• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wu Yan, Li Xinyu, Zhang Yiting, Ding Bo, Zhang Yunlin, Fu Yuhong, Liu Xun. Litter carbon, nitrogen, and phosphorus stoichiometric characteristics and their influencing factors of Pinus massoniana plantation with different age groups in karst region of southwestern China[J]. Journal of Beijing Forestry University, 2024, 46(2): 87-94. DOI: 10.12171/j.1000-1522.20220052
Citation: Wu Yan, Li Xinyu, Zhang Yiting, Ding Bo, Zhang Yunlin, Fu Yuhong, Liu Xun. Litter carbon, nitrogen, and phosphorus stoichiometric characteristics and their influencing factors of Pinus massoniana plantation with different age groups in karst region of southwestern China[J]. Journal of Beijing Forestry University, 2024, 46(2): 87-94. DOI: 10.12171/j.1000-1522.20220052

Litter carbon, nitrogen, and phosphorus stoichiometric characteristics and their influencing factors of Pinus massoniana plantation with different age groups in karst region of southwestern China

More Information
  • Received Date: February 08, 2022
  • Revised Date: April 26, 2022
  • Accepted Date: December 18, 2023
  • Available Online: December 21, 2023
  • Objective 

    In this study, the stoichiometric characteristics of litter and its response to stand characteristics, topographic factors and species diversity will be revealed in Pinus massoniana plantations in karst areas.

    Method 

    Middle-aged forest, near mature forest and over mature forest of P. massoniana plantation were used as research objects, organic carbon (OC), total nitrogen (TN), total phosphorus (TP), the stoichiometric characteristics and influencing factors were analyzed through the combination of field investigation and laboratory test.

    Result 

    (1) The average contents of OC, TN and TP in the litter of P. massoniana plantation in the study area were 346.92, 11.22 and 0.21 g/kg, respectively, and the average values of C/N, C/P and N/P were 31.31, 4 296.96 and 148.73, respectively. (2) There was no significant difference in OC, TN content and C/N of litter among different age groups (p > 0.05), and the content of TP increased first and then decreased with the growth of forest age (p < 0.05). The C/P and N/P of middle-aged forest were significantly higher than those of near mature forest and over mature forest (p < 0.05). (3) Significant positive and linear correlations were found between TN and TP (p < 0.001), significant linear correlations were observed between C/N and OC content, C/N and TN content, but significant power relationship was observed between C/P and TP content, N/P and TP content. (4) The TP content of litter was mainly affected by the Simpson index of shrubs and arborous layers, N/P and C/P were mainly influenced by Simpson index, Margalef index, Pielou index of shrubs and the density of plantation.

    Conclusion 

    The TP content, C/P and N/P of the litter are significantly different among varied age groups of P. massoniana plantations, and the diversity of arborous and shrubs is the main factor affecting OC, TN, TP and their stoichiometric ratio of the litter of P. massoniana plantation in the karst area of southwestern China.

  • [1]
    王岩松, 马保明, 高海平, 等. 晋西黄土区油松和刺槐人工林土壤养分及其化学计量比对林分密度的响应[J]. 北京林业大学学报, 2020, 42(8): 81−93.

    Wang Y S, Ma B M, Gao H P, et al. Response of soil nutrients and their stoichiometric ratios to stand density in Pinus tabuliformis and Robinia pseudoacacia plantations in the loess region of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2020, 42(8): 81−93.
    [2]
    Sterner R W. Ecological stoichiometry: overview[J]. Encyclopedia of Ecology, 2008, 16: 1101−1116.
    [3]
    陈云, 李玉强, 王旭洋, 等. 中国典型生态脆弱区生态化学计量学研究进展[J]. 生态学报, 2021, 41(10): 4213−4225.

    Chen Y, Li Y Q, Wang X Y, et al. Advances in ecological stoichiometry in typically and ecologically vulnerable regions of China[J]. Acta Ecologica Sinica, 2021, 41(10): 4213−4225.
    [4]
    Elser J J, Fagan W F, Denno R F, et al. Nutritional constraints in terrestrial and freshwater food webs[J]. Nature, 2000, 408: 578−580. doi: 10.1038/35046058
    [5]
    王凯, 赵成姣, 张日升, 等. 不同密度樟子松人工林土壤碳氮磷化学计量特征[J]. 生态学杂志, 2020, 39(3): 741−748.

    Wang K, Zhao C J, Zhang R S, et al. Stoichiometric characteristics of soil carbon, nitrogen and phosphorus in Pinus sylvestris plantation with different densities[J]. Chinese Journal of Ecology, 2020, 39(3): 741−748.
    [6]
    王丽娜, 吴俊文, 董琼, 等. 抚育间伐对云南松非结构性碳和化学计量特征的影响[J]. 北京林业大学学报, 2021, 43(8): 70−82.

