Citation: | Zhang Yu, Gao Yayue, Chang Fengyuan, Xie Jiangjian, Zhang Junguo. Panthera unica recognition based on data expansion and ResNeSt with few samples[J]. Journal of Beijing Forestry University, 2021, 43(10): 89-99. DOI: 10.12171/j.1000-1522.20210185 |
[1] |
洪洋, 张晋东, 王玉君. 雪豹生态与保护研究现状探讨[J]. 四川动物, 2020, 39(6):711−720. doi: 10.11984/j.issn.1000-7083.20190438
Hong Y, Zhang J D, Wang Y J. Progress in the ecology and conservation research on Panthera unica[J]. Sichuan Journal of Zoology, 2020, 39(6): 711−720. doi: 10.11984/j.issn.1000-7083.20190438
|
[2] |
Bracciale L, Catini A, Gentile G, et al. Delay tolerant wireless sensor network for animal monitoring: the pink iguana case[C]//Alessandro D G. Proceedings of International Conference on Applications in Electronics Pervading Industry, Environment and Society. Cham, Switzerland: Springer , 2016: 18−26.
|
[3] |
徐峰. 新疆雪豹研究简史[J]. 人与生物圈, 2020(增刊 1):77−79.
Xu F. A brief history of snow leopard in Xinjiang[J]. Man & Biosphere, 2020(Suppl. 1): 77−79.
|
[4] |
马鸣, 徐峰, 吴逸群, 等. 新疆雪豹种群密度监测方法探讨[J]. 生态与农村环境学报, 2011, 27(1):79−83. doi: 10.3969/j.issn.1673-4831.2011.01.016
Ma M, Xu F, Wu Y Q, et al. Monitoring of population density of snow leopard in Xinjiang[J]. Journal of Ecology and Rural Environment, 2011, 27(1): 79−83. doi: 10.3969/j.issn.1673-4831.2011.01.016
|
[5] |
汪六三, 黄子良, 王儒敬. 基于近红外光谱和机器学习的大豆种皮裂纹识别研究[J]. 农业机械学报, 2021, 52(6):361−368. doi: 10.6041/j.issn.1000-1298.2021.06.038
Wang L S, Huang Z L, Wang R J. Identification of soybean seed coat crack using near infrared spectroscopy and machine learning[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(6): 361−368. doi: 10.6041/j.issn.1000-1298.2021.06.038
|
[6] |
杨晓花, 高海云. 基于改进贝叶斯的书目自动分类算法[J]. 计算机科学, 2018, 45(8):203−207.
Yang X H, Gao H Y. Improved bayesian algorithm based automatic classification method for bibliography[J]. Computer Science, 2018, 45(8): 203−207.
|
[7] |
Majdar R S, Ghassemian H. A probabilistic svm approach for hyperspectral image classification using spectral and texture features[J]. International Journal of Remote Sensing, 2017, 38(15): 4265−4284. doi: 10.1080/01431161.2017.1317941
|
[8] |
Le Cun Y, Boser B, Denker J S, et al. Handwritten digit recognition with a back-propagation network[C]// Touretzky D S. Advances in neural information processing systems. San Francisco: Morgan Kaufmann, 1990: 396−404.
|
[9] |
Le Cun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278−2324. doi: 10.1109/5.726791
|
[10] |
Okafor E, Pawara P, Karaaba F, et al. Comparative study between deep learning and bag of visual words for wild-animal recognition[C]//2016 IEEE symposium series on computational intelligence (SSCI). Athens: IEEE, 2017: 1−9.
|
[11] |
向秋敏. 野生动物监测图像显著性检测算法及应用[D]. 北京: 北京林业大学, 2017.
Xiang Q M. Saliency detection and application in wildlife monitoring images[D]. Beijing: Beijing Forestry University, 2017.
|
[12] |
Horn G V, Aodha O M, Song Y, et al. The iNaturalist species classification and detection dataset[C]// Mortensen E. 2018 IEEE/CVF conference on computer vision and pattern recognition (CVPR). Salt Lake City: Utah, 2018(3): 132−139.
|
[13] |
Timm M, Maji S, Fuller T. Large-scale ecological analyses of animals in the wild using computer vision[C]//Proceedings of the IEEE conference on computer vision and pattern recognition workshops. Salt Lake City: IEEE, 2018: 1896−1898.
|
[14] |
王柯力, 袁红春. 基于迁移学习的水产动物图像识别方法[J]. 计算机应用, 2018, 38(5):1304−1308, 1326.
Wang K L, Yuan H C. Aquatic animal image classification method based on transfer learning[J]. Journal of Computer Applications, 2018, 38(5): 1304−1308, 1326.
|
[15] |
Willi M, Pitman R T, Cardoso A W, et al. Identifying animal species in camera trap images using deep learning and citizen science[J]. Methods in Ecology and Evolution, 2019, 10(1): 80−91. doi: 10.1111/2041-210X.13099
|
[16] |
陈争涛, 黄灿, 杨波,等. 基于迁移学习的并行卷积神经网络牦牛脸识别算法[J]. 计算机应用, 2021, 41(5):1332−1336.
Chen Z T, Huang C, Yang B, et al. Parallel convolutional neural network yak face recognition algorithm based on transfer learning[J]. Computer Application, 2021, 41(5): 1332−1336.
|
[17] |
赵歆. 基于ResNet网络的奶山羊行为识别方法研究[D]. 西安: 西北农林科技大学, 2020.
Zhao X. Research on dairy goat behavior recognition method based on resnet network[D]. Xi’an: Northwest A&F University, 2020.
|
[18] |
程浙安. 基于深度卷积神经网络的内蒙古地区陆生野生动物自动识别[D]. 北京: 北京林业大学, 2019.
