Citation: | Du Haojia, Lü Wenhua, Liu Qiangqiang, Kong Jing, Wang Xiaoqing. Properties and mechanism of poplar wood modified by melamine-urea-glucose (MUG) biomass resin and sodium silicate compound[J]. Journal of Beijing Forestry University, 2022, 44(5): 124-131. DOI: 10.12171/j.1000-1522.20210535 |
[1] |
赵鹏炜, 徐国祺, 杨鸿. 纳米CuO/硅溶胶制剂处理杨木性能的研究[J]. 北京林业大学学报, 2021, 43(11): 109−117. doi: 10.12171/j.1000-1522.20210299
Zhao P W, Xu G Q, Yang H. Research on the performance of poplar wood treated by nano-CuO/silica sol formulations[J]. Journal of Beijing Forestry University, 2021, 43(11): 109−117. doi: 10.12171/j.1000-1522.20210299
|
[2] |
刘强强, 吕文华, 石媛, 等. 复合硅改性热处理杨木的制备及性能[J]. 北京林业大学学报, 2021, 43(1): 136−143.
Liu Q Q, Lü W H, Shi Y, et al. Preparation and properties of heat-treated poplar wood modified with composite silicon modifier[J]. Journal of Beijing Forestry University, 2021, 43(1): 136−143.
|
[3] |
Viswanathan T, Richardson T. Thermosetting adhesives resins from whey and whey by-products[J]. Industrial and Engineering Chemistry Product Research and Development, 1984, 23(4): 644−647. doi: 10.1021/i300016a027
|
[4] |
Liu Q, Du H, Lyu W. Physical and mechanical properties of poplar wood modified by glucose-urea-melamine resin/sodium silicate compound[J]. Forests, 2021, 12(2): 127.
|
[5] |
Wan Y Z, Luo H, He F, et al. Mechanical, moisture absorption, and biodegradation behaviours of bacterial cellulose fibre-reinforced starch biocomposites[J]. Composites Science and Technology, 2009, 69(7-8): 1212−1217. doi: 10.1016/j.compscitech.2009.02.024
|
[6] |
Lang Q, Bi Z, Pu J W. Poplar wood-methylol urea composites prepared by in situ polymerization. II. characterization of the mechanism of wood modification by methylol urea[J]. Journal of Applied Polymer Science, 2015, 132(41): 280.
|
[7] |
付菁菁, 何春霞, 王思群. 浸渍过程对纳米纤维素/二氧化硅复合气凝胶结构与性能研究[J]. 光谱学与光谱分析, 2017, 37(7): 2019−2023.
Fu J J, He C X, Wang S Q. Effect of immersion process the properties and structure of cellulose nanofibril/silica composite aerogels[J]. Spectroscope and Spectral Analysis, 2017, 37(7): 2019−2023.
|
[8] |
Tjeerdsma B, Militz H. Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood[J]. Holz Roh-Werkst, 2005, 63: 102−111. doi: 10.1007/s00107-004-0532-8
|
[9] |
张涛, 于建芳, 王喜明, 等. 山苍子油对人工林北京杨的改性效果[J]. 应用化工, 2020, 49(7): 1661−1665.
Zhang T, Yu J F, Wang X M, et al. Effect of Litsea cubeba oil on the modification of Beijing poplar plantation[J]. Applied Chemical Industry, 2020, 49(7): 1661−1665.
|
[10] |
李萍, 吴义强, 左迎峰, 等. XPS和FTIR分析仿生呼吸法对硅酸盐改性杉木浸渍效果的影响[J]. 光谱学与光谱分析, 2021, 41(5): 1430−1435.
Li P, Wu Y Q, Zuo Y F, et al. Effect of biometic respiration method on the impact of silicone modified Chinese fir by XPS and FTIR analysis[J]. Spectroscope and Spectral Analysis, 2021, 41(5): 1430−1435.
|
[11] |
钱曹厉. CaCl2-NaCO3内部反应沉积改性杨木的制备及性能研究[D]. 南京: 南京林业大学, 2020.
Qian C L. Preparation and performance of CaCl2-NaCO3 internal reaction deposition modified poplar[D]. Nanjing: Nanjing Forestry University, 2020.
|
[12] |
刘雪纯, 王凯伦, 甘卫星, 等. 葡萄糖三聚氰胺甲醛树脂的热性能[J]. 桂林理工大学学报, 2018, 38(3): 513−518. doi: 10.3969/j.issn.1674-9057.2018.03.021
Liu X C, Wang K L, Gan W X, et al. Thermal properties of glucose-melamine-formaldehyde resin[J]. Journal of Guilin University of Technology, 2018, 38(3): 513−518. doi: 10.3969/j.issn.1674-9057.2018.03.021
|
[13] |
Liu C, Wang S, Shi J, et al. Fabrication of superhydrophobic wood surfaces via a solution-immersion process[J]. Applied Surface Science, 2011, 258(2): 761−765. doi: 10.1016/j.apsusc.2011.08.077
|
[14] |
Jiang J, Cao J Z, Wang W. Characteristics of wood-silica composites influenced by the pH value of silica sols[J]. Holzforschung, 2018, 72(4): 311−319. doi: 10.1515/hf-2017-0126
|
[15] |
彭尧, 王雯, 曹金珍. 蒙脱土对木粉/聚丙烯复合材料光降解及老化抑制作用[J]. 北京林业大学学报, 2018, 40(8): 116−122.
Peng Y, Wang W, Cao J Z. Photodegradation and anti-weathering effects of montmorillonite on WF/PP composites[J]. Journal of Beijing Forestry University, 2018, 40(8): 116−122.
|
[16] |
潘明珠, 梅长彤. 纳米SiO2-APP对木塑复合材料界面特性及力学性能的影响[J]. 北京林业大学学报, 2013, 35(5): 117−122.