    Wang L N, Wu J W, Dong Q, et al. Effects of tending and thinning on non-structural carbon and stoichiometric characteristics of Pinus yunnanensis[J]. Journal of Beijing Forestry University, 2021, 43(8): 70−82.
    [7]
    喻阳华, 钟欣平, 李红. 黔中石漠化区不同海拔顶坛花椒人工林生态化学计量特征[J]. 生态学报, 2019, 39(15): 5536−5545.

    Yu Y H, Zhong X P, Li H. Ecological stoichiometry of Zanthoxylum planispinum var. dintanensis plantation at different altitudes in rocky desertification area of central Guizhou[J]. Acta Ecologica Sinica, 2019, 39(15): 5536−5545.
    [8]
    李喜霞, 杜天雨, 魏亚伟, 等. 阔叶红松林生态化学计量学特征及其对纬度梯度的响应[J]. 生态学报, 2018, 38(11): 3952−3960.

    Li X X, Du T Y, Wei Y W, et al. Characteristics of ecological stoichiometry in broad-leaved and Korean pine mixed forest and its response to latitude gradient in Northeast China[J]. Acta Ecologica Sinica, 2018, 38(11): 3952−3960.
    [9]
    何高迅, 王越, 彭淑娴, 等. 滇中退化山地不同植被恢复下土壤碳氮磷储量与生态化学计量特征[J]. 生态学报, 2020, 40(13): 4425−4435.

    He G X, Wang Y, Peng S X, et al. Soil carbon, nitrogen and phosphorus storage and ecostoichiometric characteristics under different vegetation restoration in degraded mountainous areas of central Yunnan[J]. Acta Ecologica Sinica, 2020, 40(13): 4425−4435.
    [10]
    Zhang G, Ping Z, Peng S, et al. The coupling of leaf, litter, and soil nutrients in warm temperate forests in northwestern China[J]. Scientific Reports, 2017, 7: 11754.
    [11]
    范夫静, 黄国勤, 宋同清, 等. 西南峡谷型喀斯特坡地土壤微生物量C、N、P空间变异特征[J]. 生态学报, 2014, 34(12): 3293−3301.

    Fan F J, Huang G Q, Song T Q, et al. Spatial heterogeneity of soil microbial biomass carbon, nitrogen, and phosphorus in sloping field in a groge karst region, Southwest China[J]. Journal of Ecology, 2014, 34(12): 3293−3301.
    [12]
    蔡磊, 杨健, 王六平, 等. 贵州省主要人工林近自然经营技术研究[J]. 林业实用技术, 2013(9): 62−64.

    Cai L, Yang J, Wang L P, et al. Study on near natural management technology of main plantation in Guizhou Province[J]. Practical Forestry Technology, 2013(9): 62−64.
    [13]
    周祎, 丁贵杰. 贵州省马尾松人工林生物量及其分布格局研究[J]. 贵州林业科技, 2016, 44(2): 1−7.

    Zhou Y, Ding G J. Biomass and distribution pattern of Pinus massoniana plantation in Guizhou Province[J]. Guizhou Forestry Science and Technology, 2016, 44(2): 1−7.
    [14]
    丁贵杰. 贵州马尾松人工建筑材林合理采伐年龄研究[J]. 林业科学, 1998, 34(3): 42−48.

    Ding G J. Study on reasonable cutting age of Pinus massoniana plantation in Guizhou[J]. Forestry Science, 1998, 34(3): 42−48.
    [15]
    黄家荣, 温佐吾. 贵州马尾松人工林密度和结构控制初步研究[J]. 贵州林业科技, 1999, 27(2): 17−21.

    Huang J R, Wen Z W. Preliminary study on density and structure control of Pinus massoniana plantation in Guizhou[J]. Guizhou Forestry Science and Technology, 1999, 27(2): 17−21.
    [16]
    李臻, 梁月明, 潘复静, 等. 不同林龄马尾松人工林土壤酶活性及其生态化学计量特征[J]. 桂林理工大学学报, 2021, 41(1): 210−217. doi: 10.3969/j.issn.1674-9057.2021.01.026

    Li Z, Liang Y M, Pan F J, et al. Soil enzyme activities and ecostoichiometric characteristics of masson pine plantations of different ages[J]. Journal of Guilin University of Technology, 2021, 41(1): 210−217. doi: 10.3969/j.issn.1674-9057.2021.01.026
    [17]
    梁月明, 潘复静, 马姜明, 等. 不同林龄和密度马尾松人工林针叶和根系的生态化学计量特征[J]. 广西植物, 2021, 41(9): 1497−1508.

