Citation: | Huang Jinjin, Liu Xiaotong, Zhang Yiru, Li Haikui. Stand biomass growth model of broadleaved forest with parameter classification in Guangdong Province of southern China[J]. Journal of Beijing Forestry University, 2022, 44(5): 19-33. DOI: 10.12171/j.1000-1522.20210403 |
[1] |
Somogyi Z, Cienciala E, Mkip R, et al. Indirect methods of large-scale forest biomass estimation[J]. European Journal of Forest Research, 2007, 126(2): 197−207. doi: 10.1007/s10342-006-0125-7
|
[2] |
罗云建, 张小全, 王效科, 等. 森林生物量的估算方法及其研究进展[J]. 林业科学, 2009, 45(8): 129−134. doi: 10.3321/j.issn:1001-7488.2009.08.023
Luo Y J, Zhang X Q, Wang X K, et al. Forest biomass estimation methods and their prospects[J]. Scientia Silvae Sinicae, 2009, 45(8): 129−134. doi: 10.3321/j.issn:1001-7488.2009.08.023
|
[3] |
林开淼. 亚热带常绿阔叶林生物量模型及其分析[J]. 中南林业科技大学学报, 2017, 37(11): 115−120, 126.
Lin K M. Research and analysis on biomass allometric equations of subtropical broad-leaved forest[J]. Journal of Central South University of Forestry & Technology, 2017, 37(11): 115−120, 126.
|
[4] |
Zianis D, Muukkonen P, Makipaa R, et al. Biomass and stem volume equations for tree species in Europe[J]. Silva Fennica Monographs, 2005, 4: 63.
|
[5] |
Andrzej M J, Dyderski M K, Gsikiewicz K, et al. Tree- and stand-level biomass estimation in a Larix decidua Mill. chronosequence[J]. Forests, 2018, 9(10): 587. doi: 10.3390/f9100587
|
[6] |
曾伟生, 孙乡楠, 王六如, 等. 东北林区10种主要森林类型的蓄积量、生物量和碳储量模型研建[J]. 北京林业大学学报, 2021, 43(3): 1−8. doi: 10.12171/j.1000-1522.20200058
Zeng W S, Sun X N, Wang L R, et al. Developing stand volume, biomass and carbon stock models for ten major forest types in forest region of northeastern China[J]. Journal of Beijing Forestry University, 2021, 43(3): 1−8. doi: 10.12171/j.1000-1522.20200058
|
[7] |
Wang C K. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests[J]. Forest Ecology and Management, 2006, 222(1−3): 9−16. doi: 10.1016/j.foreco.2005.10.074
|
[8] |
Brown S, Lugo A E. Biomass of tropical forests: a new estimate based on forest volumes[J]. Science, 1984, 223: 1290−1293. doi: 10.1126/science.223.4642.1290
|
[9] |
Fang J Y, Chen A P, Peng C H, et al. Changes in forest biomass carbon storage in China between 1949 and 1998[J]. Science, 2001, 292: 2320−2322. doi: 10.1126/science.1058629
|
[10] |
Fang J Y, Wang G G, Liu G H, et al. Forest biomass of China: an estimate based on the biomass-volume relationship[J]. Ecological Applications, 1998, 8(4): 1084−1091.
|
[11] |
Sánchez-González M, Tomé M, Montero G. Modelling height and diameter growth of dominant cork oak trees in Spain[J]. Annals of Forest Science, 2005, 62(7): 633−643. doi: 10.1051/forest:2005065
|
[12] |
刘帅, 李建军, 卿东升, 等. 气候敏感的青冈栎单木胸径生长模型[J]. 林业科学, 2021, 57(1): 95−104. doi: 10.11707/j.1001-7488.20210110
Liu S, Li J J, Qing D S, et al. A climate-sensitive individual-tree DBH growth model for Cyclobalanopsis glauca[J]. Scientia Silvae Sinicae, 2021, 57(1): 95−104. doi: 10.11707/j.1001-7488.20210110
|
[13] |
龙时胜, 曾思齐, 甘世书, 等. 基于林木多期直径测定数据的异龄林年龄估计方法[J]. 中南林业科技大学学报, 2018, 38(9): 1−8.
