• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Huang Jinjin, Liu Xiaotong, Zhang Yiru, Li Haikui. Stand biomass growth model of broadleaved forest with parameter classification in Guangdong Province of southern China[J]. Journal of Beijing Forestry University, 2022, 44(5): 19-33. DOI: 10.12171/j.1000-1522.20210403
Citation: Huang Jinjin, Liu Xiaotong, Zhang Yiru, Li Haikui. Stand biomass growth model of broadleaved forest with parameter classification in Guangdong Province of southern China[J]. Journal of Beijing Forestry University, 2022, 44(5): 19-33. DOI: 10.12171/j.1000-1522.20210403

Stand biomass growth model of broadleaved forest with parameter classification in Guangdong Province of southern China

More Information
  • Received Date: October 10, 2021
  • Revised Date: December 02, 2021
  • Available Online: April 13, 2022
  • Published Date: May 24, 2022
  •   Objective  A regional-scale stand biomass growth model was established to provide methodological support for predicting the biomass and carbon storage of natural broadleaved forests in Guangdong Province of southern China in the future.
      Method  Based on the five forest inventory data of Guangdong Province from 1997 to 2017, 203 natural forest sample plots with six broadleaved tree species such as Quercus spp., Schima superba and other soft broadleaved species as dominant tree species were selected. The site quality difference was reflected by parameter classification, the density effect was expressed by competition index, and the modeling method was distinguished by step-by-step modeling (univariate nonlinear regression method) and joint modeling (nonlinear simultaneous equations method). The DBH growth model, constructed by the theoretical growth equation, was used to estimate the stand age, and then various stand biomass growth models were constructed. The goodness of fit of the model was evaluated by four indexes such as determination coefficient and average prediction error. For the model with high goodness of fit, 183 sample plots by continuously inventory in four periods from 2002 to 2017 were taken as test samples, and the total relative error was used to verify its application effect.
      Result  To compare the fitting effect and the estimation accuracy at regional scale and sample plot level for exploring the influence of four factors including stand density, different parameter classification, classification method and modeling method on the biomass growth model, it was found that nonlinear simultaneous equation was better than step-by-step modeling; the classification of model parameter b related to growth rate was better than that of model parameter a related to growth potential; considering the stand density and adding competition index to the hierarchical equation had little effect on optimizing model performance. Based on the classification of parameter b, the joint model without competition index in independent variable and the hierarchical equation was the optimal model, i.e. Model 10. The determination coefficient of the biomass growth model was 0.970 1. When Model 10 was used to predict the biomass of four periods, the prediction effect was good. But the estimation error in the later stage was significantly lower than that in the earlier stage. For example, when Model 10 was used to estimate the biomass of Quercus spp. at regional scale from 2002 to 2017, the estimation errors of four periods were 6.22%, 15.27%, 4.80% and −1.84%, respectively.
      Conclusion  It is a feasible method to establish stand biomass growth model based on the Richards growth equation to estimate regional-scale biomass, which not only provides a basis for evaluating the carbon sink capacity of forest ecosystem at regional scale in a certain period in the future, but also provides a reference for the construction of stand biomass growth model in other regions.
  • [1]
    Somogyi Z, Cienciala E, Mkip R, et al. Indirect methods of large-scale forest biomass estimation[J]. European Journal of Forest Research, 2007, 126(2): 197−207. doi: 10.1007/s10342-006-0125-7
    [2]
    罗云建, 张小全, 王效科, 等. 森林生物量的估算方法及其研究进展[J]. 林业科学, 2009, 45(8): 129−134. doi: 10.3321/j.issn:1001-7488.2009.08.023

    Luo Y J, Zhang X Q, Wang X K, et al. Forest biomass estimation methods and their prospects[J]. Scientia Silvae Sinicae, 2009, 45(8): 129−134. doi: 10.3321/j.issn:1001-7488.2009.08.023
    [3]
    林开淼. 亚热带常绿阔叶林生物量模型及其分析[J]. 中南林业科技大学学报, 2017, 37(11): 115−120, 126.

