• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhang Yu, Gao Yayue, Chang Fengyuan, Xie Jiangjian, Zhang Junguo. Panthera unica recognition based on data expansion and ResNeSt with few samples[J]. Journal of Beijing Forestry University, 2021, 43(10): 89-99. DOI: 10.12171/j.1000-1522.20210185
Citation: Zhang Yu, Gao Yayue, Chang Fengyuan, Xie Jiangjian, Zhang Junguo. Panthera unica recognition based on data expansion and ResNeSt with few samples[J]. Journal of Beijing Forestry University, 2021, 43(10): 89-99. DOI: 10.12171/j.1000-1522.20210185

Panthera unica recognition based on data expansion and ResNeSt with few samples

More Information
  • Received Date: May 13, 2021
  • Revised Date: June 08, 2021
  • Available Online: August 03, 2021
  • Published Date: October 29, 2021
  •   Objective  The quality of snow leopard monitoring images collected by infrared trigger cameras is uneven and the number is limited. An automatic recognition method of snow leopard monitoring images based on deep learning data expansion was proposed to improve the recognition accuracy of the snow leopard under limited samples.
      Method  Improving the ResNeSt50 model with attention mechanism, the snow leopard monitoring images of Qilian Mountain National Park of northwestern China were used as the original dataset, the non-snow leopard terrestrial wildlife images taken by the infrared trigger camera were used as the extended negative sample, and the network snow leopard images were used as the extended positive sample. Comparative experiments were conducted in turn based on the above three datasets. The model was gradually guided to focus on the key characteristics of individual snow leopards by choosing an appropriate expansion method, and the effectiveness of the data expansion was verified by Gradient-weighted Class Activation Map.
      Result  The model trained with the original data set+expanded negative samples+expanded positive samples had the best recognition effect. The Grad-CAM showed that the model correctly focused on the individual pattern and spot characteristics of the snow leopard. Compared with the recognition model based on Vgg16 and ResNet50, ResNeSt50 achieved the best recognition effect, the test set recognition accuracy rate reached 97.70%, the precision rate reached 97.26%, and the recall rate reached 97.59%.
      Conclusion  The model trained by the original data set+extended negative sample+extended positive sample data expansion method proposed in this paper can distinguish the background from the foreground, and has a strong ability to discriminate the characteristics of snow leopard itself, and the generalization ability is the best.
  • [1]
    洪洋, 张晋东, 王玉君. 雪豹生态与保护研究现状探讨[J]. 四川动物, 2020, 39(6):711−720. doi: 10.11984/j.issn.1000-7083.20190438

    Hong Y, Zhang J D, Wang Y J. Progress in the ecology and conservation research on Panthera unica[J]. Sichuan Journal of Zoology, 2020, 39(6): 711−720. doi: 10.11984/j.issn.1000-7083.20190438
    [2]
    Bracciale L, Catini A, Gentile G, et al. Delay tolerant wireless sensor network for animal monitoring: the pink iguana case[C]//Alessandro D G. Proceedings of International Conference on Applications in Electronics Pervading Industry, Environment and Society. Cham, Switzerland: Springer , 2016: 18−26.
    [3]
    徐峰. 新疆雪豹研究简史[J]. 人与生物圈, 2020(增刊 1):77−79.

    Xu F. A brief history of snow leopard in Xinjiang[J]. Man & Biosphere, 2020(Suppl. 1): 77−79.
    [4]
    马鸣, 徐峰, 吴逸群, 等. 新疆雪豹种群密度监测方法探讨[J]. 生态与农村环境学报, 2011, 27(1):79−83. doi: 10.3969/j.issn.1673-4831.2011.01.016

    Ma M, Xu F, Wu Y Q, et al. Monitoring of population density of snow leopard in Xinjiang[J]. Journal of Ecology and Rural Environment, 2011, 27(1): 79−83. doi: 10.3969/j.issn.1673-4831.2011.01.016
    [5]
    汪六三, 黄子良, 王儒敬. 基于近红外光谱和机器学习的大豆种皮裂纹识别研究[J]. 农业机械学报, 2021, 52(6):361−368. doi: 10.6041/j.issn.1000-1298.2021.06.038

    Wang L S, Huang Z L, Wang R J. Identification of soybean seed coat crack using near infrared spectroscopy and machine learning[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(6): 361−368. doi: 10.6041/j.issn.1000-1298.2021.06.038
    [6]
    杨晓花, 高海云. 基于改进贝叶斯的书目自动分类算法[J]. 计算机科学, 2018, 45(8):203−207.

