• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wang Ziming, Zhao Mingming, Ren Yunmao, Zhan Jiping, Li Zhiyao, Yu Lixin, Yu Qingjun, Jia Zhongkui. Response of growth and soil properties of Chinese pine building timber forest at felling age to stand density[J]. Journal of Beijing Forestry University, 2022, 44(12): 88-101. DOI: 10.12171/j.1000-1522.20210442
Citation: Wang Ziming, Zhao Mingming, Ren Yunmao, Zhan Jiping, Li Zhiyao, Yu Lixin, Yu Qingjun, Jia Zhongkui. Response of growth and soil properties of Chinese pine building timber forest at felling age to stand density[J]. Journal of Beijing Forestry University, 2022, 44(12): 88-101. DOI: 10.12171/j.1000-1522.20210442

Response of growth and soil properties of Chinese pine building timber forest at felling age to stand density

More Information
  • Received Date: November 04, 2021
  • Revised Date: November 13, 2021
  • Accepted Date: November 29, 2022
  • Available Online: November 30, 2022
  • Published Date: December 24, 2023
  •   Objective  Taking the most suitable main cutting age stand of Pinus tabuliformis construction timber as the research object, starting from the density effect, it is expected to explore the response mechanism of forest growth performance characteristics and soil physical and chemical properties of different forest densities, determine the limiting factors affecting the timber production, improve the cultivation technology of P. tabuliformis construction timber forest in Hebei Province of northern China, and provide guidance for the realization of sustainable forest management.
      Method  The 50, 52 and 56 years old final felling age stands of P. tabuliformis building forests in Pingquan City, Hebei Province were taken as research objects and divided into three density gradients: 450−750 plant/ha for low density, 750−1 050 plant/ha for medium density and 1 050−1 350 plant/ha for high density. The wood growth characteristics and soil physicochemical properties of three stand densities were studied. Pearson correlation analysis was conducted on each growth performance index and soil physicochemical properties. In addition, factor analysis method was used to calculate the comprehensive score and ranking of P. tabuliformis construction timber stands of each density by combining the growth performance and soil quality, and to evaluate their sustainable management ability.
      Result  (1) The wood output per unit of stand was not significantly affected by stand density, but decreased with the decrease of stand density. The wood output per unit of high density stand was the highest, which was 107.87 m3/ha. (2) The average output of single tree of low density P. tabuliformis construction timber forest was 0.256 4 m3, and the biomass of tree trunk per unit area was 148.02 t/ha, which was significantly higher than that of medium density and high density (P<0.01), and more than twice that of medium density and high density. The wood yield of single tree and the proportion of trunk biomass of low density stands reached 84.12% and 68.56%, respectively, which were significantly higher than those of medium and high density stands. (3) In soil physical properties, density effect had a very significant effect on soil density, non capillary porosity, saturated water holding capacity (P<0.01), and had a significant effect on soil total porosity (P<0.05); among the soil chemical properties, the density effect only had a very significant effect on soil available potassium (P<0.01). (4) The output per unit area had no significant correlation with other indicators. The average wood yield per tree was significantly positively correlated with the proportion of trunk biomass (P<0.01), and negatively correlated with non capillary porosity (P<0.05). The proportion of trunk biomass was significantly positively correlated with soil bulk density (P<0.05), significantly negatively correlated with saturated water capacity and total porosity (P<0.05), and extremely significantly negatively correlated with non capillary porosity (P<0.01). (5) The comprehensive quality of stand was the highest at the density of 750−1 050 plant/ha, which was most conducive to the sustainable management of P. tabuliformis building timber forest.
      Conclusion  The trees in low density (450−750 plant/ha) are used to make large-diameter building frame materials, and the trees in medium and high density (750−1 350 plant/ha) are used to make small-diameter spliced materials and furniture, etc. Soil layer mainly affects the chemical properties of soil, while stand density mainly affects the physical properties of soil. There is no significant correlation between wood yield per unit and tree growth performance and soil physicochemical properties. The accumulation of trunk biomass can promote the increase of wood output per tree. The optimal reserve density for sustainable management of P. tabuliformis building timber forest is 750−1 050 plant/ha.
  • [1]
    赵广亮, 王继兴, 王秀珍, 等. 油松人工林密度与养分循环关系的研究[J]. 北京林业大学学报, 2006, 28(4): 39−44. doi: 10.3321/j.issn:1000-1522.2006.04.008