    Lin K M. Research and analysis on biomass allometric equations of subtropical broad-leaved forest[J]. Journal of Central South University of Forestry & Technology, 2017, 37(11): 115−120, 126.
    [4]
    Zianis D, Muukkonen P, Makipaa R, et al. Biomass and stem volume equations for tree species in Europe[J]. Silva Fennica Monographs, 2005, 4: 63.
    [5]
    Andrzej M J, Dyderski M K, Gsikiewicz K, et al. Tree- and stand-level biomass estimation in a Larix decidua Mill. chronosequence[J]. Forests, 2018, 9(10): 587. doi: 10.3390/f9100587
    [6]
    曾伟生, 孙乡楠, 王六如, 等. 东北林区10种主要森林类型的蓄积量、生物量和碳储量模型研建[J]. 北京林业大学学报, 2021, 43(3): 1−8. doi: 10.12171/j.1000-1522.20200058

    Zeng W S, Sun X N, Wang L R, et al. Developing stand volume, biomass and carbon stock models for ten major forest types in forest region of northeastern China[J]. Journal of Beijing Forestry University, 2021, 43(3): 1−8. doi: 10.12171/j.1000-1522.20200058
    [7]
    Wang C K. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests[J]. Forest Ecology and Management, 2006, 222(1−3): 9−16. doi: 10.1016/j.foreco.2005.10.074
    [8]
    Brown S, Lugo A E. Biomass of tropical forests: a new estimate based on forest volumes[J]. Science, 1984, 223: 1290−1293. doi: 10.1126/science.223.4642.1290
    [9]
    Fang J Y, Chen A P, Peng C H, et al. Changes in forest biomass carbon storage in China between 1949 and 1998[J]. Science, 2001, 292: 2320−2322. doi: 10.1126/science.1058629
    [10]
    Fang J Y, Wang G G, Liu G H, et al. Forest biomass of China: an estimate based on the biomass-volume relationship[J]. Ecological Applications, 1998, 8(4): 1084−1091.
    [11]
    Sánchez-González M, Tomé M, Montero G. Modelling height and diameter growth of dominant cork oak trees in Spain[J]. Annals of Forest Science, 2005, 62(7): 633−643. doi: 10.1051/forest:2005065
    [12]
    刘帅, 李建军, 卿东升, 等. 气候敏感的青冈栎单木胸径生长模型[J]. 林业科学, 2021, 57(1): 95−104. doi: 10.11707/j.1001-7488.20210110

    Liu S, Li J J, Qing D S, et al. A climate-sensitive individual-tree DBH growth model for Cyclobalanopsis glauca[J]. Scientia Silvae Sinicae, 2021, 57(1): 95−104. doi: 10.11707/j.1001-7488.20210110
    [13]
    龙时胜, 曾思齐, 甘世书, 等. 基于林木多期直径测定数据的异龄林年龄估计方法[J]. 中南林业科技大学学报, 2018, 38(9): 1−8.

    Long S S, Zeng S Q, Gan S S, et al. Age estimation method of uneven-aged forest based on data of multistage diameter measurement[J]. Journal of Central South University of Forestry & Technology, 2018, 38(9): 1−8.
    [14]
    雷相东, 李希菲. 混交林生长模型研究进展[J]. 北京林业大学学报, 2003, 25(3): 105−110. doi: 10.3321/j.issn:1000-1522.2003.03.022

    Lei X D, Li X F. A review on growth models of mixed forest[J]. Journal of Beijing Forestry University, 2003, 25(3): 105−110. doi: 10.3321/j.issn:1000-1522.2003.03.022
    [15]
    国红, 雷渊才, 郎璞玫. 年龄无关的生长模型研究: 以落叶松平均高为例[J]. 林业科学研究, 2020, 33(5): 129−136.

    Guo H, Lei Y C, Lang P M. Study on age-independent tree model: taking the average height of Larix gmelinii as an example[J]. Forest Research, 2020, 33(5): 129−136.
    [16]
    葛宏立, 项小强, 何时珍, 等. 年龄隐含的生长模型在森林资源连续清查中的应用[J]. 林业科学研究, 1997, 10(4): 81−85.