Long S S, Zeng S Q, Gan S S, et al. Age estimation method of uneven-aged forest based on data of multistage diameter measurement[J]. Journal of Central South University of Forestry & Technology, 2018, 38(9): 1−8.
|
[14] |
雷相东, 李希菲. 混交林生长模型研究进展[J]. 北京林业大学学报, 2003, 25(3): 105−110. doi: 10.3321/j.issn:1000-1522.2003.03.022
Lei X D, Li X F. A review on growth models of mixed forest[J]. Journal of Beijing Forestry University, 2003, 25(3): 105−110. doi: 10.3321/j.issn:1000-1522.2003.03.022
|
[15] |
国红, 雷渊才, 郎璞玫. 年龄无关的生长模型研究: 以落叶松平均高为例[J]. 林业科学研究, 2020, 33(5): 129−136.
Guo H, Lei Y C, Lang P M. Study on age-independent tree model: taking the average height of Larix gmelinii as an example[J]. Forest Research, 2020, 33(5): 129−136.
|
[16] |
葛宏立, 项小强, 何时珍, 等. 年龄隐含的生长模型在森林资源连续清查中的应用[J]. 林业科学研究, 1997, 10(4): 81−85.
Ge H L, Xiang X Q, He S Z, et al. Application of the age implicit growth model to continuous forest inventory[J]. Forest Research, 1997, 10(4): 81−85.
|
[17] |
曹磊. 基于多期保留木实测胸径估计吉林省蒙古栎天然林年龄[D]. 北京: 中国林业科学研究院, 2020.
Cao L. Estimating stand age of Quercus mongolica natural forest in Jilin based on diameter data of periodical measurements[D]. Beijing: Chinese Academy of Forestry, 2020.
|
[18] |
龙时胜, 曾思齐, 甘世书, 等. 基于林木多期直径测定数据的异龄林年龄估计方法Ⅱ[J]. 中南林业科技大学学报, 2019, 39(6): 23−29, 59.
Long S S, Zeng S Q, Gan S S, et al. Age estimation method Ⅱ of uneven-aged forest based on the data of multistage diameter measurement[J]. Journal of Central South University of Forestry & Technology, 2019, 39(6): 23−29, 59.
|
[19] |
Gargaglione V, Peri P L, Rubio G. Allometric relations for biomass partitioning of Nothofagus antarctica trees of different crown classes over a site quality gradient[J]. Forest Ecology & Management, 2010, 259(6): 1118−1126.
|
[20] |
Peri P L, Gargaglione V, Pastur G M, et al. Carbon accumulation along a stand development sequence of Nothofagus antarctica forests across a gradient in site quality in southern Patagonia[J]. Forest Ecology & Management, 2010, 260(2): 229−237.
|
[21] |
孟宪宇. 测树学[M]. 3版. 北京: 中国林业出版社, 2006.
Meng X Y. Forest measurement[M]. 3rd ed. Beijing: China Forestry Publishing House, 2006.
|
[22] |
Li H K, Zhao P X. Improving the accuracy of tree-level aboveground biomass equations with height classification at a large regional scale[J]. Forest Ecology & Management, 2013, 289: 153−163.
|
[23] |
赵菡, 雷渊才, 符利勇. 江西省不同立地等级的马尾松林生物量估计和不确定性度量[J]. 林业科学, 2017, 53(8): 81−93. doi: 10.11707/j.1001-7488.20170810
Zhao H, Lei Y C, Fu L Y. Biomass and uncertainty estimates of Pinus massoniana forest for different site classes in Jiangxi Province[J]. Scientia Silvae Sinicae, 2017, 53(8): 81−93. doi: 10.11707/j.1001-7488.20170810
|
[24] |
雷相东, 符利勇, 李海奎, 等. 基于林分潜在生长量的立地质量评价方法与应用[J]. 林业科学, 2018, 54(12): 116−126. doi: 10.11707/j.1001-7488.20181213
Lei X D, Fu L Y, Li H K, et al. Methodology and applications of site quality assessment based on potential mean annual increment[J]. Scientia Silvae Sinicae, 2018, 54(12): 116−126. doi: 10.11707/j.1001-7488.20181213
|
[25] |
薛春泉, 徐期瑚, 林丽平, 等. 基于异速生长和理论生长方程的广东省木荷生物量动态预测[J]. 林业科学, 2019, 55(7): 86−94. doi: 10.11707/j.1001-7488.20190709
Xue C Q, Xu Q H, Lin L P, et al. Biomass dynamic predicting for Schima superba in Guangdong based on allometric and theoretical growth equation[J]. Scientia Silvae Sinicae, 2019, 55(7): 86−94. doi: 10.11707/j.1001-7488.20190709
|
[26] |
曹磊, 刘晓彤, 李海奎, 等. 广东省常绿阔叶林生物量生长模型[J]. 林业科学研究, 2020, 33(5): 61−67.