    Zhao G L, Wang J X, Wang X Z, et al. Nutrient element cycling and density effect in Pinus tabuliformis plantations[J]. Journal of Beijing Forestry University, 2006, 28(4): 39−44. doi: 10.3321/j.issn:1000-1522.2006.04.008
    [2]
    Bradford J B, Amato A W. Recognizing trade-offs in multi-objective land management[J]. Frontiers in Ecology and the Environment, 2012, 10(4): 210−216. doi: 10.1890/110031
    [3]
    刁淑清, 沈海龙, 潘建中, 等. 樟子松人工幼林密度与个体生长指标的关系[J]. 东北林业大学学报, 2005(6): 4−7, 13. doi: 10.3969/j.issn.1000-5382.2005.06.002

    Diao S Q, Shen H L, Pan J Z, et al. Relationship between individual growth index and stand density of young Pinus sylvestris var. mongolica plantations[J]. Journal of Northeast Forestry University, 2005(6): 4−7, 13. doi: 10.3969/j.issn.1000-5382.2005.06.002
    [4]
    胡凌, 商侃侃, 张庆费, 等. 密度调控对香樟人工林林木生长及空间分布的影响[J]. 西北林学院学报, 2014, 29(2): 20−25. doi: 10.3969/j.issn.1001-7461.2014.02.04

    Hu L, Shang K K, Zhang Q F, et al. Effects of density regulation on the growth and spatial distribution of Cinnamomum camphora plantations in Shanghai[J]. Journal of Northwest Forestry University, 2014, 29(2): 20−25. doi: 10.3969/j.issn.1001-7461.2014.02.04
    [5]
    贾全全, 罗春旺, 刘琪璟, 等. 不同林分密度油松人工林生物量分配模式[J]. 南京林业大学学报(自然科学版), 2015, 39(6): 87−92.

    Jia Q Q, Luo C W, Liu Q J, et al. Biomass allocation in relation to stand density in Pinus tabulaeformis plantations[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2015, 39(6): 87−92.
    [6]
    相聪伟, 张建国, 段爱国, 等. 杉木人工林材种结构的立地及密度效应研究[J]. 林业科学研究, 2015, 28(5): 654−659. doi: 10.3969/j.issn.1001-1498.2015.05.008

    Xiang C W, Zhang J G, Duan A G, et al. Effects of site quality and planting density on wood assortment rate in Chinese fir plantation[J]. Forest Research, 2015, 28(5): 654−659. doi: 10.3969/j.issn.1001-1498.2015.05.008
    [7]
    谌红辉, 方升佐, 丁贵杰, 等. 马尾松间伐的密度效应[J]. 林业科学, 2010, 46(3): 16−20. doi: 10.11707/j.1001-7488.20100303

    Zhan H H, Fang S Z, Ding G J, et al. Thinning density effects on masson pine plantation[J]. Scientia Silvae Sinicae, 2010, 46(3): 16−20. doi: 10.11707/j.1001-7488.20100303
    [8]
    郭光智, 段爱国, 张建国, 等. 南亚热带杉木人工林材种结构长期立地与密度效应[J]. 林业科学研究, 2020, 33(1): 35−43.

