Processing math: 100%
  • Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Jin Zihao, Wang Jingxue, Ren Yifan, Zhang Xiao, Ji Xiaodong. Windproof effect of Robinia pseudoacacia forest in different forest belts[J]. Journal of Beijing Forestry University, 2022, 44(8): 39-47. DOI: 10.12171/j.1000-1522.20210550
Citation: Jin Zihao, Wang Jingxue, Ren Yifan, Zhang Xiao, Ji Xiaodong. Windproof effect of Robinia pseudoacacia forest in different forest belts[J]. Journal of Beijing Forestry University, 2022, 44(8): 39-47. DOI: 10.12171/j.1000-1522.20210550

Windproof effect of Robinia pseudoacacia forest in different forest belts

More Information
  • Received Date: December 26, 2021
  • Revised Date: January 24, 2022
  • Available Online: July 18, 2022
  • Published Date: August 24, 2022
  •   Objective  Robinia pseudoacacia is a common used tree species for afforestation in China, which is widely planted in the estuary of the Yellow River. However, the area is vulnerable to strong wind invasion, and Robinia pseudoacacia root is prone to windfall due to its shallow root system. Therefore, a reasonable forest belt layout is of great urgency to reduce the maximum wind speed in the forest, avoid tree collapse and improve the wind-proof effect of Robinia pseudoacacia forest.
      Method  The study focused on the coastal Robinia pseudoacacia shelter forest as the research object. The Ansys Workbench platform was used to establish the calculation model of the wind field and Robinia pseudoacacia based on the two-way fluid-structure coupling technology, so as to discuss the windproof effect of Robinia pseudoacacia forest in different forest belts.
      Result  (1) Establishing the two-way fluid-structure coupling simulation model of Robinia pseudoacacia and the flow field, verified by field test data, the horizontal normalized wind speed error of the model was 13%, and the vertical normalized wind speed error was 6%, and when the wind vibration of the branches was relatively stable, the displacement error was 7 mm, the model had high simulation precision. (2) The simulation results showed that the first row of Robinia pseudoacacia had an obvious effect on reducing the wind speed. Under the working condition of fixed row spacing of 5 m, the wind speed will decrease in turn as compared with the previous row of Robinia pseudoacacia by 0.12v0, 0.07v0, 0.03 v0 and 0.01v0 (v0 was the initial wind speed before the forest). (3) With the increase of row spacing, the overall windproof effect of the two adjacent rows of Robinia pseudoacacia gradually decreased. After the wind passed through the two rows of Robinia pseudoacacia with row spacing of 0.4H, 0.5H, 0.7H, 1.0H and 1.5H, respectively (H is the height of the tree), the difference between the two reduced wind speeds of the two rows of Robinia pseudoacacia was 0.15v0, 0.12v0, 0.07v0, 0.04v0 and 0.01v0, respectively. (4) The windbreak effect of staggered Robinia pseudoacacia forests was better than square arrangement, and the wind vibration amplitude of staggered branches of Robinia pseudoacacia was smaller.
      Conclusion  Different forest belt structures have a great influence on the windproof effect of Robinia pseudoacacia forest, it is an effective research method to evaluate the windbreak effect of different forest belt structures by numerical simulation technology, the results can provide scientific support for subsequent reasonable afforestation in this area.
  • [1]
    Schelhaas M J, Nabuurs G J, Schuck A. Natural disturbances in the European forests in the 19th and 20th centuries[J]. Global Change Biology, 2003, 9(11): 1620−1633. doi: 10.1046/j.1365-2486.2003.00684.x
    [2]
    吴志华, 李天会, 张华林. 沿海防护林树种木麻黄和相思生长和抗风性状比较研究[J]. 草业学报, 2010, 19(4): 169−178. doi: 10.11686/cyxb20100422