    Ge H L, Xiang X Q, He S Z, et al. Application of the age implicit growth model to continuous forest inventory[J]. Forest Research, 1997, 10(4): 81−85.
    [17]
    曹磊. 基于多期保留木实测胸径估计吉林省蒙古栎天然林年龄[D]. 北京: 中国林业科学研究院, 2020.

    Cao L. Estimating stand age of Quercus mongolica natural forest in Jilin based on diameter data of periodical measurements[D]. Beijing: Chinese Academy of Forestry, 2020.
    [18]
    龙时胜, 曾思齐, 甘世书, 等. 基于林木多期直径测定数据的异龄林年龄估计方法Ⅱ[J]. 中南林业科技大学学报, 2019, 39(6): 23−29, 59.

    Long S S, Zeng S Q, Gan S S, et al. Age estimation method Ⅱ of uneven-aged forest based on the data of multistage diameter measurement[J]. Journal of Central South University of Forestry & Technology, 2019, 39(6): 23−29, 59.
    [19]
    Gargaglione V, Peri P L, Rubio G. Allometric relations for biomass partitioning of Nothofagus antarctica trees of different crown classes over a site quality gradient[J]. Forest Ecology & Management, 2010, 259(6): 1118−1126.
    [20]
    Peri P L, Gargaglione V, Pastur G M, et al. Carbon accumulation along a stand development sequence of Nothofagus antarctica forests across a gradient in site quality in southern Patagonia[J]. Forest Ecology & Management, 2010, 260(2): 229−237.
    [21]
    孟宪宇. 测树学[M]. 3版. 北京: 中国林业出版社, 2006.

    Meng X Y. Forest measurement[M]. 3rd ed. Beijing: China Forestry Publishing House, 2006.
    [22]
    Li H K, Zhao P X. Improving the accuracy of tree-level aboveground biomass equations with height classification at a large regional scale[J]. Forest Ecology & Management, 2013, 289: 153−163.
    [23]
    赵菡, 雷渊才, 符利勇. 江西省不同立地等级的马尾松林生物量估计和不确定性度量[J]. 林业科学, 2017, 53(8): 81−93. doi: 10.11707/j.1001-7488.20170810

    Zhao H, Lei Y C, Fu L Y. Biomass and uncertainty estimates of Pinus massoniana forest for different site classes in Jiangxi Province[J]. Scientia Silvae Sinicae, 2017, 53(8): 81−93. doi: 10.11707/j.1001-7488.20170810
    [24]
    雷相东, 符利勇, 李海奎, 等. 基于林分潜在生长量的立地质量评价方法与应用[J]. 林业科学, 2018, 54(12): 116−126. doi: 10.11707/j.1001-7488.20181213

    Lei X D, Fu L Y, Li H K, et al. Methodology and applications of site quality assessment based on potential mean annual increment[J]. Scientia Silvae Sinicae, 2018, 54(12): 116−126. doi: 10.11707/j.1001-7488.20181213
    [25]
    薛春泉, 徐期瑚, 林丽平, 等. 基于异速生长和理论生长方程的广东省木荷生物量动态预测[J]. 林业科学, 2019, 55(7): 86−94. doi: 10.11707/j.1001-7488.20190709

    Xue C Q, Xu Q H, Lin L P, et al. Biomass dynamic predicting for Schima superba in Guangdong based on allometric and theoretical growth equation[J]. Scientia Silvae Sinicae, 2019, 55(7): 86−94. doi: 10.11707/j.1001-7488.20190709
    [26]
    曹磊, 刘晓彤, 李海奎, 等. 广东省常绿阔叶林生物量生长模型[J]. 林业科学研究, 2020, 33(5): 61−67.

    Cao L, Liu X T, Li H K, et al. Biomass growth models for evergreen broad-leaved forests in Guangdong[J]. Forest Research, 2020, 33(5): 61−67.
    [27]
    李巍, 王传宽, 张全智. 林木分化对兴安落叶松异速生长方程和生物量分配的影响[J]. 生态学报, 2015, 35(6): 1679−1687.