    Guo G Z, Duan A G, Zhang J G, et al. Long-term effects of site and density on timber assortment structure of Chinese fir plantations in south subtropical area, China[J]. Forest Research, 2020, 33(1): 35−43.
    [9]
    Juhan P, Taekyu K, Minkyu M, et al. Effects of thinning intensities on tree water use, growth, and resultant water use efficiency of 50-year-old Pinus koraiensis forest over four years[J]. Forest Ecology and Management, 2018, 408: 121−128. doi: 10.1016/j.foreco.2017.09.031
    [10]
    孙千惠, 吴霞, 王媚臻, 等. 林分密度对马尾松林林下物种多样性和土壤理化性质的影响[J]. 应用生态学报, 2018, 29(3): 732−738. doi: 10.13287/j.1001-9332.201803.004

    Sun Q H, Wu X, Wang M Z, et al. Effects of stand density on understory species diversity and soil physicochemical properties of Pinus massoniana plantation[J]. Chinese Journal of Applied Ecology, 2018, 29(3): 732−738. doi: 10.13287/j.1001-9332.201803.004
    [11]
    董威, 刘泰瑞, 覃志杰, 等. 不同林分密度油松天然林土壤理化性质及微生物量碳氮特征研究[J]. 生态环境学报, 2019, 28(1): 65−72.

    Dong W, Liu T R, Qin Z J, et al. Research on the characteristics of soil physicochemical properties and microbial biomass carbon and nitrogen in natural Pinus tabulaeformis forests with different stand densities[J]. Ecology and Environmental Sciences, 2019, 28(1): 65−72.
    [12]
    胡小燕, 段爱国, 张建国, 等. 南亚热带杉木人工成熟林密度对土壤养分效应研究[J]. 林业科学研究, 2018, 31(3): 15−23. doi: 10.13275/j.cnki.lykxyj.2018.03.003

    Hu X Y, Duan A G, Zhang J G, et al. Effect of stand density on soil nutrient of Chinese fir mature plantations in South Asia Subtropical Zone[J]. Forest Research, 2018, 31(3): 15−23. doi: 10.13275/j.cnki.lykxyj.2018.03.003
    [13]
    刘勇, 李国雷, 李瑞生, 等. 密度调控对油松人工林土壤肥力的影响[J]. 西北林学院学报, 2008(6): 18−23.

    Liu Y, Li G L, Li R S, et al. Effected of tree density on soil fertility in Pinus tabulaeformis plantations[J]. Journal of Northwest Forestry University, 2008(6): 18−23.
    [14]
    Yang Y G, Geng Y Q, Zhou H G, et al. Effects of gaps in the forest canopy on soil microbial communities and enzyme activity in a Chinese pine forest[J]. Pedobiologia - Journal of Soil Ecology, 2017, 61: 51−60.
    [15]
    龙应忠, 童方平, 吴际友, 等. 火炬松纸浆材与建筑材林优化栽培模式的研究[J]. 林业科技通讯, 2001(5): 4−7. doi: 10.3969/j.issn.1671-4938.2001.05.001

    Long Y Z, Tong F P, Wu J Y, et al. Study on optimum cultivation pattern of pulpwood and building wood forest of Pinus taeda[J]. Forest Science and Technology, 2001(5): 4−7. doi: 10.3969/j.issn.1671-4938.2001.05.001
    [16]
    邵志新, 童方平, 龙应忠, 等. 火炬松纸浆材建筑材林定向集约培育经济分析[J]. 湖南林业科技, 2002(1): 22−23,39. doi: 10.3969/j.issn.1003-5710.2002.01.006

    Shao Z X, Tong F P, Long Y Z, et al. Economic analysis of directional intensive cultivation of Pinus taeda pulpwood and building timber forest[J]. Hunan Forestry Science and Technology, 2002(1): 22−23,39. doi: 10.3969/j.issn.1003-5710.2002.01.006
    [17]
    迟健, 李桂英, 王伟雄, 等. 火炬松建筑材林栽培模式研究阶段报告[J]. 浙江林业科技, 1996(1): 26−30.