Pan M Z, Mei C T. Effects of nano SiO2-ammonium polyphosphate on the interfacial and mechanical properties of wood fiber-polyethylene composites[J]. Journal of Beijing Forestry University, 2013, 35(5): 117−122.
|
[17] |
Meng F, Yu Y, Zhang Y, et al. Surface chemical composition analysis of heat-treated bamboo[J]. Applied Surface Science, 2016, 371: 383−390. doi: 10.1016/j.apsusc.2016.03.015
|
[18] |
Miao X, Chen H, Lang Q, et al. Characterization of Ailanthus altissima veneer modified by urea-formaldehyde pre-polymer with compression drying[J]. Bioresources, 2014, 9(4): 5928−5939.
|
[19] |
王喆, 刘君良, 孙柏玲, 等. 真空热处理人工林落叶松木材吸湿性变化机理研究[J]. 光谱学与光谱分析, 2017, 37(10): 3160−3164.
Wang Z, Liu J L, Sun B L, et al. Study on mechanism of moisture absorption change of larch plantation under vacuum heat treatment[J]. Spectroscope and Spectral Analysis, 2017, 37(10): 3160−3164.
|
[20] |
Wang J, Zhang M, Chen M, et al. Catalytic effects of six inorganic compounds on pyrolysis of three kinds of biomass[J]. Thermochimica Acta, 2006, 444(1): 110−114. doi: 10.1016/j.tca.2006.02.007
|
[21] |
Nguyen T T, Nguyen T V K, Xiao Z, et al. Combustion behavior of poplar (Populus adenopoda Maxim.) and radiata pine (Pinus radiata Don.) treated with a combination of styrene-acrylic copolymer and sodium silicate[J]. Holz Als Roh Und Werkstoff, 2019, 77(3): 439−452. doi: 10.1007/s00107-019-01401-2
|
[1] | Xu Pengfei, Zhang Houjiang, Xin Zhenbo, Yuan Jiangyu. Numerical simulation of neutral axis in transverse bending of tree trunk[J]. Journal of Beijing Forestry University, 2024, 46(8): 1-14. DOI: 10.12171/j.1000-1522.20240073 |
[2] | Tu Juncheng, Zhao Dong, Zhao Jian. Experimental study on in situ monitoring of the evolution law of cracks in wood components with transverse cracks based on acoustic emission and image correlation[J]. Journal of Beijing Forestry University, 2020, 42(1): 142-148. DOI: 10.12171/j.1000-1522.20190276 |
[3] | WANG Xiao-song, HUANG Xin-yuan, FU Hui. Study surveys on tree image extraction in a complex background.[J]. Journal of Beijing Forestry University, 2010, 32(3): 197-203. |
[4] | LI Ming-ze, FAN Wen-yi, ZHANG Yuan-yuan.. Measuring heights of standing trees based on digital photogrammetry.[J]. Journal of Beijing Forestry University, 2009, 31(2): 74-79. |
[5] | LIU Yun-wei, , FENG Zhong-ke, LIU Yong-xia, LI Shu-wei, WANG Hong-liang. Application of total station in digital forestry project.[J]. Journal of Beijing Forestry University, 2008, 30(增刊1): 306-309. |
[6] | YAO Shan, FENG Zhong-ke, ZANG Shu-ying. Construction of digital forestry ecological project in Shandong, east China.[J]. Journal of Beijing Forestry University, 2008, 30(增刊1): 122-126. |
[7] | ZHANG Hui-ping, CHEN Zhi-bo. Application of distributed database technology in digital forest eco-station[J]. Journal of Beijing Forestry University, 2007, 29(3): 131-135. DOI: 10.13332/j.1000-1522.2007.03.021 |
[8] | HUANG Xin-yuan, WANG Hai. Digital Forestry and its technology and development[J]. Journal of Beijing Forestry University, 2006, 28(6): 142-147. |
[9] | ZHONG Jian, LI Hong-qi, CUI Xiao-peng, LIU Yan, LU Zhen-you, SHEN Shi-jie. Application of the digital speckle correlation method on timber with finger-joints[J]. Journal of Beijing Forestry University, 2006, 28(4): 12-16. |
[10] | BI Hua-xing, TAN Xiu-ying, LI Xiao-yin. Digital terrain analysis based on DEM[J]. Journal of Beijing Forestry University, 2005, 27(2): 49-53. |
1. |
雷相东. 森林生态系统服务多功能性:概念、指标和经营模拟模型. 北京林业大学学报. 2024(05): 1-11 .
![]() | |
2. |
宋磊,金星姬,PUKKALA Timo,李凤日. 长白落叶松人工林多目标经营模式研究. 南京林业大学学报(自然科学版). 2023(02): 150-158 .
![]() | |
3. |
卿东升,张晓芳,李建军,郭瑞,邓巧玲. 基于蜂群–粒子群算法的天然林空间结构优化. 系统仿真学报. 2020(03): 371-381 .
![]() | |
4. |
王露露,刘雪强,王丽霞,马顺兴,马瑞婷,闫东锋. 内黄林场优势树种龄级结构优化调整及评价. 林业资源管理. 2020(01): 47-53 .
![]() | |
5. |
董灵波,蔺雪莹,刘兆刚. 大兴安岭盘古林场森林碳汇木材复合经营规划. 北京林业大学学报. 2020(08): 1-11 .
![]() | |
6. |
张会儒,雷相东,李凤日. 中国森林经理学研究进展与展望. 林业科学. 2020(09): 130-142 .
![]() | |
7. |
董灵波,刘兆刚. 基于森林空间规划问题的模拟退火算法参数敏感性研究. 林业科学研究. 2018(04): 9-17 .
![]() |