• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhang Di, Man Xiuling, Liu Siqi, Xu Zhipeng. Litter decomposition and nutrient release of typical forest communities in non-growing season in cold temperate zone[J]. Journal of Beijing Forestry University, 2022, 44(3): 65-74. DOI: 10.12171/j.1000-1522.20210338
Citation: Zhang Di, Man Xiuling, Liu Siqi, Xu Zhipeng. Litter decomposition and nutrient release of typical forest communities in non-growing season in cold temperate zone[J]. Journal of Beijing Forestry University, 2022, 44(3): 65-74. DOI: 10.12171/j.1000-1522.20210338

Litter decomposition and nutrient release of typical forest communities in non-growing season in cold temperate zone

More Information
  • Received Date: August 30, 2021
  • Revised Date: November 04, 2021
  • Available Online: March 10, 2022
  • Published Date: March 24, 2022
  •   Objective   Studying the decomposition and nutrient release characteristics of forest litter during the non-growing season aims to provide theoretical basis for forest nutrient cycling and productivity evaluation in cold temperate zone.
      Method  Four typical forests (Betula platyphylla forest, Populus davidiana forest, Larix gmelinii forest and Pinus sylvestris var. mongolica forest) in cold-temperate regions were selected to conduct the decomposition experiment using bagging method and analyze the decomposition and nutrient release dynamic of litter during autumn, winter and freezing-thawing in spring, respectively.
      Result  The highest mass loss rate and nutrient release of litter was found in autumn. The litter mass loss rate of the four forest types ranged from 17.50% to 30.60%, in which the fastest and slowest litter decomposition were found in the Betula platyphylla and Larix gmelinii forest, respectively. In particularly, the mass loss rate of litter in winter ranged from 0.52% to 5.12%, while the range from 3.12% to 7.65% was found in freezing-thawing period of spring. In the non-growing season, the fastest decomposition rate 1.37 g/(kg·d) occurred in Betula platyphylla, while the slowest was found in Larix gmelinii forest with 0.87 g/(kg·d). Both C, P, and K in the litter of the four forest types exhibited the released state, in which the range of release rate ranged from 17.45% to 65.90%. The release rates of C and P in Betula platyphylla forest were the highest, 8.14% and 65.90%, respectively, and the release rate of K in Populus davidiana forest was the highest, being 58.19%. In contrary, N showed a cumulative state in all forest communities. The release rates of C, P, and K in the four forest communities litter in winter were greatly reduced, while N showed a cumulative state, with the cumulative rate ranged from 1.44% to 51.54%. During the freezing-thawing period in spring, the nutrient release rate of litter increased, but different forest types fluctuated greatly due to the influence of soil temperature and humidity.
      Conclusion  In the non-growing season, the litter mass loss rate of the four forest types in the cold temperate zone ranges from 21.60% to 42.37%. Except for the overall accumulation of N in Populus davidiana forest, the C, N, P and K elements in the litter of other forest types are released. The litter mass loss rate and the release of C, P and K elements are mainly in autumn, while the N release is mainly in spring.
  • [1]
    林波, 刘庆, 吴彦, 等. 森林凋落物研究进展[J]. 生态学杂志, 2004, 23(1): 60−64. doi: 10.3321/j.issn:1000-4890.2004.01.014

    Lin B, Liu Q, Wu Y, et al. Advances in the studies of forest litter[J]. Chinese Journal of Ecology, 2004, 23(1): 60−64. doi: 10.3321/j.issn:1000-4890.2004.01.014
    [2]
    郭剑芬, 杨玉盛, 陈光水, 等. 森林凋落物分解研究进展[J]. 林业科学, 2006, 42(4): 93−100. doi: 10.3321/j.issn:1001-7488.2006.04.017

    Guo J F, Yang Y S, Chen G S, et al. A review on litter decomposition in forest ecosystem[J]. Scientia Silvae Sinicae, 2006, 42(4): 93−100. doi: 10.3321/j.issn:1001-7488.2006.04.017
    [3]
    杜琳垚, 刘千慧, 申璇璇, 等. 降雨减少对油松人工林凋落叶分解的影响[J]. 北京林业大学学报, 2020, 42(7): 68−76. doi: 10.12171/j.1000-1522.20190211