Cheng Z A. Automatic recognition of terrestrial wildlife in Inner Mongolia based on deep convolutional neural network[D]. Beijing: Beijing Forestry University, 2019.
|
[19] |
李安琪. 基于卷积神经网络的野生动物监测图像自动识别方法研究[D]. 北京: 北京林业大学, 2020.
Li A Q. Research on automatic recognition method of wildlife monitoring images based on convolutional neural network[D]. Beijing: Beijing Forestry University, 2020.
|
[20] |
Xie S, Girshick R, Dollár P, et al. Aggregated residual transformations for deep neural networks[C]// 2017 IEEE conference on computer vision and pattern recognition (CVPR). Honolulu: IEEE, 2016: 5987−5995.
|
[21] |
赵凯琳, 靳小龙, 王元卓. 小样本学习研究综述[J]. 软件学报, 2021, 32(2):349−369.
Zhao K L, Jin X L, Wang Y Z. Survey on few-shot learning[J]. Journal of Software, 2021, 32(2): 349−369.
|
[22] |
Royle J A, Dorazio R M, Link W A. Analysis of multinomial models with unknown index using data augmentation[J]. Journal of Computational and Graphical Statistics, 2007, 16(1): 67−85. doi: 10.1198/106186007X181425
|
[23] |
Zhang H, Wu C, Zhang Z, et al. ResNeSt: split-attention networks[J/OL]. arXiv, 2020 [2021−05−25]. https://arxiv.org/abs/2004.08955.
|
[24] |
Li X, Wang W, Hu X, et al. Selective kernel networks[C]// Brendel W. 2019 IEEE/CVF conference on computer vision and pattern recognition (CVPR). Long Beach: IEEE, 2019: 510−519.
|
[1] | Li Yanfu, Fan Xijian, Yang Xubing, Xu Xinzhou. Remote sensing image classification framework based on self-attention convolutional neural network[J]. Journal of Beijing Forestry University, 2021, 43(10): 81-88. DOI: 10.12171/j.1000-1522.20210196 |
[2] | Jiang Tao, Wang Xinjie. Convolutional neural network for GF-2 image stand type classification[J]. Journal of Beijing Forestry University, 2019, 41(9): 20-29. DOI: 10.13332/j.1000-1522.20180342 |
[3] | Liu Jiazheng, Wang Xuefeng, Wang Tian. Research on image recognition of five bark texture images based on deep learning[J]. Journal of Beijing Forestry University, 2019, 41(4): 146-154. DOI: 10.13332/j.1000-1522.20180242 |
[4] | Yu Huiling, Ma Junwei, Zhang Yizhuo. Plant leaf recognition model based on two-way convolutional neural network[J]. Journal of Beijing Forestry University, 2018, 40(12): 132-137. DOI: 10.13332/j.1000-1522.20180182 |
[5] | Hu Jing, Chen Zhibo, Yang Meng, Zhang Rongguo, Cui Yaji. Plant leaf segmentation method based on fully convolutional neural network[J]. Journal of Beijing Forestry University, 2018, 40(11): 131-136. DOI: 10.13332/j.1000-1522.20180007 |
[6] | Liu Wending, Li Anqi, Zhang Junguo, Xie Jiangjian, Bao Weidong. Automatic identification method for terrestrial wildlife in Saihanwula National Nature Reserve in Inner Mongolia of northern China based on ROI-CNN[J]. Journal of Beijing Forestry University, 2018, 40(8): 123-131. DOI: 10.13332/j.1000-1522.20180141 |
[7] | ZHANG Shuai, HUAI Yong-jian.. Leaf image recognition based on layered convolutions neural network deep learning.[J]. Journal of Beijing Forestry University, 2016, 38(9): 108-115. DOI: 10.13332/j.1000-1522.20160035 |
[8] | LIN Zhuo, WU Cheng-zhen, HONG Wei, HONG Tao. Yield model of Cunninghamia lanceolata plantation based on back propagation neural network and support vector machine.[J]. Journal of Beijing Forestry University, 2015, 37(1): 42-54. DOI: 10.13332/j.cnki.jbfu.2015.01.008 |
[9] | WANG Yi-fu, SUN Yu-jun, GUO Xiao-yu. Single-tree biomass modeling of Pinus massoniana based on BP neural network[J]. Journal of Beijing Forestry University, 2013, 35(2): 17-21. |
[10] | HUANG Jia-rong, GAO Guang-qin, MENG Xian-yu, GUAN Yu-xiu. Forecasting stand diameter distribution based on artificial neural network.[J]. Journal of Beijing Forestry University, 2010, 32(3): 21-26. |
1. |
林海,高大中,张童,崔国发. 基于卷积神经网络的无人机遥感影像水鸟自动识别. 动物学杂志. 2024(03): 450-459 .
![]() | |
2. |
齐建东,郑尚姿,陈子仪,马鐘添. 基于ConvNeXt的北京地区红外相机野生动物图像识别改进模型构建. 林业科学. 2024(08): 33-45 .
![]() | |
3. |
贾一鸣,张长春,胡春鹤,张军国. 基于少样本学习的森林火灾烟雾检测方法. 北京林业大学学报. 2023(09): 137-146 .
![]() | |
4. |
齐建东,马鐘添,张德怀,田赟. 基于BS-ResNeXt-50的密云地区野生动物图像识别. 林业科学. 2023(08): 112-122 .
![]() | |
5. |
戎战磊,高雅月,陈生云,张同作. 祁连山国家公园青海片区雪豹栖息地适宜性评价. 兽类学报. 2022(05): 553-562 .
![]() |