    Yang X H, Gao H Y. Improved bayesian algorithm based automatic classification method for bibliography[J]. Computer Science, 2018, 45(8): 203−207.
    [7]
    Majdar R S, Ghassemian H. A probabilistic svm approach for hyperspectral image classification using spectral and texture features[J]. International Journal of Remote Sensing, 2017, 38(15): 4265−4284. doi: 10.1080/01431161.2017.1317941
    [8]
    Le Cun Y, Boser B, Denker J S, et al. Handwritten digit recognition with a back-propagation network[C]// Touretzky D S. Advances in neural information processing systems. San Francisco: Morgan Kaufmann, 1990: 396−404.
    [9]
    Le Cun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278−2324. doi: 10.1109/5.726791
    [10]
    Okafor E, Pawara P, Karaaba F, et al. Comparative study between deep learning and bag of visual words for wild-animal recognition[C]//2016 IEEE symposium series on computational intelligence (SSCI). Athens: IEEE, 2017: 1−9.
    [11]
    向秋敏. 野生动物监测图像显著性检测算法及应用[D]. 北京: 北京林业大学, 2017.

    Xiang Q M. Saliency detection and application in wildlife monitoring images[D]. Beijing: Beijing Forestry University, 2017.
    [12]
    Horn G V, Aodha O M, Song Y, et al. The iNaturalist species classification and detection dataset[C]// Mortensen E. 2018 IEEE/CVF conference on computer vision and pattern recognition (CVPR). Salt Lake City: Utah, 2018(3): 132−139.
    [13]
    Timm M, Maji S, Fuller T. Large-scale ecological analyses of animals in the wild using computer vision[C]//Proceedings of the IEEE conference on computer vision and pattern recognition workshops. Salt Lake City: IEEE, 2018: 1896−1898.
    [14]
    王柯力, 袁红春. 基于迁移学习的水产动物图像识别方法[J]. 计算机应用, 2018, 38(5):1304−1308, 1326.

    Wang K L, Yuan H C. Aquatic animal image classification method based on transfer learning[J]. Journal of Computer Applications, 2018, 38(5): 1304−1308, 1326.
    [15]
    Willi M, Pitman R T, Cardoso A W, et al. Identifying animal species in camera trap images using deep learning and citizen science[J]. Methods in Ecology and Evolution, 2019, 10(1): 80−91. doi: 10.1111/2041-210X.13099
    [16]
    陈争涛, 黄灿, 杨波,等. 基于迁移学习的并行卷积神经网络牦牛脸识别算法[J]. 计算机应用, 2021, 41(5):1332−1336.

    Chen Z T, Huang C, Yang B, et al. Parallel convolutional neural network yak face recognition algorithm based on transfer learning[J]. Computer Application, 2021, 41(5): 1332−1336.
    [17]
    赵歆. 基于ResNet网络的奶山羊行为识别方法研究[D]. 西安: 西北农林科技大学, 2020.

    Zhao X. Research on dairy goat behavior recognition method based on resnet network[D]. Xi’an: Northwest A&F University, 2020.
    [18]
    程浙安. 基于深度卷积神经网络的内蒙古地区陆生野生动物自动识别[D]. 北京: 北京林业大学, 2019.

    Cheng Z A. Automatic recognition of terrestrial wildlife in Inner Mongolia based on deep convolutional neural network[D]. Beijing: Beijing Forestry University, 2019.
    [19]
    李安琪. 基于卷积神经网络的野生动物监测图像自动识别方法研究[D]. 北京: 北京林业大学, 2020.

    Li A Q. Research on automatic recognition method of wildlife monitoring images based on convolutional neural network[D]. Beijing: Beijing Forestry University, 2020.
    [20]
    Xie S, Girshick R, Dollár P, et al. Aggregated residual transformations for deep neural networks[C]// 2017 IEEE conference on computer vision and pattern recognition (CVPR). Honolulu: IEEE, 2016: 5987−5995.
    [21]
    赵凯琳, 靳小龙, 王元卓. 小样本学习研究综述[J]. 软件学报, 2021, 32(2):349−369.