    Du L Y, Liu Q H, Shen X X, et al. Effects of rainfall reduction on litter leaf decomposition of Pinus tabuliformis plantation[J]. Journal of Beijing Forestry University, 2020, 42(7): 68−76. doi: 10.12171/j.1000-1522.20190211
    [4]
    Reinhard F H, Oliver B. Plant litter-decomposition, humus formation and carbon sequestration[J]. Journal of Plant Physiology, 2004, 161(10): 1185−1186. doi: 10.1016/j.jplph.2004.05.003
    [5]
    Berg B. Litter decomposition and organic matter turnover in northern forest soils[J]. Forest Ecology and Management, 2000, 133(1/2): 13−22.
    [6]
    Marie-Madeleine C, Pierre B, Björn B. Litter decomposition, climate and liter quality[J]. Trends in Ecology & Evolution, 1995, 10(2): 63−66.
    [7]
    Kai Y, Wan Q Y, Chang H P, et al. Foliar litter decomposition in an alpine forest meta-ecosystem on the eastern Tibetan Plateau[J]. Science of the Total Environment, 2016, 566−567: 279−287. doi: 10.1016/j.scitotenv.2016.05.081
    [8]
    Aerts R. Nitrogen partitioning between resorption and decomposition pathways: atrade off between nitrogenuse efficiency and litter decomposibility[J]. Oikos, 1997, 80: 593−603.
    [9]
    Jordi G P, Pere C, Joan R. Litter decomposition and faunal activity in Mediterranean forest soils: effects of N content and the moss laye[J]. Soil Biology and Biochemistry, 2004, 36(6): 989−997. doi: 10.1016/j.soilbio.2004.02.016
    [10]
    丘宝剑. 中国的热带、亚热带和温带[J]. 河南大学学报(自然科学版), 1993, 23(4): 11−12.

    Qiu B J. The tropical, subtropical and temperate zones of China[J]. Journal of Henan University (Natural Science Edition), 1993, 23(4): 11−12.
    [11]
    庞梅. 古田山亚热带常绿阔叶林叶片凋落物分解与凋落物性状关系研究[D]. 重庆: 重庆大学, 2018.

    Pang M. Relationship between litter decomposition and litter traits in subtropical evergreen broad-leaved forest in Gutianshan[D]. Chongqing: Chongqing University, 2018.
    [12]
    王健健, 王永吉, 来利明, 等. 我国中东部不同气候带成熟林凋落物生产和分解及其与环境因子的关系[J]. 生态学报, 2013, 33(15): 4818−4825. doi: 10.5846/stxb201205150719

    Wang J J, Wang Y J, Lai L M, et al. Litter production and decomposition of different forest ecosystems and their relations to environmental factors in different climatic zones of mid and eastern China[J]. Acta Ecologica Sinica, 2013, 33(15): 4818−4825. doi: 10.5846/stxb201205150719
    [13]
    潘思涵, 程宇琪, 杜浩, 等. 大兴安岭森林演替过程中凋落物分解与DOC释放研究[J]. 西南林业大学学报(自然科学), 2019, 39(5): 75−83.

    Pan S H, Cheng Y Q, Du H, et al. Litter decomposition and DOC release during forest succession in Greater Khingan Mountains[J]. Journal of Southwest Forestry University (Natural Science), 2019, 39(5): 75−83.
    [14]
    李海涛, 于贵瑞, 李家永, 等. 井冈山森林凋落物分解动态及磷、钾释放速率[J]. 应用生态学报, 2007, 18(2): 233−240. doi: 10.3321/j.issn:1001-9332.2007.02.001

    Li H T, Yu G R, Li J Y, et al. Dynamics of litter decomposition and phosphorus and potassium release in Jinggang Mountain region of Jiangxi Province[J]. Chinese Journal of Applied Ecology, 2007, 18(2): 233−240. doi: 10.3321/j.issn:1001-9332.2007.02.001
    [15]
    唐仕姗, 杨万勤, 王海鹏, 等. 川西亚高山3个优势树种不同径级根系分解特征[J]. 应用生态学报, 2015, 26(10): 2921−2927.

