Processing math: 100%
  • Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Jin Zihao, Wang Jingxue, Ren Yifan, Zhang Xiao, Ji Xiaodong. Windproof effect of Robinia pseudoacacia forest in different forest belts[J]. Journal of Beijing Forestry University, 2022, 44(8): 39-47. DOI: 10.12171/j.1000-1522.20210550
Citation: Jin Zihao, Wang Jingxue, Ren Yifan, Zhang Xiao, Ji Xiaodong. Windproof effect of Robinia pseudoacacia forest in different forest belts[J]. Journal of Beijing Forestry University, 2022, 44(8): 39-47. DOI: 10.12171/j.1000-1522.20210550

Windproof effect of Robinia pseudoacacia forest in different forest belts

More Information
  • Received Date: December 26, 2021
  • Revised Date: January 24, 2022
  • Available Online: July 18, 2022
  • Published Date: August 24, 2022
  •   Objective  Robinia pseudoacacia is a common used tree species for afforestation in China, which is widely planted in the estuary of the Yellow River. However, the area is vulnerable to strong wind invasion, and Robinia pseudoacacia root is prone to windfall due to its shallow root system. Therefore, a reasonable forest belt layout is of great urgency to reduce the maximum wind speed in the forest, avoid tree collapse and improve the wind-proof effect of Robinia pseudoacacia forest.
      Method  The study focused on the coastal Robinia pseudoacacia shelter forest as the research object. The Ansys Workbench platform was used to establish the calculation model of the wind field and Robinia pseudoacacia based on the two-way fluid-structure coupling technology, so as to discuss the windproof effect of Robinia pseudoacacia forest in different forest belts.
      Result  (1) Establishing the two-way fluid-structure coupling simulation model of Robinia pseudoacacia and the flow field, verified by field test data, the horizontal normalized wind speed error of the model was 13%, and the vertical normalized wind speed error was 6%, and when the wind vibration of the branches was relatively stable, the displacement error was 7 mm, the model had high simulation precision. (2) The simulation results showed that the first row of Robinia pseudoacacia had an obvious effect on reducing the wind speed. Under the working condition of fixed row spacing of 5 m, the wind speed will decrease in turn as compared with the previous row of Robinia pseudoacacia by 0.12v0, 0.07v0, 0.03 v0 and 0.01v0 (v0 was the initial wind speed before the forest). (3) With the increase of row spacing, the overall windproof effect of the two adjacent rows of Robinia pseudoacacia gradually decreased. After the wind passed through the two rows of Robinia pseudoacacia with row spacing of 0.4H, 0.5H, 0.7H, 1.0H and 1.5H, respectively (H is the height of the tree), the difference between the two reduced wind speeds of the two rows of Robinia pseudoacacia was 0.15v0, 0.12v0, 0.07v0, 0.04v0 and 0.01v0, respectively. (4) The windbreak effect of staggered Robinia pseudoacacia forests was better than square arrangement, and the wind vibration amplitude of staggered branches of Robinia pseudoacacia was smaller.
      Conclusion  Different forest belt structures have a great influence on the windproof effect of Robinia pseudoacacia forest, it is an effective research method to evaluate the windbreak effect of different forest belt structures by numerical simulation technology, the results can provide scientific support for subsequent reasonable afforestation in this area.
  • [1]
    Schelhaas M J, Nabuurs G J, Schuck A. Natural disturbances in the European forests in the 19th and 20th centuries[J]. Global Change Biology, 2003, 9(11): 1620−1633. doi: 10.1046/j.1365-2486.2003.00684.x
    [2]
    吴志华, 李天会, 张华林. 沿海防护林树种木麻黄和相思生长和抗风性状比较研究[J]. 草业学报, 2010, 19(4): 169−178. doi: 10.11686/cyxb20100422