    Li W, Wang C K, Zhang Q Z. Differentiation of stand individuals impacts allometry and biomass allocation of Larix gmelinii trees[J]. Acta Ecologica Sinica, 2015, 35(6): 1679−1687.
    [28]
    臧颢, 刘洪生, 黄锦程, 等. 竞争和气候及其交互作用对杉木人工林胸径生长的影响[J]. 林业科学, 2021, 57(3): 39−50.

    Zang H, Liu H S, Huang J C, et al. Effects of competition, climate factors and their interactions on diameter growth for Chinese fir plantations[J]. Scientia Silvae Sinicae, 2021, 57(3): 39−50.
    [29]
    董利虎, 李凤日, 贾炜玮. 林木竞争对红松人工林立木生物量影响及模型研究[J]. 北京林业大学学报, 2013, 35(6): 15−22.

    Dong L H, Li F R, Jia W W. Effects of tree competition on biomass and biomass models of Pinus koraiensis plantation[J]. Journal of Beijing Forestry University, 2013, 35(6): 15−22.
    [30]
    国家林业局. 立木生物量模型及碳计量参数−栎树 (LY/T 2658—2016)[S]. 北京: 中国标准出版社, 2016.

    State Forestry Administration. Tree biomass models and related parameters to carbon accounting for Quercus (LY/T 2658−2016)[S]. Beijing: China Standard Press, 2016.
    [31]
    国家林业局. 立木生物量模型及碳计量参数−木荷 (LY/T 2660—2016)[S]. 北京: 中国标准出版社, 2016.

    State Forestry Administration. Tree biomass models and related parameters to carbon accounting for Schima superba (LY/T 2660−2016)[S]. Beijing: China Standard Press, 2016.
    [32]
    李海奎, 雷渊才. 中国森林植被生物量和碳储量评估[M]. 北京: 中国林业出版社, 2010.

    Li H K, Lei Y C. Estimation and evaluation of forest biomass carbon storage in China[M]. Beijing: China Forestry Publishing House, 2010.
    [33]
    张少昂, 王冬梅. Richards方程的分析和一种新的树木理论生长方程[J]. 北京林业大学学报, 1992, 14(3): 99−105.

    Zhang S A, Wang D M. New theoretical growth model based on analysis of Richards’s equation[J]. Journal of Beijing Forestry University, 1992, 14(3): 99−105.
    [34]
    魏晓慧, 孙玉军, 马炜. 基于Richards方程的杉木树高生长模型[J]. 浙江农林大学学报, 2012, 29(5): 661−666. doi: 10.11833/j.issn.2095-0756.2012.05.004

    Wei X H, Sun Y J, Ma W. A height growth model for Cunninghamia lanceolata based on Richards’s equation[J]. Journal of Zhejiang A&F University, 2012, 29(5): 661−666. doi: 10.11833/j.issn.2095-0756.2012.05.004
    [35]
    惠刚盈, 胡艳波, 赵中华, 等. 基于交角的林木竞争指数[J]. 林业科学, 2013, 49(6): 68−73. doi: 10.11707/j.1001-7488.20130610

    Hui G Y, Hu Y B, Zhao Z H, et al. A forest competition index based on intersection angle[J]. Scientia Silvae Sinicae, 2013, 49(6): 68−73. doi: 10.11707/j.1001-7488.20130610
    [36]
    Wensel L C, Meerschaert W J, Biging G S. Tree height and diameter growth models for northern California conifers[J]. Hilgardia A Journal of Agricultural Science, 1987, 55(8): 1−20.
    [37]
    Pretzsch H, Biber P. Size-symmetric versus size-asymmetric competition and growth partitioning among trees in forest stands along an ecological gradient in central Europe[J]. Canadian Journal of Forest Research, 2010, 40(2): 370−384. doi: 10.1139/X09-195
    [38]
    Daniels R F, Burkhart H E, Clason T R. A comparison of competition measures for predicting growth of loblolly pine trees[J]. Canadian Journal of Forest Research, 1986, 16(6): 1230−1237. doi: 10.1139/x86-218
    [39]
    Kuehne C, Weiskittel A R, Waskiewicz J. Comparing performance of contrasting distance-independent and distance-dependent competition metrics in predicting individual tree diameter increment and survival within structurally-heterogeneous, mixed-species forests of northeastern United States[J]. Forest Ecology and Management, 2019, 433: 205−216. doi: 10.1016/j.foreco.2018.11.002
    [40]
    符利勇, 雷渊才, 曾伟生. 几种相容性生物量模型及估计方法的比较[J]. 林业科学, 2014, 50(6): 42−54.