    Chi J, Li G Y, Wang W X, et al. Period report on study of cultivation model of Pinus taeda timber forest[J]. Journal of Zhejiang Forestry Science and Technology, 1996(1): 26−30.
    [18]
    尹拥君, 陈卫军. 杉木建筑材林密度管理技术与生长效应的研究[J]. 广东林业科技, 2001(3): 16−20.

    Yi Y J, Chen W J. Research on Chinese fir plantation management for building timber[J]. Guangdong Forestry Science and Technology, 2001(3): 16−20.
    [19]
    林金国, 林思祖, 林庆富, 等. 人工杉木林木材力学性质变异规律的研究[J]. 福建林学院学报, 1997, 17(2): 176−179. doi: 10.13324/j.cnki.jfcf.1997.02.019

    Lin J G, Lin S Z, Lin Q F, et al. Study on the law of variation in mechanic properties of Chinese fir wood from plantation[J]. Journal of Fujian College of Forestry, 1997, 17(2): 176−179. doi: 10.13324/j.cnki.jfcf.1997.02.019
    [20]
    丁贵杰, 谢双喜, 王德炉, 等. 贵州马尾松建筑材林优化栽培模式研究[J]. 林业科学, 2000, 36(2): 69−74. doi: 10.3321/j.issn:1001-7488.2000.02.011

    Ding G J, Xie S X, Wang D L, et al. Study on optimum cultivation patterns of building timber plantation for masson pine in Guizhou[J]. Scientia Silvae Sinicae, 2000, 36(2): 69−74. doi: 10.3321/j.issn:1001-7488.2000.02.011
    [21]
    迟健. 马尾松建筑材林高效低成本栽培模式研究[J]. 林业科技开发, 1997(3): 27−28.

    Chi J. Study on high efficiency and low cost cultivation model of masson pine building timber forest[J]. Development of Forestry Science and Technology, 1997(3): 27−28.
    [22]
    贾茜. 油松建筑材林全生命周期密度调控研究[D]. 北京: 北京林业大学, 2020.

    Jia X. Study on density control of Pinus tabulaeformis building timber plantation during the whole life cycle[D]. Beijing: Beijing Forestry University, 2020.
    [23]
    贾茜, 王清春, 贾忠奎, 等. 油松建筑材林最适主伐龄研究[J]. 中南林业科技大学学报, 2020, 40(8): 45−52. doi: 10.14067/j.cnki.1673-923x.2020.08.006

    Jia X, Wang Q C, Jia Z K, et al. Study on optimal cutting age of Pinus tabulaeformis building timber plantation[J]. Journal of Central South University of Forestry and Technology, 2020, 40(8): 45−52. doi: 10.14067/j.cnki.1673-923x.2020.08.006
    [24]
    张晓文, 于青君, 张卫强, 等. 不同树龄油松建筑材林木材性质及生长过程研究[J]. 中南林业科技大学学报, 2020, 40(6): 122−131. doi: 10.14067/j.cnki.1673-923x.2020.06.015

    Zhang X W, Yu Q J, Zhang W Q, et al. Study on wood physical properties and growth process of different tree age of Pinus tabulaeformis building timber forest[J]. Journal of Central South University of Forestry and Technology, 2020, 40(6): 122−131. doi: 10.14067/j.cnki.1673-923x.2020.06.015
    [25]
    刘平, 于磊, 李仁平, 等. 辽东山区油松建筑材林立地质量评价研究[J]. 沈阳农业大学学报, 2019, 50(1): 70−77.

    Liu P, Yu L, Li R P, et al. Site quality evaluation of Pinus tabulaeformis building timber forest in the mountainous area of eastern Liaoning Province, China[J]. Journal of Shenyang Agricultural University, 2019, 50(1): 70−77.
    [26]
    李仁平. 辽东山区油松建筑材林立地类型划分及立地质量评价[D]. 沈阳: 沈阳农业大学, 2018.