Cao L, Liu X T, Li H K, et al. Biomass growth models for evergreen broad-leaved forests in Guangdong[J]. Forest Research, 2020, 33(5): 61−67.
|
[27] |
李巍, 王传宽, 张全智. 林木分化对兴安落叶松异速生长方程和生物量分配的影响[J]. 生态学报, 2015, 35(6): 1679−1687.
Li W, Wang C K, Zhang Q Z. Differentiation of stand individuals impacts allometry and biomass allocation of Larix gmelinii trees[J]. Acta Ecologica Sinica, 2015, 35(6): 1679−1687.
|
[28] |
臧颢, 刘洪生, 黄锦程, 等. 竞争和气候及其交互作用对杉木人工林胸径生长的影响[J]. 林业科学, 2021, 57(3): 39−50.
Zang H, Liu H S, Huang J C, et al. Effects of competition, climate factors and their interactions on diameter growth for Chinese fir plantations[J]. Scientia Silvae Sinicae, 2021, 57(3): 39−50.
|
[29] |
董利虎, 李凤日, 贾炜玮. 林木竞争对红松人工林立木生物量影响及模型研究[J]. 北京林业大学学报, 2013, 35(6): 15−22.
Dong L H, Li F R, Jia W W. Effects of tree competition on biomass and biomass models of Pinus koraiensis plantation[J]. Journal of Beijing Forestry University, 2013, 35(6): 15−22.
|
[30] |
国家林业局. 立木生物量模型及碳计量参数−栎树 (LY/T 2658—2016)[S]. 北京: 中国标准出版社, 2016.
State Forestry Administration. Tree biomass models and related parameters to carbon accounting for Quercus (LY/T 2658−2016)[S]. Beijing: China Standard Press, 2016.
|
[31] |
国家林业局. 立木生物量模型及碳计量参数−木荷 (LY/T 2660—2016)[S]. 北京: 中国标准出版社, 2016.
State Forestry Administration. Tree biomass models and related parameters to carbon accounting for Schima superba (LY/T 2660−2016)[S]. Beijing: China Standard Press, 2016.
|
[32] |
李海奎, 雷渊才. 中国森林植被生物量和碳储量评估[M]. 北京: 中国林业出版社, 2010.
Li H K, Lei Y C. Estimation and evaluation of forest biomass carbon storage in China[M]. Beijing: China Forestry Publishing House, 2010.
|
[33] |
张少昂, 王冬梅. Richards方程的分析和一种新的树木理论生长方程[J]. 北京林业大学学报, 1992, 14(3): 99−105.
Zhang S A, Wang D M. New theoretical growth model based on analysis of Richards’s equation[J]. Journal of Beijing Forestry University, 1992, 14(3): 99−105.
|
[34] |
魏晓慧, 孙玉军, 马炜. 基于Richards方程的杉木树高生长模型[J]. 浙江农林大学学报, 2012, 29(5): 661−666. doi: 10.11833/j.issn.2095-0756.2012.05.004
Wei X H, Sun Y J, Ma W. A height growth model for Cunninghamia lanceolata based on Richards’s equation[J]. Journal of Zhejiang A&F University, 2012, 29(5): 661−666. doi: 10.11833/j.issn.2095-0756.2012.05.004
|
[35] |
惠刚盈, 胡艳波, 赵中华, 等. 基于交角的林木竞争指数[J]. 林业科学, 2013, 49(6): 68−73. doi: 10.11707/j.1001-7488.20130610
Hui G Y, Hu Y B, Zhao Z H, et al. A forest competition index based on intersection angle[J]. Scientia Silvae Sinicae, 2013, 49(6): 68−73. doi: 10.11707/j.1001-7488.20130610
|
[36] |
Wensel L C, Meerschaert W J, Biging G S. Tree height and diameter growth models for northern California conifers[J]. Hilgardia A Journal of Agricultural Science, 1987, 55(8): 1−20.