    Wu Z H, Li T H, Zhang H L. Studies on growth and wind-resistance traits of Casuarina and Acacia stands from coastal protection forest[J]. Acta Prataculturae Sinica, 2010, 19(4): 169−178. doi: 10.11686/cyxb20100422
    [3]
    Gardiner B, Peltola H, Kellomaki S. Comparison of two models for predicting the critical wind speeds required to damage coniferous trees[J]. Ecological Modelling, 2000, 129(1): 1−23. doi: 10.1016/S0304-3800(00)00220-9
    [4]
    Cornelis W M, Gabriels D. Optimal windbreak design for wind-erosion control[J]. Journal of Arid Environments, 2005, 61(2): 315−332. doi: 10.1016/j.jaridenv.2004.10.005
    [5]
    Liu C, Zheng Z, Cheng H, et al. Airflow around single and multiple plants[J]. Agricultural & Forest Meteorology, 2018, 252: 27−38.
    [6]
    Mustafa M, Xu Y, Haritos G, et al. Measurement of wind flow behavior at the leeward side of porous fences using ultrasonic anemometer device[J]. Energy Procedia, 2016, 85: 350−357. doi: 10.1016/j.egypro.2015.12.261
    [7]
    孙忠. 基于大涡模拟方法的数值风洞技术与应用研究[D]. 西安: 西安建筑科技大学, 2013.

    Sun Z. Numerical wind tunnel technique and application study based on large eddy simulation method[D]. Xi’an: Xi’an University of Architecture and Technology, 2013.
    [8]
    康文星, 赵仲辉, 邓湘雯. 杉木林冠层的动力效应及动能传递规律的研究[J]. 中南林业科技大学学报, 2007, 27(2): 1−6. doi: 10.3969/j.issn.1673-923X.2007.02.001

    Kang W X, Zhao Z H, Deng X W. Study of the dynamic effects and the law of kinetic energy transmission in the canopy of Chinese fir plantation ecosystems[J]. Journal of Central South University of Forestry & Technology, 2007, 27(2): 1−6. doi: 10.3969/j.issn.1673-923X.2007.02.001
    [9]
    关德新, 朱廷曜. 树冠结构参数及附近几场特征的风洞模拟研究[J]. 应用生态学报, 2000, 11(2): 202−204. doi: 10.3321/j.issn:1001-9332.2000.02.012

    Guan D X, Zhu T Y. Wind tunnel experiment on canopy structural parameters of isolated tree and wind velocity field characters nearby[J]. Chinese Journal of Applied Ecology, 2000, 11(2): 202−204. doi: 10.3321/j.issn:1001-9332.2000.02.012
    [10]
    Mayhead G J. Some drag coefficients for british forest trees derived from wind tunnel studies[J]. Agricultural Meteorology, 1973, 12(1): 123−130.
    [11]
    Dong Z, Qian G, Luo W, et al. Threshold velocity for wind erosion: the effects of porous fences[J]. Environmental Geology, 2006, 51(3): 471−475. doi: 10.1007/s00254-006-0343-9
    [12]
    Moore J R, Maguire D A. Simulating the dynamic behavior of Douglas-fir trees under applied loads by the finite element method[J]. Tree Physiology, 2008, 28(1): 75−83. doi: 10.1093/treephys/28.1.75
    [13]
    Ciftci C, Arwade S R, Kane B, et al. Analysis of the probability of failure for open-grown trees during wind storms[J]. Probabilistic Engineering Mechanics, 2014, 37: 41−50. doi: 10.1016/j.probengmech.2014.04.002
    [14]
    艾晓秋, 彭勇波, 承颖瑶. 城市行道树动力学特性与风致破坏分析[J]. 自然灾害学报, 2018, 27(1): 27−32.

    Ai X Q, Peng Y B, Cheng Y Y. Wind-induced failure and dynamical behaviors of urban trees[J]. Journal of Natural Disasters, 2018, 27(1): 27−32.
    [15]
    黄盼盼, 胡艳. 脉动风时程模拟及应用[J]. 实验技术与管理, 2021, 38(5): 158−161.

    Huang P P, Hu Y. Time-history simulation and application of fluctuating wind[J]. Experimental Technology and Management, 2021, 38(5): 158−161.
    [16]
    张鳌, 冀晓东, 丛旭, 等. 基于线性滤波法的单株林木抗风有限元模拟[J]. 北京林业大学学报, 2016, 38(2): 1−9.