    Li R P. Classification of forest sites and evaluation of building timber forests dominated by Pinus tabulaeformis in Liaodong mountain areas[D]. Shenyang: Shenyang Agricultural University, 2018.
    [27]
    张龙玉. 河北平泉油松建筑材林全生命周期材性变化研究[D]. 北京: 北京林业大学, 2019.

    Zhang L Y. Study on the change of wood properties of Pinus tabuliformis construction timber forest in the whole life cycle in Pingquan, Hebei Province[D]. Beijing: Beijing Forestry University, 2019.
    [28]
    李国雷, 刘勇, 李瑞生, 等. 油松人工林土壤质量的演变[J]. 林业科学, 2008, 44(9): 76−81. doi: 10.3321/j.issn:1001-7488.2008.09.014

    Li G L, Liu Y, Li R S, et al. Change of soil quality affected by forest age of Pinus tabulaeformis plantations[J]. Scientia Silvae Sinicae, 2008, 44(9): 76−81. doi: 10.3321/j.issn:1001-7488.2008.09.014
    [29]
    孙启越. 河北平泉不同发育阶段油松林地力变化研究[D]. 北京: 北京林业大学, 2019.

    Sun Q Y. Study on the change of site productivity of Pinus tabulaeformis forest at different developmental stages in Pingquan, Hebei Province[D]. Beijing: Beijing Forestry University, 2019.
    [30]
    乔建勇, 张博, 郭朝阳. 立木商品材出材量表的编制及应用探讨[J]. 河北林业科技, 2015(3): 40−43. doi: 10.3969/j.issn.1002-3356.2015.03.016

    Qiao J Y, Zhang B, Guo C Y. Discussion on the compilation and application of the timber production scale[J]. The Journal of Hebei Forestry Science and Technology, 2015(3): 40−43. doi: 10.3969/j.issn.1002-3356.2015.03.016
    [31]
    舒韦维, 卢立华, 李华, 等. 林分密度对杉木人工林林下植被和土壤性质的影响[J]. 生态学报, 2021, 41(11): 4521−4530.

    Shu W W, Lu L H, Li H, et al. Effects of stand density on understory vegetation and soil properties of Cunninghamia lanceolata platation[J]. Acta Ecologica Sinica, 2021, 41(11): 4521−4530.
    [32]
    李智超, 张勇强, 厚凌宇, 等. 杉木人工林土壤微生物对林分密度的响应[J]. 浙江农林大学学报, 2020, 37(1): 76−84. doi: 10.11833/j.issn.2095-0756.2020.01.010

    Li Z C, Zhang Y Q, Hou L Y, et al. Response of soil microorganism to stand density in Cunninghamia lanceolata plantation[J]. Journal of Zhejiang A&F University, 2020, 37(1): 76−84. doi: 10.11833/j.issn.2095-0756.2020.01.010
    [33]
    Shipley B, Meziane D. The balanced-growth hypothesis and the allometry of leaf and root biomass allocation[J]. Functional Ecology, 2002, 16(3): 326−331. doi: 10.1046/j.1365-2435.2002.00626.x
    [34]
    Hendrik P, Karl J N, Peter B R, et al. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control[J]. New Phytologist, 2012, 193(1): 30−50. doi: 10.1111/j.1469-8137.2011.03952.x
    [35]
    Tian H, Chen G, Chi Z, et al. Pattern and variation of C: N: P ratios in China’s soils: a synthesis of observational data[J]. Biogeochemistry, 2010, 98(1/3): 139−151.
    [36]
    范少辉, 赵建诚, 苏文会, 等. 不同密度毛竹林土壤质量综合评价[J]. 林业科学, 2015, 51(10): 1−9.