    Tang S S, Yang W Q, Wang H P, et al. Decomposition and nutrient release of root with different diameters of three subalpine dominant trees in western area of Sichuan Province, China[J]. Chinese Journal of Applied Ecology, 2015, 26(10): 2921−2927.
    [16]
    Meena B, Keshab A, Sabana P, et al. In situ litter decomposition and nutrient release from forest trees along an elevation gradient in central Himalaya[J/OL]. Catena, 2020, 194: 104698(2020−05−18)[2020−05−23]. https://doi.org/10.1016/j.catena.2020.104698.
    [17]
    Perry D A, Choquette C, Schroeder P. Nitrogen dynamics in conifer-dominated forests with and without hardwoods[J]. Canadian Journal of Forest Research, 1987, 17(11): 1434−1441. doi: 10.1139/x87-221
    [18]
    李娜, 赵传燕, 郝虎, 等. 海拔和郁闭度对祁连山青海云杉林叶凋落物分解的影响[J]. 生态学报, 2021, 41(11): 4493−4502.

    Li N, Zhao C Y, Hao H, et al. Decomposition and its nutrients dynamic of Qinghai spruce leaf litter with elevation gradient in Qilian Mountains[J]. Acta Ecologica Sinica, 2021, 41(11): 4493−4502.
    [19]
    Berg B, Wessen B. Changes in organic-chemical compounds and in growth offungal mycelium in decomposing birch leaf litter as compared to pine needles[J]. Pedobiologia, 1984, 26: 285−298.
    [20]
    秦胜金, 刘景双, 周旺明, 等. 三江平原小叶章湿地枯落物初期分解动态[J]. 应用生态学报, 2008, 19(6): 1217−1222.

    Qin S J, Liu J S, Zhou W M, et al. Dynamics of initial decomposition of Calamagrostis angustfolia litter in Sanjiang Plain of China[J]. Chinese Journal of Applied Ecology, 2008, 19(6): 1217−1222.
    [21]
    许晓静, 张凯, 刘波, 等. 森林凋落物分解研究进展[J]. 中国水土保持科学, 2007, 5(4): 108−114. doi: 10.3969/j.issn.1672-3007.2007.04.021

    Xu X J, Zhang K, Liu B, et al. Review on litter decomposition in forest ecosystems[J]. China Soil and Water Conservation, 2007, 5(4): 108−114. doi: 10.3969/j.issn.1672-3007.2007.04.021
    [22]
    Cornwell W K, Cornelissen J H C, Amatangelo K, et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide[J]. Ecology Letters, 2008, 11(10): 1065−1071. doi: 10.1111/j.1461-0248.2008.01219.x
    [23]
    Reich P B, Wright I J, Lusk C H. Predicting leaf physiology from simple plant and climate attributes: a global GLOPNET analysis[J]. Ecological Applications: A Publication of the Ecological Society of America, 2007, 17(7): 1982−1988. doi: 10.1890/06-1803.1
    [24]
    Aerts R C. Leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship[J]. Oikos, 1997, 79: 439−449. doi: 10.2307/3546886
    [25]
    Rahman M M, Tsukamoto J. Leaf traits, litter decomposability and forest floor dynamics in an evergreen- and a deciduous-broadleaved forest in warm temperate Japan[J]. Forestry, 2013, 86: 441−451. doi: 10.1093/forestry/cpt015
    [26]
    张东来, 毛子军, 朱胜英, 等. 黑龙江省帽儿山林区6种主要林分类型凋落物研究[J]. 植物研究, 2008, 28(1): 104−108. doi: 10.7525/j.issn.1673-5102.2008.01.022

    Zhang D L, Mao Z J, Zhu S Y, et al. Litter falls of 6 major forest stands in Maoershan Mountain of Heilongjiang Province[J]. Plant Research, 2008, 28(1): 104−108. doi: 10.7525/j.issn.1673-5102.2008.01.022
    [27]
    岳新建, 叶功富, 高伟, 等. 海岸沙地主要森林的凋落物分解及生态化学计量特征[J]. 水土保持研究, 2021, 28(4): 77−83.

    Yue X J, Ye G F, Gao W, et al. Characteristics of litter decomposition and ecological stoichiometry of different forests on coastal sandy land in Fujian Province[J]. Research of Soil and Water Conservation, 2021, 28(4): 77−83.
    [28]
    赵喆, 刘延文, 纪福利, 等. 华北落叶松—白桦凋落物混合分解研究[J]. 中南林业科技大学学报, 2016, 36(12): 74−78, 84.