    Zhang A, Ji X D, Cong X, et al. Finite element modeling of wind resistance of single trees based on linear filtering method[J]. Journal of Beijing Forestry University, 2016, 38(2): 1−9.
    [17]
    Bitog J P, Lee I B, Hwang H S, et al. Numerical simulation study of a tree windbreak[J]. Biosystems Engineering, 2012, 111(1): 40−48. doi: 10.1016/j.biosystemseng.2011.10.006
    [18]
    Bitog J P, Lee I B, Shin M H, et al. Numerical simulation of an array of fences in Saemangeum reclaimed land[J]. Atmospheric Environment, 2009, 43(30): 4612−4621. doi: 10.1016/j.atmosenv.2009.05.050
    [19]
    Rosenfeld M, Marom G, Bitan A. Numerical simulation of the airflow across trees in a windbreak[J]. Boundary-Layer Meteorology, 2010, 135(1): 89−107. doi: 10.1007/s10546-009-9461-8
    [20]
    孙恒, 冀晓东, 赵红华, 等. 人工林刺槐木材物理力学性质研究[J]. 北京林业大学学报, 2018, 40(7): 104−112.

    Sun H, Ji X D, Zhao H H, et al. Physical and mechanical properties of Robinia pseudoacacia wood in artificial forests[J]. Journal of Beijing Forestry University, 2018, 40(7): 104−112.
    [21]
    韩朝. 风荷载下刺槐力学响应研究[D]. 北京: 北京林业大学, 2020.

    Han C. Study on mechanical response of Robinia pseudoacacia under wind load[D]. Beijing: Beijing Forestry University, 2020.
    [22]
    侯凯. 沿海地区刺槐防护林风速流场及数值模拟研究[D]. 北京: 北京林业大学, 2020.

    Hou K. Research on wind speed flow field and numerical simulation of Robinia pseudoacacia forest incoastal area[D]. Beijing: Beijing Forestry University, 2020.
    [23]
    杨茂林, 冀晓东, 孙恒, 等. 不同年龄刺槐枝、干和根的物理力学性质对比[J]. 林业科学, 2020, 56(7): 115−122. doi: 10.11707/j.1001-7488.20200712

    Yang M L, Ji X D, Sun H, et al. comparation on physical and mechanical properties of branches, stems and roots of Robinia pseudoacacia at different ages[J]. Scientia Silvae Sinicae, 2020, 56(7): 115−122. doi: 10.11707/j.1001-7488.20200712
    [24]
    任一凡. 基于双向流固耦合的林木风致响应及防风效果研究[D]. 北京: 北京林业大学, 2020.

    Ren Y F. Study on wind-induced response and windproof effect of trees based on two-way fluid-structure interaction[D]. Beijing: Beijing Forestry University, 2020.
    [25]
    Adamopoulos S. Flexural properties of black locust (Robinia pseudoacacia L.) small clear wood specimens in relation to the direction of load application[J]. Holz als Roh- und Werkstoff, 2002, 60(5): 325−327. doi: 10.1007/s00107-002-0328-7
    [26]
    刘一星, 赵广杰. 木材学[M]. 北京: 中国林业出版社, 2012.

    Liu Y X, Zhao G J. Wood science[M]. Beijing: China Forestry Publishing House, 2012.
    [27]
    高旭, 姜楠. 分形L系统理论与植物图像的计算机模拟[J]. 扬州大学学报(自然科学版), 2000, 3(1): 71−74.