    Fan S H, Zhao J C, Su W H, et al. Comprehensive evaluation of soil quality in Phyllostachys edulis stands of different stocking stocking densities[J]. Scientia Silvae Sinicae, 2015, 51(10): 1−9.
    [37]
    周树平, 梁坤南, 杜健, 等. 不同密度柚木人工林林下植被及土壤理化性质的研究[J]. 植物研究, 2017, 37(2): 200−210. doi: 10.7525/j.issn.1673-5102.2017.02.007

    Zhou S P, Liang K N, Du J, et al. Research on understory vegetation and soil physical-chemical properties of teak plantation with difference stand densities[J]. Bulletin of Botanical Research, 2017, 37(2): 200−210. doi: 10.7525/j.issn.1673-5102.2017.02.007
    [38]
    冯宜明, 李毅, 曹秀文, 等. 甘肃亚高山云杉人工林土壤特性及水源涵养功能对林分密度的响应特征[J]. 自然资源学报, 2018, 33(9): 1529−1541. doi: 10.31497/zrzyxb.20170842

    Feng Y M, Li Y, Cao X W, et al. Effects of stand density on soil properties and water conservation function of Picea asperata plantation in the subalpine region of Gansu Province[J]. Journal of Natural Resources, 2018, 33(9): 1529−1541. doi: 10.31497/zrzyxb.20170842
    [39]
    刘慧敏, 韩海荣, 程小琴, 等. 不同密度调控强度对华北落叶松人工林土壤质量的影响[J]. 北京林业大学学报, 2021, 43(6): 50−59. doi: 10.12171/j.1000-1522.20200322

    Liu H M, Han H R, Cheng X Q, et al. Effects of different density regulation intensities on soil quality in Larix principis-rupprechtii plantation[J]. Journal of Beijing Forestry University, 2021, 43(6): 50−59. doi: 10.12171/j.1000-1522.20200322
    [40]
    聂泽旭, 齐实, 马曦瑶, 等. 华蓥市山区侧柏人工林土壤特性及水源涵养能力对林分密度的响应[J]. 地球与环境, 2020, 48(3): 318−326. doi: 10.14050/j.cnki.1672-9250.2020.48.043

    Nie Z X, Qi S, Ma X Y, et al. Responses of soil characteristics and water conservation capacity to stand densities of planted Platycladus orientalis in mountainous areas of the Huaying City[J]. Earth and Environment, 2020, 48(3): 318−326. doi: 10.14050/j.cnki.1672-9250.2020.48.043
    [41]
    王岳, 王海燕, 李旭, 等. 不同密度下近天然落叶松云冷杉林各土层土壤理化特征[J]. 草业科学, 2014, 31(8): 1424−1429. doi: 10.11829/j.issn.1001-0629.2013-0580

    Wang Y, Wang H Y, Li X, et al. Soil physical and chemical characteristics of different depths in semi-natural mixed larch-spruce-fir at different stand densities[J]. Pratacultural Science, 2014, 31(8): 1424−1429. doi: 10.11829/j.issn.1001-0629.2013-0580
    [42]
    邱新彩, 彭道黎, 李伟丽, 等. 北京延庆区不同林龄油松人工林土壤理化性质[J]. 应用与环境生物学报, 2018, 24(2): 221−229. doi: 10.19675/j.cnki.1006-687x.2017.05012

    Qiu X C, Peng D L, Li W L, et al. Soil physicochemical properties of Pinus tabulaeformis plantations of different ages in Yanqing, Beijing[J]. Chinese Journal of Applied and Environmental Biology, 2018, 24(2): 221−229. doi: 10.19675/j.cnki.1006-687x.2017.05012
    [43]
    迟琦, 吴迪, 王月, 等. 小兴安岭森林湿地不同过渡带土壤微生物群落结构研究[J]. 森林工程, 2018, 34(3): 6−13, 18. doi: 10.3969/j.issn.1006-8023.2018.03.002