    Zhao Z, Liu Y W, Ji F L, et al. Mixed litter decomposition of Larix principis-rupprechtii and Betula platyphylla[J]. Journal of Central South University of Forestry and Technology, 2016, 36(12): 74−78, 84.
    [29]
    Joshua P S, Stephan H. Nitrogen transfer between decomposing leaves of different N status[J]. Soil Biology and Biochemistry, 2006, 39(7): 1428−1436.
    [30]
    Xiao N X, Hideaki S, Tsutomu E. Decomposition patterns of leaf litter of seven common canopy species in a subtropical forest: dynamics of mineral nutrients[J]. Journal of Forestry Research, 2006, 17(1): 1−6. doi: 10.1007/s11676-006-0001-9
    [31]
    贺红月, 马长明, 牟洪香, 等. 华北落叶松和白桦叶凋落物混合分解特征及土壤养分动态[J]. 林业资源管理, 2018(3): 93−100.

    He H Y, Ma C M, Mou H X, et al. The Decomposition characteristics and soil nutrientof dynamics of leaf litter mixture of Larix principis-rupprechtii and Betula platyphylla[J]. Forest Resources Management, 2018(3): 93−100.
    [32]
    张琴, 林天喜, 王贵春, 等. 红松、蒙古栎和色木槭凋落物混合分解研究[J]. 北京林业大学学报, 2014, 36(6): 106−111.

    Zhang Q, Lin T X, Wang G C, et al. Decomposition of mixed litter of Pinus koraiensis, Quercus mongolica and Acer mono[J]. Journal of Beijing Forestry University, 2014, 36(6): 106−111.
    [33]
    王欣, 郭延朋, 赵辉, 等. 华北落叶松与白桦叶凋落物混合分解及其养分动态[J]. 林业与生态科学, 2018, 33(1): 29−36.

    Wang X, Guo Y P, Zhao H, et al. Mixed decomposition characteristics and nutrient dynamics of the leaf litter mixtures of Larix principis-rupprechtii and Betula platyphylla[J]. Forestry and Ecological Sciences, 2018, 33(1): 29−36.
    [34]
    郭晋平, 丁颖秀, 张芸香. 关帝山华北落叶松林凋落物分解过程及其养分动态[J]. 生态学报, 2009, 29(10): 5684−5695. doi: 10.3321/j.issn:1000-0933.2009.10.060

    Guo J P, Ding Y X, Zhang Y X. Decomposition process and nutrient dynamic of litterfall in Larix principis-rupprechtii stand in Guandishan Mountatains[J]. Acta Ecologica Sinica, 2009, 29(10): 5684−5695. doi: 10.3321/j.issn:1000-0933.2009.10.060
    [35]
    周彪. 帽儿山地区红松和兴安落叶松人工林凋落物动态研究[D]. 哈尔滨: 东北林业大学, 2007.

    Zhou B. Study on the litter dynamics of Pinus koraiensis and Larix gmelinii plantations in Maoershan area[D]. Harbin: Northeast Forestry University, 2007.
    [36]
    曹丽花, 尹为玲, 刘合满, 等. 西藏东南部色季拉山主要类型森林叶片和枯落物养分含量特征[J]. 生态学报, 2019, 39(11): 4029−4038.

    Cao L H, Yin W L, Liu H M, et al. Stoichiometric characteristics of leaves and litter in typical forest types on Sejila Mountain, southeastern Tibet[J]. Acta Ecologica Sinica, 2019, 39(11): 4029−4038.
    [37]
    侯玲玲, 孙涛, 毛子军, 等. 小兴安岭不同林龄天然次生白桦林凋落物分解及养分变化[J]. 植物研究, 2012, 32(4): 492−496. doi: 10.7525/j.issn.1673-5102.2012.04.020

    Hou L L, Sun T, Mao Z J, et al. Litter decomposition and nutrient dynamic of Betula platyphylla secondary forest with different stand ages in Xiaoxing’an Mountains[J]. Plant Research, 2012, 32(4): 492−496. doi: 10.7525/j.issn.1673-5102.2012.04.020
    [38]
    Parton W, Silver W L, Burk I C, et al. Global-scale similarities in nitrogen release patterns during long-term decomposition[J]. Science, 2007, 315(26): 361−364.
    [39]
    Moore T R, Trofymow J A. Patterns of carbon, nitrogen and phosphorus dynamics in decomposing foliar litter in Canadian forests[J]. Ecosystems, 2006, 9(1): 46−62. doi: 10.1007/s10021-004-0026-x
    [40]
    任书杰, 于贵瑞, 姜春明, 等. 中国东部南北样带森林生态系统102个优势种叶片碳氮磷化学计量学统计特征[J]. 应用生态学报, 2012, 23(3): 581−586.