    Gao X, Jiang N. Fractal lindenmayer system and the computer simulation of plant image[J]. Journal of Yangzhou University(Natural Science Edition), 2000, 3(1): 71−74.
    [28]
    Heisler G M, Dewalle D R. Effects of windbreak structure on wind flow[J]. Agriculture Ecosystems and Environment, 1988, 22: 41−69.
  • Related Articles

    [1]Nan Xiaofan, Ma Bingqian, Xue Yongxin, Yu Miao, Xu Chengyang, Jin Yingshan, Jin Guixiang. Coupling relationships between stand structural traits and visually morphological traits: a case study of scenic and recreational forest on shallow mountain area in Beijing[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240178
    [2]Niu Danni, Ma Rui, Liu Hujun, Zhang Yuzhong. Wind tunnel test on the windproof effect of Haloxylon ammodendron forests with different planting site configurations[J]. Journal of Beijing Forestry University, 2023, 45(7): 76-87. DOI: 10.12171/j.1000-1522.20220466
    [3]Zhang Xingxin, Zhang Kai, Zhao Liming, Deng Yuhui, Deng Lijia. Numerical simulation on wind-sand flow field at the bridge and roadbed transition section of Golmud-Korla Railway in northwestern China[J]. Journal of Beijing Forestry University, 2022, 44(2): 75-81. DOI: 10.12171/j.1000-1522.20210213
    [4]Bao Yanfeng, Hao Yuguang, Zhao Yingming, Xin Zhiming, Dong Xue, Li Yonghua. Windbreak effects of shelterbelts in oases of the Ulan Buh Desert based on the analysis of wind speed field[J]. Journal of Beijing Forestry University, 2020, 42(8): 122-131. DOI: 10.12171/j.1000-1522.20190122
    [5]Zhao Kai, Li Jinhang, Xu Chengyang. Coupling relationship between stand structure and color patch of Platycladus orientalis plantations[J]. Journal of Beijing Forestry University, 2019, 41(1): 82-91. DOI: 10.13332/j.1000-1522.20180316
    [6]CHEN Xi, GAO Yong, NARENGERILE, ZHAI Bo, WANG Yu-yan, SHI Wan-lin. Simulation analysis of effects of wind field and photovoltaic DC field allocation on aeolian-sand structure[J]. Journal of Beijing Forestry University, 2017, 39(8): 68-76. DOI: 10.13332/j.1000-1522.20170137
    [7]WANG Shu-li, LIANG Xiao-jiao, MA Chao, ZHOU Jian-ping. Coupling relationship between Hedysarum mongdicum shrub plantation and sand soil based on structural equation model[J]. Journal of Beijing Forestry University, 2017, 39(1): 1-8. DOI: 10.13332/j.1000-1522.20160101
    [8]ZHOU Jian-ping, WANG Shu-li.. Coupling relationship of structure and tree diversity between upper and lower canopy layer based on structural equation model.[J]. Journal of Beijing Forestry University, 2015, 37(9): 9-16. DOI: 10.13332/j.1000-1522.20140400
    [9]WANG Shu-li, ZHOU Jian-ping. Coupling relationship between stand growth and impacting factors based on structural equation model[J]. Journal of Beijing Forestry University, 2014, 36(5): 7-12. DOI: 10.13332/j.cnki.jbfu.2014.05.011
    [10]SUN Xiang-li, ZHANG Qi-xiang. Coupling effect of water and fertilizer on potted Euphorbia pulcherrima in greenhouse.[J]. Journal of Beijing Forestry University, 2011, 33(3): 99-105.
  • Cited by

    Periodical cited type(4)

    1. 牛丹妮,马瑞,刘虎俊,张瑜忠. 不同种植点配置的梭梭林防风效应的风洞试验. 北京林业大学学报. 2023(07): 76-87 . 本站查看
    2. 任伟征,田宇,任泉静,杨毅,杨喜田. 中国农田防护林对作物产量影响的整合分析. 河南农业大学学报. 2023(04): 705-712 .
    3. 杨军. 黄金刺槐嫁接繁育技术及园林运用. 现代园艺. 2023(19): 75-77 .
    4. 王京学,王秀龙,冀晓东,李丹煜,赵国烨,孙禹枫. 防护林防风效应风洞模拟试验研究进展. 中国农业大学学报. 2023(12): 162-176 .

    Other cited types(4)

Catalog

    Article views (736) PDF downloads (69) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return