|
[37] |
Pretzsch H, Biber P. Size-symmetric versus size-asymmetric competition and growth partitioning among trees in forest stands along an ecological gradient in central Europe[J]. Canadian Journal of Forest Research, 2010, 40(2): 370−384. doi: 10.1139/X09-195
|
[38] |
Daniels R F, Burkhart H E, Clason T R. A comparison of competition measures for predicting growth of loblolly pine trees[J]. Canadian Journal of Forest Research, 1986, 16(6): 1230−1237. doi: 10.1139/x86-218
|
[39] |
Kuehne C, Weiskittel A R, Waskiewicz J. Comparing performance of contrasting distance-independent and distance-dependent competition metrics in predicting individual tree diameter increment and survival within structurally-heterogeneous, mixed-species forests of northeastern United States[J]. Forest Ecology and Management, 2019, 433: 205−216. doi: 10.1016/j.foreco.2018.11.002
|
[40] |
符利勇, 雷渊才, 曾伟生. 几种相容性生物量模型及估计方法的比较[J]. 林业科学, 2014, 50(6): 42−54.
Fu L Y, Lei Y C, Zeng W S. Comparison of several compatible biomass models and estimation approaches[J]. Scientia Silvae Sinicae, 2014, 50(6): 42−54.
|
[41] |
何静, 朱光玉, 张学余, 等. 基于立地与密度效应的湖南栎类天然林平均木胸径生长模型[J]. 中南林业科技大学学报, 2021, 41(10): 75−82.
He J, Zhu G Y, Zhang X Y, et al. A growth model of average tree diameter at breast height of Quercus natural forests in Hunan based on site and density effects[J]. Journal of Central South University of Forestry & Technology, 2021, 41(10): 75−82.
|
1. |
武秀娟,奥小平,姚丽敏,田建华. 油松天然林林分空间结构特征. 中南林业科技大学学报. 2024(02): 83-90 .
![]() | |
2. |
廉琪,张弓乔,萨日娜,卢彦磊,刘文桢,胡艳波,赵中华. 基于树冠重叠面积的天然混交林林木竞争指数. 生态学报. 2024(05): 2057-2068 .
![]() | |
3. |
宣帅,王建明,尹继庭,管亚东. 苍山东坡云南松次生林林分结构特征. 西部林业科学. 2024(01): 47-54 .
![]() | |
4. |
倪靖峰,吕世琪,王占印,周超凡,刘宪钊. 不同林龄华北落叶松优势木生长与空间结构的关联性. 陆地生态系统与保护学报. 2024(01): 1-10 .
![]() | |
5. |
鲁姝月,张小梅,罗可馨,林玉瑄,赖家明. 不同立地类型的柏木人工林空间结构分析. 森林与环境学报. 2024(05): 511-520 .
![]() | |
6. |
栾宜通,李念森,乔璐靖,琚存勇,蔡体久,孙佩丽. 云冷杉红松林优势树种生态位、种间联结及群落稳定性. 植物研究. 2024(05): 753-762 .
![]() | |
7. |
逄晨,崔君滕,宋文倩,王琦,彭建,徐晓艺. 不同龄组麻栎林空间结构分析. 山东林业科技. 2024(06): 18-25 .
![]() | |
8. |
彭姣,王慧琴. 湖南省爱国主义教育基地空间布局及影响因素研究. 江苏商论. 2023(04): 137-141 .
![]() | |
9. |
张明辉,尹昀洲,王珂,王树力. 水曲柳人工林空间结构特征对土壤养分含量的影响. 北京林业大学学报. 2023(09): 73-82 .
![]() | |
10. |
刘鑫,黄浪,卿东升,李建军. 基于Voronoi空间单元的林分空间结构智能优化研究. 林业资源管理. 2023(04): 27-35 .
![]() | |
11. |
陆雪婷,曹碧凤,杨樟平,严夏帆,宋贤芬,余坤勇,刘健. 毛竹向杉木林扩张不同程度林分空间结构遥感量化分析. 西北林学院学报. 2023(05): 184-193 .
![]() | |
12. |
于帅,蔡体久,张丕德,任铭磊,张海宇,琚存勇. 边缘校正方法对空间结构参数影响的尺度效应. 林业科学. 2023(10): 57-65 .
![]() | |
13. |
黄晓霞,尤美子,徐伟涛,赖敏华,林嘉源,赖日文. 目标树经营对杉木人工林林分空间结构的影响. 森林与环境学报. 2022(02): 131-140 .
![]() | |
14. |
孙宇,刘盛,王诗俊,赵士博,李恩鹏,罗见,田佳歆,程福山. 依据加权Delaunays三角网的林分空间结构分析与评价. 东北林业大学学报. 2022(08): 61-68 .
![]() |