doi: 10.3969/j.issn.1009-6825.2019.11.027
    [6]
    白润山, 江卓林. 浅谈钢木组合结构研究进展[J]. 河北建筑工程学院学报, 2016, 34(3):75−78. doi: 10.3969/j.issn.1008-4185.2016.03.016

    Bai R S, Jiang Z L. Research on steel-wood composite structure[J]. Journal of Hebei Institute of Architecture and Civil Engineering, 2016, 34(3): 75−78. doi: 10.3969/j.issn.1008-4185.2016.03.016
    [7]
    de Angelis A, Pecce M R, Logorano G. Evaluation of the plastic hinge length of steel-concrete composite beams under hogging moment[J]. Engineering Structures, 2019, 191(14): 674−685.
    [8]
    李登辉. 钢–木组合梁抗弯性能研究[D]. 北京: 北京交通大学, 2016.

    Li D H. Study on flexural behavior of steel-wood composite beam[D]. Beijing: Beijing Jiaotong University, 2016.
    [9]
    贺洁为. 热轧H型钢–落叶松木组合梁受弯性能研究[D]. 长沙: 中南林业科技大学, 2019.

    He J W. Research on the being bent composite beams of hot-rolled H steel and larch[D]. Changsha: Central South University of Forestry & Technology, 2019.
    [10]
    Hassanieh A, Valipour H R, Bradford M A. Experimental and numerical investigation of short-term behaviour of CLT-steel composite beams[J]. Engineering Structures, 2017, 144(15): 43−57.
    [11]
    沈银澜, 牟在根, Stiemer S F, 等. 正交胶合木填充墙–钢框架体系受力性能[J]. 工程科学学报, 2017, 39(1):155−165.

    Shen Y L, Mou Z G, Stiemer S F, et al. Mechanical performance of cross laminated timber infill wall-steel frames[J]. Chinese Journal of Engineering, 2017, 39(1): 155−165.
    [12]
    Hu Q B, Gao Y, Meng X M, et al. Axial compression of steel-timber composite column consisting of H-shaped steel and glulam[J]. Engineering Structures, 2020, 216(15): 110561.
    [13]
    李威, 高颖, 孟鑫淼, 等. 角钢–集成材L形组合柱的受压性能研究[J]. 林业工程学报, 2020, 5(1):53−60.

    Li W, Gao Y, Meng X M, et al. Study on compressive performance of angel steel-glued laminated timber L-shaped composite column[J]. Journal of Forestry Engineering, 2020, 5(1): 53−60.
    [14]
    李国东, 陈文强. 冷弯薄壁型钢–胶合木组合梁受剪性能研究[J]. 低温建筑技术, 2020, 42(1):49−53.

    Li G D, Chen W Q. Research on shear properties of cold-formed steel-glued wood composite beams[J]. Low Temperature Architecture Technology, 2020, 42(1): 49−53.
    [15]
    陈爱国, 李登辉, 方超, 等. H形钢–木组合梁受弯性能试验研究[J]. 建筑结构学报, 2016, 37(增刊 1):261−267.

    Chen A G, Li D H, Fang C, et al. Experimental study on flexural behavior of H-shaped steel-wood composite beams[J]. Journal of Building Structures, 2016, 37(Suppl. 1): 261−267.
    [16]
    Hassanieh A, Valipour H R, Bradford M A. Load-slip behaviour of steel-cross laminated timber (CLT) composite connections[J]. Journal of Constructional Steel Research, 2016, 122(7): 110−121.
    [17]
    方超. 钢–木组合连接静力性能研究[D]. 北京: 北京交通大学, 2015.

    Fang C. Analysis of static performance in steel-wood connection[D]. Beijing: Beijing Jiaotong University, 2015.
    [18]
    文林峰. 装配式木结构技术体系和工程案例汇编[M]. 北京: 中国建筑工业出版社, 2019.

    Wen L F. Technical system and compilation of engineering cases of assembly wood structure[M]. Beijing: China Architecture & Building Press, 2019.
    [19]
    金许奇, 柏亚双, 徐国林. 基于螺栓连接的薄壁钢–木组合梁承载力影响因素分析[J]. 西南林业大学学报(自然科学), 2018, 38(4):167−172.

    Jin X Q, Bai Y S, Xu G L. Analysis of influencing factors on bearing capacity of thin-walled steel-wood composite beams connected by bolts[J]. Journal of Southwest Forestry University (Natural Sciences), 2018, 38(4): 167−172.
    [20]
    Hassanieh A, Valipour H R, Bradford M A. Experimental and numerical study of steel-timber composite (STC) beams[J]. Journal of Constructional Steel Research, 2016, 122(7): 367−378.
    [21]
    冯鹏, 强翰霖, 叶列平. 材料、构件、结构的“屈服点”定义与讨论[J]. 工程力学, 2017, 34(3):36−46. doi: 10.6052/j.issn.1000-4750.2016.03.0192

    Feng P, Qiang H L, Ye L P. Discussion and definition on yield points of materials, members and structures[J]. Engineering Mechanics, 2017, 34(3): 36−46. doi: 10.6052/j.issn.1000-4750.2016.03.0192
    [22]
    赵卫锋, 曹勇龙, 周靖, 等. 薄壁方钢管/竹胶合板组合空芯柱偏心抗压试验研究[J]. 建筑材料学报, 2015, 18(4):601−607. doi: 10.3969/j.issn.1007-9629.2015.04.012

    Zhao W F, Cao Y L, Zhou J, et al. Eccentric compression experimental study on square thin-walled steel tube/bamboo-plywood composite hollow column[J]. Journal of Building Materials, 2015, 18(4): 601−607. doi: 10.3969/j.issn.1007-9629.2015.04.012
    [23]
    朱忠漫. 干缩裂缝对历史建筑木构件受力性能影响的试验研究[D]. 南京: 东南大学, 2015.

    Zhu Z M. Experimental research on mechanical properties of timber structural members with shrinkage cracks in historic buildings[D]. Nanjing: Southeast University, 2015.
  • Cited by

    Periodical cited type(6)

    1. 闫振刚. 某服役简支梁桥项目荷载试验及承载能力评定探讨. 交通科技与管理. 2024(15): 101-103 .
    2. 郝勇,胡鹏程,孙钰昆,翁维素,徐怀兵,李岩松. 方钢管-木组合柱轴心受压试验研究. 河北建筑工程学院学报. 2024(04): 74-82 .
    3. 刘宏伟,吴时旭,童科挺,张家亮,李玉顺. 钢-LVL组合工字形梁受剪性能研究. 宁波大学学报(理工版). 2023(01): 57-64 .
    4. 刘佳桐,雷云,郦维,陈领,刘瑞越,王解军. 木-钢组合箱梁抗弯性能试验及有限元对比分析. 中南林业科技大学学报. 2023(06): 178-189 .
    5. 尹迪. 新型钢木组合楼盖抗弯性能有限元探究. 中国建筑金属结构. 2022(02): 11-13 .
    6. 邢新,岑培山. 铝-木组合梁抗弯性能研究. 砖瓦. 2022(06): 81-83 .

    Other cited types(10)

Catalog

    Article views (1159) PDF downloads (98) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return