    Wu Z H, Li T H, Zhang H L. Studies on growth and wind-resistance traits of Casuarina and Acacia stands from coastal protection forest[J]. Acta Prataculturae Sinica, 2010, 19(4): 169−178. doi: 10.11686/cyxb20100422
    [3]
    Gardiner B, Peltola H, Kellomaki S. Comparison of two models for predicting the critical wind speeds required to damage coniferous trees[J]. Ecological Modelling, 2000, 129(1): 1−23. doi: 10.1016/S0304-3800(00)00220-9
    [4]
    Cornelis W M, Gabriels D. Optimal windbreak design for wind-erosion control[J]. Journal of Arid Environments, 2005, 61(2): 315−332. doi: 10.1016/j.jaridenv.2004.10.005
    [5]
    Liu C, Zheng Z, Cheng H, et al. Airflow around single and multiple plants[J]. Agricultural & Forest Meteorology, 2018, 252: 27−38.
    [6]
    Mustafa M, Xu Y, Haritos G, et al. Measurement of wind flow behavior at the leeward side of porous fences using ultrasonic anemometer device[J]. Energy Procedia, 2016, 85: 350−357. doi: 10.1016/j.egypro.2015.12.261
    [7]
    孙忠. 基于大涡模拟方法的数值风洞技术与应用研究[D]. 西安: 西安建筑科技大学, 2013.

    Sun Z. Numerical wind tunnel technique and application study based on large eddy simulation method[D]. Xi’an: Xi’an University of Architecture and Technology, 2013.
    [8]
    康文星, 赵仲辉, 邓湘雯. 杉木林冠层的动力效应及动能传递规律的研究[J]. 中南林业科技大学学报, 2007, 27(2): 1−6. doi: 10.3969/j.issn.1673-923X.2007.02.001

    Kang W X, Zhao Z H, Deng X W. Study of the dynamic effects and the law of kinetic energy transmission in the canopy of Chinese fir plantation ecosystems[J]. Journal of Central South University of Forestry & Technology, 2007, 27(2): 1−6. doi: 10.3969/j.issn.1673-923X.2007.02.001
    [9]
    关德新, 朱廷曜. 树冠结构参数及附近几场特征的风洞模拟研究[J]. 应用生态学报, 2000, 11(2): 202−204. doi: 10.3321/j.issn:1001-9332.2000.02.012

    Guan D X, Zhu T Y. Wind tunnel experiment on canopy structural parameters of isolated tree and wind velocity field characters nearby[J]. Chinese Journal of Applied Ecology, 2000, 11(2): 202−204. doi: 10.3321/j.issn:1001-9332.2000.02.012
    [10]
    Mayhead G J. Some drag coefficients for british forest trees derived from wind tunnel studies[J]. Agricultural Meteorology, 1973, 12(1): 123−130.
    [11]
    Dong Z, Qian G, Luo W, et al. Threshold velocity for wind erosion: the effects of porous fences[J]. Environmental Geology, 2006, 51(3): 471−475. doi: 10.1007/s00254-006-0343-9
    [12]
    Moore J R, Maguire D A. Simulating the dynamic behavior of Douglas-fir trees under applied loads by the finite element method[J]. Tree Physiology, 2008, 28(1): 75−83. doi: 10.1093/treephys/28.1.75
    [13]
    Ciftci C, Arwade S R, Kane B, et al. Analysis of the probability of failure for open-grown trees during wind storms[J]. Probabilistic Engineering Mechanics, 2014, 37: 41−50. doi: 10.1016/j.probengmech.2014.04.002
    [14]
    艾晓秋, 彭勇波, 承颖瑶. 城市行道树动力学特性与风致破坏分析[J]. 自然灾害学报, 2018, 27(1): 27−32.

    Ai X Q, Peng Y B, Cheng Y Y. Wind-induced failure and dynamical behaviors of urban trees[J]. Journal of Natural Disasters, 2018, 27(1): 27−32.
    [15]
    黄盼盼, 胡艳. 脉动风时程模拟及应用[J]. 实验技术与管理, 2021, 38(5): 158−161.

    Huang P P, Hu Y. Time-history simulation and application of fluctuating wind[J]. Experimental Technology and Management, 2021, 38(5): 158−161.
    [16]
    张鳌, 冀晓东, 丛旭, 等. 基于线性滤波法的单株林木抗风有限元模拟[J]. 北京林业大学学报, 2016, 38(2): 1−9.