    Zhao K L, Jin X L, Wang Y Z. Survey on few-shot learning[J]. Journal of Software, 2021, 32(2): 349−369.
    [22]
    Royle J A, Dorazio R M, Link W A. Analysis of multinomial models with unknown index using data augmentation[J]. Journal of Computational and Graphical Statistics, 2007, 16(1): 67−85. doi: 10.1198/106186007X181425
    [23]
    Zhang H, Wu C, Zhang Z, et al. ResNeSt: split-attention networks[J/OL]. arXiv, 2020 [2021−05−25]. https://arxiv.org/abs/2004.08955.
    [24]
    Li X, Wang W, Hu X, et al. Selective kernel networks[C]// Brendel W. 2019 IEEE/CVF conference on computer vision and pattern recognition (CVPR). Long Beach: IEEE, 2019: 510−519.
  • Related Articles

    [1]Li Yanfu, Fan Xijian, Yang Xubing, Xu Xinzhou. Remote sensing image classification framework based on self-attention convolutional neural network[J]. Journal of Beijing Forestry University, 2021, 43(10): 81-88. DOI: 10.12171/j.1000-1522.20210196
    [2]Jiang Tao, Wang Xinjie. Convolutional neural network for GF-2 image stand type classification[J]. Journal of Beijing Forestry University, 2019, 41(9): 20-29. DOI: 10.13332/j.1000-1522.20180342
    [3]Liu Jiazheng, Wang Xuefeng, Wang Tian. Research on image recognition of five bark texture images based on deep learning[J]. Journal of Beijing Forestry University, 2019, 41(4): 146-154. DOI: 10.13332/j.1000-1522.20180242
    [4]Yu Huiling, Ma Junwei, Zhang Yizhuo. Plant leaf recognition model based on two-way convolutional neural network[J]. Journal of Beijing Forestry University, 2018, 40(12): 132-137. DOI: 10.13332/j.1000-1522.20180182
    [5]Hu Jing, Chen Zhibo, Yang Meng, Zhang Rongguo, Cui Yaji. Plant leaf segmentation method based on fully convolutional neural network[J]. Journal of Beijing Forestry University, 2018, 40(11): 131-136. DOI: 10.13332/j.1000-1522.20180007
    [6]Liu Wending, Li Anqi, Zhang Junguo, Xie Jiangjian, Bao Weidong. Automatic identification method for terrestrial wildlife in Saihanwula National Nature Reserve in Inner Mongolia of northern China based on ROI-CNN[J]. Journal of Beijing Forestry University, 2018, 40(8): 123-131. DOI: 10.13332/j.1000-1522.20180141
    [7]ZHANG Shuai, HUAI Yong-jian.. Leaf image recognition based on layered convolutions neural network deep learning.[J]. Journal of Beijing Forestry University, 2016, 38(9): 108-115. DOI: 10.13332/j.1000-1522.20160035
    [8]LIN Zhuo, WU Cheng-zhen, HONG Wei, HONG Tao. Yield model of Cunninghamia lanceolata plantation based on back propagation neural network and support vector machine.[J]. Journal of Beijing Forestry University, 2015, 37(1): 42-54. DOI: 10.13332/j.cnki.jbfu.2015.01.008
    [9]WANG Yi-fu, SUN Yu-jun, GUO Xiao-yu. Single-tree biomass modeling of Pinus massoniana based on BP neural network[J]. Journal of Beijing Forestry University, 2013, 35(2): 17-21.
    [10]HUANG Jia-rong, GAO Guang-qin, MENG Xian-yu, GUAN Yu-xiu. Forecasting stand diameter distribution based on artificial neural network.[J]. Journal of Beijing Forestry University, 2010, 32(3): 21-26.
  • Cited by

    Periodical cited type(5)

    1. 林海,高大中,张童,崔国发. 基于卷积神经网络的无人机遥感影像水鸟自动识别. 动物学杂志. 2024(03): 450-459 .
    2. 齐建东,郑尚姿,陈子仪,马鐘添. 基于ConvNeXt的北京地区红外相机野生动物图像识别改进模型构建. 林业科学. 2024(08): 33-45 .
    3. 贾一鸣,张长春,胡春鹤,张军国. 基于少样本学习的森林火灾烟雾检测方法. 北京林业大学学报. 2023(09): 137-146 . 本站查看
    4. 齐建东,马鐘添,张德怀,田赟. 基于BS-ResNeXt-50的密云地区野生动物图像识别. 林业科学. 2023(08): 112-122 .
    5. 戎战磊,高雅月,陈生云,张同作. 祁连山国家公园青海片区雪豹栖息地适宜性评价. 兽类学报. 2022(05): 553-562 .

    Other cited types(2)

Catalog

    Article views (1112) PDF downloads (91) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return