    Chi Q, Wu D, Wang Y, et al. Research on soil microbial community structure of different forest-wetland ecotones in Xiaoxing’an Mountain[J]. Forest Engineering, 2018, 34(3): 6−13, 18. doi: 10.3969/j.issn.1006-8023.2018.03.002
    [44]
    刘莹莹, 苏妮尔, 赵彩鸿, 等. 落叶松凋落叶水提液对苗圃土壤微生物数量和土壤酶活性的影响[J]. 森林工程, 2020, 36(5): 24−33. doi: 10.3969/j.issn.1006-8023.2020.05.004

    Liu Y Y, Su N E, Zhao C H, et al. Effects of water extracts of Larix chinensis litters on the microbial quantity and enzyme activity of soil in nursery[J]. Forest Engineering, 2020, 36(5): 24−33. doi: 10.3969/j.issn.1006-8023.2020.05.004
    [45]
    王媚臻, 毕浩杰, 金锁, 等. 林分密度对云顶山柏木人工林林下物种多样性和土壤理化性质的影响[J]. 生态学报, 2019, 39(3): 981−988.

    Wang M Z, Bi H J, Jin S, et al. Effects of stand density on understory species diversity and soil physicochemical properties of a Cupressus funebris plantation in Yunding Mountain[J]. Acta Ecologica Sinica, 2019, 39(3): 981−988.
    [46]
    王玲, 赵广亮, 周红娟, 等. 华北地区油松人工林林分密度对土壤化学性质和酶活性的影响[J]. 中南林业科技大学学报, 2020, 40(12): 9−16, 33. doi: 10.14067/j.cnki.1673-923x.2020.12.002

    Wang L, Zhao G L, Zhou H J, et al. Effects of stand density on soil chemical properties and enzyme activity of Pinus tabulaeformis in north China[J]. Journal of Central South University of Forestry and Technology, 2020, 40(12): 9−16, 33. doi: 10.14067/j.cnki.1673-923x.2020.12.002
    [47]
    罗桂生, 马履一, 贾忠奎, 等. 油松人工林不同大小林隙环境因子差异性比较[J]. 中南林业科技大学学报, 2020, 40(5): 86−94. doi: 10.14067/j.cnki.1673-923x.2020.05.011

    Luo G S, Ma L Y, Jia Z K, et al. Comparison of environmental factors differences in gaps with different size of Pinus tabulaeformis plantation[J]. Journal of Central South University of Forestry and Technology, 2020, 40(5): 86−94. doi: 10.14067/j.cnki.1673-923x.2020.05.011
    [48]
    张鼎华, 叶章发, 范必有, 等. 抚育间伐对人工林土壤肥力的影响[J]. 应用生态学报, 2001, 12(5): 672−676. doi: 10.3321/j.issn:1001-9332.2001.05.007

    Zhang D H, Ye Z F, Fan B Y, et al. Influence of thinning on soil fertility in artificial forests[J]. Chinese Journal of Applied Ecology, 2001, 12(5): 672−676. doi: 10.3321/j.issn:1001-9332.2001.05.007
    [49]
    Seongjun K, Guanlin L, Seung H H, et al. Microbial biomass and enzymatic responses to temperate oak and larch forest thinning: influential factors for the site-specific changes[J]. Science of the Total Environment, 2019, 651(PT.2): 2068−2079.
  • Related Articles