    Zhang A, Ji X D, Cong X, et al. Finite element modeling of wind resistance of single trees based on linear filtering method[J]. Journal of Beijing Forestry University, 2016, 38(2): 1−9.
    [17]
    Bitog J P, Lee I B, Hwang H S, et al. Numerical simulation study of a tree windbreak[J]. Biosystems Engineering, 2012, 111(1): 40−48. doi: 10.1016/j.biosystemseng.2011.10.006
    [18]
    Bitog J P, Lee I B, Shin M H, et al. Numerical simulation of an array of fences in Saemangeum reclaimed land[J]. Atmospheric Environment, 2009, 43(30): 4612−4621. doi: 10.1016/j.atmosenv.2009.05.050
    [19]
    Rosenfeld M, Marom G, Bitan A. Numerical simulation of the airflow across trees in a windbreak[J]. Boundary-Layer Meteorology, 2010, 135(1): 89−107. doi: 10.1007/s10546-009-9461-8
    [20]
    孙恒, 冀晓东, 赵红华, 等. 人工林刺槐木材物理力学性质研究[J]. 北京林业大学学报, 2018, 40(7): 104−112.

    Sun H, Ji X D, Zhao H H, et al. Physical and mechanical properties of Robinia pseudoacacia wood in artificial forests[J]. Journal of Beijing Forestry University, 2018, 40(7): 104−112.
    [21]
    韩朝. 风荷载下刺槐力学响应研究[D]. 北京: 北京林业大学, 2020.

    Han C. Study on mechanical response of Robinia pseudoacacia under wind load[D]. Beijing: Beijing Forestry University, 2020.
    [22]
    侯凯. 沿海地区刺槐防护林风速流场及数值模拟研究[D]. 北京: 北京林业大学, 2020.

    Hou K. Research on wind speed flow field and numerical simulation of Robinia pseudoacacia forest incoastal area[D]. Beijing: Beijing Forestry University, 2020.
    [23]
    杨茂林, 冀晓东, 孙恒, 等. 不同年龄刺槐枝、干和根的物理力学性质对比[J]. 林业科学, 2020, 56(7): 115−122. doi: 10.11707/j.1001-7488.20200712

    Yang M L, Ji X D, Sun H, et al. comparation on physical and mechanical properties of branches, stems and roots of Robinia pseudoacacia at different ages[J]. Scientia Silvae Sinicae, 2020, 56(7): 115−122. doi: 10.11707/j.1001-7488.20200712
    [24]
    任一凡. 基于双向流固耦合的林木风致响应及防风效果研究[D]. 北京: 北京林业大学, 2020.

    Ren Y F. Study on wind-induced response and windproof effect of trees based on two-way fluid-structure interaction[D]. Beijing: Beijing Forestry University, 2020.
    [25]
    Adamopoulos S. Flexural properties of black locust (Robinia pseudoacacia L.) small clear wood specimens in relation to the direction of load application[J]. Holz als Roh- und Werkstoff, 2002, 60(5): 325−327. doi: 10.1007/s00107-002-0328-7
    [26]
    刘一星, 赵广杰. 木材学[M]. 北京: 中国林业出版社, 2012.

    Liu Y X, Zhao G J. Wood science[M]. Beijing: China Forestry Publishing House, 2012.
    [27]
    高旭, 姜楠. 分形L系统理论与植物图像的计算机模拟[J]. 扬州大学学报(自然科学版), 2000, 3(1): 71−74.

    Gao X, Jiang N. Fractal lindenmayer system and the computer simulation of plant image[J]. Journal of Yangzhou University(Natural Science Edition), 2000, 3(1): 71−74.
    [28]
    Heisler G M, Dewalle D R. Effects of windbreak structure on wind flow[J]. Agriculture Ecosystems and Environment, 1988, 22: 41−69.
  • Related Articles