    Ren S J, Yu G R, Jiang C M, et al. Stoichiometric characteristics of leaf carbon, nitrogen, and phosphorus of 102 dominant species in forest ecosystems along the North-South Transect of East China[J]. Chinese Journal of Applied Ecology, 2012, 23(3): 581−586.
    [41]
    Hang Z, Li X, Qiu F W, et al. Spatial patterns and environmental factors influencing leaf carbon content in the forests and shrublands of China[J]. Journal of Geographical Sciences, 2018, 28(6): 791−801. doi: 10.1007/s11442-018-1505-x
    [42]
    唐仕姗, 杨万勤, 王海鹏, 等. 中国森林凋落叶氮、磷化学计量特征及控制因素[J]. 应用与环境生物学报, 2015, 21(2): 316−322.

    Tang S S, Yang W Q, Wang H P, et al. Stoichiometri characteristics and controlling factors of N and P in forest leaf litter of China[J]. Chinese Journal of Applied and Environmental Biology, 2015, 21(2): 316−322.
    [43]
    赵鹏武. 大兴安岭兴安落叶松林凋落物动态与养分释放规律研究[D]. 呼和浩特: 内蒙古农业大学, 2009.

    Zhao P W. Study on litter dynamics and nutrient release laws of Larix gmelinii forest in Daxing’an Mountains[D]. Hohhot: Inner Mongolia Agricultural University, 2009.
    [44]
    陈金玲, 金光泽, 赵凤霞. 小兴安岭典型阔叶红松林不同演替阶段凋落物分解及养分变化[J]. 应用生态学报, 2010, 21(9): 2209−2216.

    Chen J L, Jin G Z, Zhao F X. Litter decomposition and nutrient dynamics at different succession stages of typical mixed broad-leaved Korean pine forests in Xiaoxing’an Mountains China[J]. Chinese Journal of Applied Ecology, 2010, 21(9): 2209−2216.
  • Related Articles

    [1]Cai Zhiyong, Sun Long, Hu Haiqing, Zhao Nan, Sun Jiabao. Dynamic prediction of forest litter load based on litter decomposition rate[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20230183
    [2]Liu Siqi, Man Xiuling, Zhang Di, Xu Zhipeng. Dynamics of root decomposition and carbon and nitrogen release of four tree species with different diameter classes in the cold temperate zone[J]. Journal of Beijing Forestry University, 2023, 45(7): 36-46. DOI: 10.12171/j.1000-1522.20210490
    [3]LI Dong-sheng, ZHENG Jun-qiang, WANG Xiu-xiu, ZHENG Xing-bo, HAN Shi-jie. Effects of nitrogen addition and water manipulation on leaf litter decomposition[J]. Journal of Beijing Forestry University, 2016, 38(4): 44-52. DOI: 10.13332/j.1000-1522.20150429
    [4]ZHENG Jun-qiang, GUO Rui-hong, LI Dong-sheng, LI Dong, LI Jin-gong, ZHU Bao-kun, HAN Shi-jie. Effects of nitrogen deposition and drought on litter decomposition in a temperate forest[J]. Journal of Beijing Forestry University, 2016, 38(4): 21-28. DOI: 10.13332/j.1000-1522.20150464
    [5]MAO Hong-rui, CHEN Jin-ling, JIN Guang-ze. Effects of nitrogen addition on litter decomposition and nutrient release in typical broadleaf-Korean pine mixed forest[J]. Journal of Beijing Forestry University, 2016, 38(3): 21-31. DOI: 10.13332/j.1000-1522.20150139
    [6]ZHANG Qin, LIN Tian xi, WANG Gui chun, SUN Guo wen, FAN Xiu hua. Decomposition of mixed litter of Pinus koraiensis, Quercus mongolica and Acer mono[J]. Journal of Beijing Forestry University, 2014, 36(6): 106-111. DOI: 10.13332/j.cnki.jbfu.2014.06.020
    [7]LI Guo-lei, LIU Yong, LI Rui-sheng, XU Yang, GUO Bei. Responses of decomposition rate, nutrient return and composition of leaf litter to thinning intensities in Pinus tabulaeformis plantation[J]. Journal of Beijing Forestry University, 2008, 30(5): 52-57.
    [8]FAN Hou-bao, , LIU Wen-fei, YANG Yue-lin, ZHANG Zi-wen, CAO Hanyang, XU Lei. Decomposition of leaf litter of Chinese fir in response to increased nitrogen deposition[J]. Journal of Beijing Forestry University, 2008, 30(2): 8-13.
    [9]LI Xue-feng, HAN Shi-jie, GUO Zhong-ling, ZHENG Xing-bo, SONG Guo-zheng, LI Kao-xue. Decomposition of pine needles and twigs on and under the litter layer in the natural Korean pine broadleaved forests[J]. Journal of Beijing Forestry University, 2006, 28(3): 8-13.
    [10]LIU Qiang, PENG Shao-lin, BI Hua, ZHANG Hong-yi, LI Zhi-an, MA Wen-hui, LI Ni-ya. Nutrient dynamics of foliar litter in reciprocal decomposition in tropical and subtropical forests.[J]. Journal of Beijing Forestry University, 2005, 27(1): 24-32.
  • Cited by

