Citation: | Li Yanfu, Fan Xijian, Yang Xubing, Xu Xinzhou. Remote sensing image classification framework based on self-attention convolutional neural network[J]. Journal of Beijing Forestry University, 2021, 43(10): 81-88. DOI: 10.12171/j.1000-1522.20210196 |
[1] |
王海晖. 不同遥感图像的融合与应用[D]. 武汉: 华中科技大学, 2003.
Wang H H. Fusion and application of different remote sensing images[D]. Wuhan: Huazhong University of Science and Technology, 2003.
|
[2] |
曾如珠. 遥感图像分类识别探究[J]. 泉州师范学院学报, 2000, 18(4):1−4. doi: 10.3969/j.issn.1009-8224.2000.04.011
Zeng R Z. On identification of classification of remote sensing images[J]. Journal of Quanzhou Nor-Mal College, 2000, 18(4): 1−4. doi: 10.3969/j.issn.1009-8224.2000.04.011
|
[3] |
李石华, 王金亮, 毕艳. 遥感图像分类方法研究综述[J]. 国土资源遥感, 2005, 64(2):1−6. doi: 10.3969/j.issn.1001-070X.2005.02.001
Li S H, Wang J L, Bi Y. A review of methods for classification of remote sensing images[J]. Remote Sensing for Land & Resources, 2005, 64(2): 1−6. doi: 10.3969/j.issn.1001-070X.2005.02.001
|
[4] |
张裕, 杨海涛, 袁春慧. 遥感图像分类方法综述[J]. 兵器装备工程学报, 2018, 39(8):108−112. doi: 10.11809/bqzbgcxb2018.08.023
Zhang Y, Yang H T, Yuan C H. A survey of remote sensing image classification methods[J]. Journal of Ordnance Equipment Engineering, 2018, 39(8): 108−112. doi: 10.11809/bqzbgcxb2018.08.023
|
[5] |
罗军, 潘瑜春, 王纪华. 基于高分辨率遥感影像的设施农业资源信息采集技术研究[J]. 地理与地理信息科学, 2007, 23(3):51−54. doi: 10.3969/j.issn.1672-0504.2007.03.012
Luo J, Pan Y C, Wang J H. Study on building agricultural resource information collection technology based on high-resolution remote sensing image[J]. Geography and Geo-Information Science, 2007, 23(3): 51−54. doi: 10.3969/j.issn.1672-0504.2007.03.012
|
[6] |
刘建闽, 黄帆, 戴军. 基于机器学习的遥感图像识别检测技术研究及应用[J]. 西安文理学院学报(自然科学版), 2015, 18(4):66−69. doi: 10.3969/j.issn.1008-5564.2015.04.016
Liu J M, Huang F, Dai J. Study and application of the technology of remote sensing image recognition and detection based on machine learning[J]. Journal of Xi’an University of Arts and Science (Natural Science Edition), 2015, 18(4): 66−69. doi: 10.3969/j.issn.1008-5564.2015.04.016
|
[7] |
李国和, 乔英汉, 吴卫江, 等. 深度学习及其在计算机视觉领域中的应用[J]. 计算机应用研究, 2019, 36(12):3521−3529, 3564. doi: 10.19734/j.issn.1001-3695.2018.08.0604
Li G H, Qiao Y H, Wu W J, et al. Review of deep learning and its application in computer vision[J]. Application Research of Computers, 2019, 36(12): 3521−3529, 3564. doi: 10.19734/j.issn.1001-3695.2018.08.0604
|
[8] |
陈超, 齐峰. 卷积神经网络的发展及其在计算机视觉领域中的应用综述[J]. 计算机科学, 2019, 46(3):63−73. doi: 10.11896/j.issn.1002-137X.2019.03.008
Chen C, Qi F. Review on development of convolutional neural network and its application in computer vision[J]. Computer Science, 2019, 46(3): 63−73. doi: 10.11896/j.issn.1002-137X.2019.03.008
|
[9] |
陈波. 基于循环结构的卷积神经网络文本分类方法[J]. 重庆邮电大学学报(自然科学版), 2018, 30(5):705−710. doi: 10.3979/j.issn.1673-825X.2018.05.018
Chen B. Text classification method based on the cycle structured convolutional neural network[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2018, 30(5): 705−710. doi: 10.3979/j.issn.1673-825X.2018.05.018
|
[10] |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J/OL]. ArXiv Preprint ArXiv: 1409.1556, 2014[2020−09−04]. https://arxiv.org/abs/1409.1556.
|
[11] |
Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston: IEEE, 2015: 1−9.
|
[12] |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 770−778.
|
[13] |
张德园, 常云翔, 张利国, 等. SAT-CNN: 基于卷积神经网络的遥感图像分类算法[J]. 小型微型计算机系统, 2018, 39(4):859−864. doi: 10.3969/j.issn.1000-1220.2018.04.042
Zhang D Y, Chang Y X, Zhang L G, et al. SAT-CNN: convolutional neural network framework for remote sensing image classification[J]. Journal of Chinese Computer Systems, 2018, 39(4): 859−864. doi: 10.3969/j.issn.1000-1220.2018.04.042
|
[14] |
徐风, 苗哲, 业巧林. 基于卷积注意力模块的端到端遥感图像分类[J]. 林业工程学报, 2020, 5(4):133−138. doi: 10.13360/j.issn.2096-1359.201907003
Xu F, Miao Z, Ye Q L. End-to-end remote sensing image classification framework based on convolutional block attention module[J]. Journal of Forestry Engineering, 2020, 5(4): 133−138. doi: 10.13360/j.issn.2096-1359.201907003
|
[15] |
Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate[J/OL]. ArXiv Preprint ArXiv: 1409.0473, 2014[2020−12−01]. https://arxiv.org/abs/1409.0473.
|
[16] |
Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words: transformers for image recognition at scale[J/OL]. ArXiv Preprint ArXiv: 2010.11929, 2020[2021−03−01]. https://arxiv.org/abs/2010.11929.
|
[17] |
Alex K, Ilya S, Geoffrey E H. ImageNet classification with deep convolutional neural networks[C]// Pereira F, Burges C J C, Bottou L, et al. Proceedings of the 25th International Conference on Neural Information Processing Systems. New York: Curran Associates Inc., 2012: 1097−1105.
|
[18] |
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]// Luxburg U V. 31st Annual Conference on Neural Information Processing Systems (NIPS 2017). Long Beach: Curran Associates Inc., 2017: 5998−6008.
|
[19] |
Selvaraju R R, Cogswell M, Das A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[J]. International Journal of Computer Vision, 2020, 128(2): 336−359. doi: 10.1007/s11263-019-01228-7
|
1. |
李林. 生活垃圾绝氧热解发电工艺构建与评估. 工业技术创新. 2020(01): 53-59 .
![]() | |
2. |
陈立林,刘琼,杜沄燕. 森林自燃火灾中的凋落物辐射升温特性研究——以岳麓山为例. 中国安全生产科学技术. 2018(02): 174-179 .
![]() | |
3. |
李华,李林. 竹类生物质热解技术构建与评估. 工业技术创新. 2017(03): 49-53 .
![]() |