    Fu L Y, Lei Y C, Zeng W S. Comparison of several compatible biomass models and estimation approaches[J]. Scientia Silvae Sinicae, 2014, 50(6): 42−54.
    [41]
    何静, 朱光玉, 张学余, 等. 基于立地与密度效应的湖南栎类天然林平均木胸径生长模型[J]. 中南林业科技大学学报, 2021, 41(10): 75−82.

    He J, Zhu G Y, Zhang X Y, et al. A growth model of average tree diameter at breast height of Quercus natural forests in Hunan based on site and density effects[J]. Journal of Central South University of Forestry & Technology, 2021, 41(10): 75−82.
  • Cited by

    Periodical cited type(14)

    1. 武秀娟,奥小平,姚丽敏,田建华. 油松天然林林分空间结构特征. 中南林业科技大学学报. 2024(02): 83-90 .
    2. 廉琪,张弓乔,萨日娜,卢彦磊,刘文桢,胡艳波,赵中华. 基于树冠重叠面积的天然混交林林木竞争指数. 生态学报. 2024(05): 2057-2068 .
    3. 宣帅,王建明,尹继庭,管亚东. 苍山东坡云南松次生林林分结构特征. 西部林业科学. 2024(01): 47-54 .
    4. 倪靖峰,吕世琪,王占印,周超凡,刘宪钊. 不同林龄华北落叶松优势木生长与空间结构的关联性. 陆地生态系统与保护学报. 2024(01): 1-10 .
    5. 鲁姝月,张小梅,罗可馨,林玉瑄,赖家明. 不同立地类型的柏木人工林空间结构分析. 森林与环境学报. 2024(05): 511-520 .
    6. 栾宜通,李念森,乔璐靖,琚存勇,蔡体久,孙佩丽. 云冷杉红松林优势树种生态位、种间联结及群落稳定性. 植物研究. 2024(05): 753-762 .
    7. 逄晨,崔君滕,宋文倩,王琦,彭建,徐晓艺. 不同龄组麻栎林空间结构分析. 山东林业科技. 2024(06): 18-25 .
    8. 彭姣,王慧琴. 湖南省爱国主义教育基地空间布局及影响因素研究. 江苏商论. 2023(04): 137-141 .
    9. 张明辉,尹昀洲,王珂,王树力. 水曲柳人工林空间结构特征对土壤养分含量的影响. 北京林业大学学报. 2023(09): 73-82 . 本站查看
    10. 刘鑫,黄浪,卿东升,李建军. 基于Voronoi空间单元的林分空间结构智能优化研究. 林业资源管理. 2023(04): 27-35 .
    11. 陆雪婷,曹碧凤,杨樟平,严夏帆,宋贤芬,余坤勇,刘健. 毛竹向杉木林扩张不同程度林分空间结构遥感量化分析. 西北林学院学报. 2023(05): 184-193 .
    12. 于帅,蔡体久,张丕德,任铭磊,张海宇,琚存勇. 边缘校正方法对空间结构参数影响的尺度效应. 林业科学. 2023(10): 57-65 .
    13. 黄晓霞,尤美子,徐伟涛,赖敏华,林嘉源,赖日文. 目标树经营对杉木人工林林分空间结构的影响. 森林与环境学报. 2022(02): 131-140 .
    14. 孙宇,刘盛,王诗俊,赵士博,李恩鹏,罗见,田佳歆,程福山. 依据加权Delaunays三角网的林分空间结构分析与评价. 东北林业大学学报. 2022(08): 61-68 .

    Other cited types(5)

Catalog

    Article views (876) PDF downloads (109) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return