    Periodical cited type(13)

    1. 余恩旭,刘世荣,张明芳,侯怡萍,孙美荣,邓诗宇. 林分-流域森林凋落物持水能力空间尺度上推模型构建——以河南宝天曼蛮子庄流域为例. 生态学报. 2025(02): 911-922 .
    2. 刘巧娟,张之松,满秀玲,高明磊,赵佳龙. 寒温带多年冻土区不同林龄白桦林土壤酶活性动态特征. 东北林业大学学报. 2024(03): 125-131 .
    3. 凌雷,马成艳,陈徵尼,仲怡铭,王子乔,王翠英. 兴隆山典型林分土壤呼吸的空间异质性分析. 兰州大学学报(自然科学版). 2024(01): 76-83 .
    4. 朱正青,满秀玲. 林下植被对寒温带兴安落叶松林土壤磷形态及有效性的影响. 水土保持学报. 2024(02): 339-350+363 .
    5. 牛一迪,蔡体久. 大兴安岭北部次生林演替过程中物种多样性的变化及其影响因子. 植物生态学报. 2024(03): 349-363 .
    6. 赵继德,杨雨春,申方圆,孟俊,杨立学. 4种落叶松人工林凋落物分解与养分释放动态特征. 中南林业科技大学学报. 2024(07): 119-129 .
    7. 崔宇鸿,叶绍明,卢志锋,燕羽,蒋晨阳. 不同连栽代次桉树人工林土壤团聚体中有机碳组分的积累和转化. 北京林业大学学报. 2024(10): 42-52 . 本站查看
    8. 范文泽,张国财,李津,李思怡,姚长缨,辛士峰. 东北暗棕壤典型林型对土壤磷组分的影响. 吉林林业科技. 2024(06): 13-20 .
    9. 刘贝贝,蔡体久. 大兴安岭北部主要森林类型土壤活性碳组分及碳库稳定性变化特征. 水土保持学报. 2024(06): 203-213 .
    10. 汪金龙,胡海波,周梅佳,吴超明,朱骊. 北亚热带不同人工林林分土壤酶化学计量特征. 森林与环境学报. 2023(01): 68-75 .
    11. 郑智超,满浩然,臧淑英,刘超,董星丰. 大兴安岭呼玛河流域多年冻土区森林土壤有机碳和有效氮分布特征及影响因素. 冰川冻土. 2023(01): 222-232 .
    12. 卢玉鹏,黄国华,高柱,毛积鹏,张小丽,陈璐,王小玲. 猕猴桃修剪枝条的还田分解特征及其受基质质量的影响. 果树学报. 2023(03): 516-526 .
    13. 陶佳,雷泽勇,王国晨,周凤艳,白文强. 沙地樟子松人工林叶凋落物的分解与养分释放. 干旱区资源与环境. 2023(12): 131-139 .

    Other cited types(9)

Catalog

    Article views (904) PDF downloads (57) Cited by(22)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return