    [1]Chen Tingqiao, Yuan Tao, Xie Mengyu, Tang Ying, Zeng Xiuli. Development of secondary branches and apical buds of Paeonia ludlowii under cultivated conditions[J]. Journal of Beijing Forestry University, 2022, 44(6): 106-114. DOI: 10.12171/j.1000-1522.20210144
    [2]LIU Jin-chun, MA Ye, TAO Jian-ping, GAO Kai-min, LIANG Qian-hui. Effects of AM fungus on root growth of Lonicera japonica under alternate dry and wet conditions in karst regions of southwestern China.[J]. Journal of Beijing Forestry University, 2015, 37(10): 110-116. DOI: 10.13332/j.1000-1522.20150057
    [3]CHEN Jie, XIE Jing, TANG Ming. Effects of arbuscular mycorrhizal fungi on the growth and drought resistance of Amorpha fruticosa under water stress.[J]. Journal of Beijing Forestry University, 2014, 36(6): 142-148. DOI: 10.13332/j.cnki.jbfu.2014.06.026
    [4]WEI Bao, DING Guo-dong, WU Bin, ZHANG Yu-qing, BAO Yan-feng, GAO Guang-lei1, SHI Hui-shu, ZHAO Jin-hong. Windbreak mechanism under different shrub cover conditions.[J]. Journal of Beijing Forestry University, 2013, 35(5): 73-78.
    [5]XU Yan, YU Xue-jun, GAO Yan, GAO Pei-jun, ZHANG Ru-min. Effects of NO on seed germination and seedling growth of Haloxylon ammodendron under osmosis stress[J]. Journal of Beijing Forestry University, 2011, 33(6): 65-69.
    [6]MENG Fan-juan, WANG Jian-zhong, HUANG Feng-lan, WANG Yan-jie. Ultrastructure of mesophyll cells in two Robinia pseudoacacia hybrids under NaCl stress.[J]. Journal of Beijing Forestry University, 2010, 32(4): 97-102.
    [7]WANG Jin-li, LIANG Wen-yan, CHEN Li. Separation and purification of microcystin-LR.[J]. Journal of Beijing Forestry University, 2010, 32(2): 184-188.
    [8]XIA Songhua, LI Li, LI Jian-zhang.. Ureaformaldehyde resin modified by nanoTiO2 under ultrasonic treatment[J]. Journal of Beijing Forestry University, 2009, 31(4): 123-129.
    [9]WANG Xing-zu, CHENG Xiang, ZHENG Hui, SUN De-zhi. Autocatalysis in biological decolorization of Reactive Black 5 under anaerobic condition.[J]. Journal of Beijing Forestry University, 2009, 31(3): 135-139.
    [10]ZHENG Yong-hong, , LIANG Er-yuan, ZHU Hai-feng, SHAO Xue-mei. Response of radial growth of Qilian juniper to climatic change under different habitats[J]. Journal of Beijing Forestry University, 2008, 30(3): 7-12.
  • Cited by

    Periodical cited type(8)

    1. 杨灿,范习健,张九于. SSFYOLO:一种面向复杂森林场景的树干检测算法. 北京林业大学学报. 2025(02): 132-142 . 本站查看
    2. 刘伟起,刘洪杰,史璐,杨欣,李建平,王鹏飞. 电动果园作业平台结构设计与试验. 农机化研究. 2024(01): 75-83 .
    3. 刘伟起,刘洪杰,史璐,杨欣,李建平,王鹏飞. 履带式果园作业平台结构稳定性分析与研究. 农机化研究. 2024(04): 42-47 .
    4. 郭昊生,马蓉,张垚鑫,李子迎. 丫形欠驱动库尔勒香梨采摘机械手的设计与仿真分析. 农机化研究. 2023(01): 110-117 .
    5. 虞浪,俞高红,吴浩宇,孙福兴,钱孟波. 欠驱动关节型柑橘采摘末端执行器设计与试验. 农业工程学报. 2023(17): 29-38 .
    6. 于泳超,康峰,郑永军,吕昊暾,王亚雄. 果园高位自动调平作业平台设计及仿真. 北京林业大学学报. 2021(02): 150-159 . 本站查看
    7. 曹琨,张姗姗. 基于机器视觉的蔬果辅助采摘装置系统设计与优化. 食品工业. 2021(05): 362-366 .
    8. 董杰,赵元豪,尚宁宁,蒋创宇,赵秒. 一种旋转式欠驱动自适应水果采摘器. 科学技术创新. 2019(13): 155-156 .

    Other cited types(1)

Catalog

    Article views (696) PDF downloads (74) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return