    [1]Chen Tingqiao, Yuan Tao, Xie Mengyu, Tang Ying, Zeng Xiuli. Development of secondary branches and apical buds of Paeonia ludlowii under cultivated conditions[J]. Journal of Beijing Forestry University, 2022, 44(6): 106-114. DOI: 10.12171/j.1000-1522.20210144
    [2]LIU Jin-chun, MA Ye, TAO Jian-ping, GAO Kai-min, LIANG Qian-hui. Effects of AM fungus on root growth of Lonicera japonica under alternate dry and wet conditions in karst regions of southwestern China.[J]. Journal of Beijing Forestry University, 2015, 37(10): 110-116. DOI: 10.13332/j.1000-1522.20150057
    [3]CHEN Jie, XIE Jing, TANG Ming. Effects of arbuscular mycorrhizal fungi on the growth and drought resistance of Amorpha fruticosa under water stress.[J]. Journal of Beijing Forestry University, 2014, 36(6): 142-148. DOI: 10.13332/j.cnki.jbfu.2014.06.026
    [4]WEI Bao, DING Guo-dong, WU Bin, ZHANG Yu-qing, BAO Yan-feng, GAO Guang-lei1, SHI Hui-shu, ZHAO Jin-hong. Windbreak mechanism under different shrub cover conditions.[J]. Journal of Beijing Forestry University, 2013, 35(5): 73-78.
    [5]XU Yan, YU Xue-jun, GAO Yan, GAO Pei-jun, ZHANG Ru-min. Effects of NO on seed germination and seedling growth of Haloxylon ammodendron under osmosis stress[J]. Journal of Beijing Forestry University, 2011, 33(6): 65-69.
    [6]MENG Fan-juan, WANG Jian-zhong, HUANG Feng-lan, WANG Yan-jie. Ultrastructure of mesophyll cells in two Robinia pseudoacacia hybrids under NaCl stress.[J]. Journal of Beijing Forestry University, 2010, 32(4): 97-102.
    [7]WANG Jin-li, LIANG Wen-yan, CHEN Li. Separation and purification of microcystin-LR.[J]. Journal of Beijing Forestry University, 2010, 32(2): 184-188.
    [8]XIA Songhua, LI Li, LI Jian-zhang.. Ureaformaldehyde resin modified by nanoTiO2 under ultrasonic treatment[J]. Journal of Beijing Forestry University, 2009, 31(4): 123-129.
    [9]WANG Xing-zu, CHENG Xiang, ZHENG Hui, SUN De-zhi. Autocatalysis in biological decolorization of Reactive Black 5 under anaerobic condition.[J]. Journal of Beijing Forestry University, 2009, 31(3): 135-139.
    [10]ZHENG Yong-hong, , LIANG Er-yuan, ZHU Hai-feng, SHAO Xue-mei. Response of radial growth of Qilian juniper to climatic change under different habitats[J]. Journal of Beijing Forestry University, 2008, 30(3): 7-12.
  • Cited by

    Periodical cited type(8)

    1. 杨灿,范习健,张九于. SSFYOLO:一种面向复杂森林场景的树干检测算法. 北京林业大学学报. 2025(02): 132-142 . 本站查看
    2. 刘伟起,刘洪杰,史璐,杨欣,李建平,王鹏飞. 电动果园作业平台结构设计与试验. 农机化研究. 2024(01): 75-83 .
    3. 刘伟起,刘洪杰,史璐,杨欣,李建平,王鹏飞. 履带式果园作业平台结构稳定性分析与研究. 农机化研究. 2024(04): 42-47 .
    4. 郭昊生,马蓉,张垚鑫,李子迎. 丫形欠驱动库尔勒香梨采摘机械手的设计与仿真分析. 农机化研究. 2023(01): 110-117 .
    5. 虞浪,俞高红,吴浩宇,孙福兴,钱孟波. 欠驱动关节型柑橘采摘末端执行器设计与试验. 农业工程学报. 2023(17): 29-38 .
    6. 于泳超,康峰,郑永军,吕昊暾,王亚雄. 果园高位自动调平作业平台设计及仿真. 北京林业大学学报. 2021(02): 150-159 . 本站查看
    7. 曹琨,张姗姗. 基于机器视觉的蔬果辅助采摘装置系统设计与优化. 食品工业. 2021(05): 362-366 .
    8. 董杰,赵元豪,尚宁宁,蒋创宇,赵秒. 一种旋转式欠驱动自适应水果采摘器. 科学技术创新. 2019(13): 155-156 .

    Other cited types(1)

Catalog

    Article views (736) PDF downloads (69) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return