    Liang Y M, Pan F J, Ma J M, et al. Ecological stoichiometry characteristics of needle leaves and roots in different age and density stands of Pinus massoniana plantations[J]. Guangxi Flora, 2021, 41(9): 1497−1508.
    [18]
    李茜, 杨胜天, 盛浩然, 等. 典型喀斯特地区马尾松纯林及马尾松−阔叶树混交林营养元素生物循环研究: 以贵州龙里为例[J]. 中国岩溶, 2008, 27(4): 321−328. doi: 10.3969/j.issn.1001-4810.2008.04.005

    Li Q, Yang S T, Sheng H R, et al. Biological cycling of nutrients in Pinus forest and Pinus-hardwood mixed forest in karst area: a case study in Longli, Guizhou[J]. China Karst, 2008, 27(4): 321−328. doi: 10.3969/j.issn.1001-4810.2008.04.005
    [19]
    黄雍容, 高伟, 黄石德, 等. 福建三种常绿阔叶林碳氮磷生态化学计量特征[J]. 生态学报, 2021, 41(5): 1991−2000.

    Huang Y R, Gao W, Huang S D, et al. Ecological stoichiometric characteristics of carbon, nitrogen and phosphorus in three evergreen broad-leaved forests in Fujian[J]. Acta Ecologica Sinica, 2021, 41(5): 1991−2000.
    [20]
    赵其国, 王明珠, 何园球. 我国热带亚热带森林凋落物及其对土壤的影响[J]. 土壤, 1991, 23(1): 8−15.

    Zhao Q G, Wang M Z, He Y Q. Litter from tropical and subtropical forests in China and its effects on soil[J]. Soil, 1991, 23(1): 8−15.
    [21]
    曾昭霞, 王克林, 刘孝利, 等. 桂西北喀斯特森林植物−凋落物−土壤生态化学计量特征[J]. 植物生态学报, 2015, 39(7): 682−693.

    Zeng Z X, Wang K L, Liu X L, et al. Ecostoichiometric characteristics of plant litter soil in karst forest in Northwest Guangxi[J]. Journal of Plant Ecology, 2015, 39(7): 682−693.
    [22]
    薛飞, 龙翠玲, 廖全兰, 等. 喀斯特森林凋落物对土壤养分及土壤酶的影响[J]. 森林与环境学报, 2020, 40(5): 449−458.

    Xue F, Long C L, Liao Q L, et al. Effects of karst forest litter on soil nutrients and soil enzymes[J]. Journal of Forest and Environment, 2020, 40(5): 449−458.
    [23]
    喻林华, 方晰, 项文化, 等. 亚热带4种林分类型枯落物层和土壤层的碳氮磷化学计量特征[J]. 林业科学, 2016, 52(10): 10−21. doi: 10.11707/j.1001-7488.20161002

    Yu L H, Fang X, Xiang W H, et al. Stoichiometric characteristics of carbon, nitrogen and phosphorus in litter layer and soil layer of four subtropical forest types[J]. Forestry Science, 2016, 52(10): 10−21. doi: 10.11707/j.1001-7488.20161002
    [24]
    Kang H Z, Xin Z J, Berg B, et al. Global pattern of leaf litter nitrogen and phosphorus in woody plants[J]. Annals of Forest Science, 2010, 67(8): 811. doi: 10.1051/forest/2010047
    [25]
    Meisner A, Boer W D, Cornelissen J. Reciprocal effects of litter from exotic and congeneric native plant species via soil nutrients[J]. PLoS ONE, 2012, 7(2): e31596.
    [26]
    曾冬萍, 蒋利玲, 曾从盛, 等. 生态化学计量学特征及其应用研究进展[J]. 生态学报, 2013, 33(18): 5484−5492.

    Zeng D P, Jiang L L, Zeng C S, et al. Research progress on characteristics and application of ecological chemometrics[J]. Acta Ecologica Sinica, 2013, 33(18): 5484−5492.
    [27]
    Elser J J, Acharya K, Kyle M, et al. Growth rate-stoichiometry couplings in diverse biota[J]. Ecology Letters, 2003, 6: 936−943. doi: 10.1046/j.1461-0248.2003.00518.x
    [28]
    俞月凤, 何铁光, 曾成城, 等. 喀斯特区不同退化程度植被群落植物−凋落物−土壤−微生物生态化学计量特征[J]. 生态学报, 2022, 42(3): 1−12.

    Yu Y F, He T G, Zeng C C, et al. Carbon, doping and tumor stoichiometry in plants, litter, soil, and microbes in degraded vegetation communities in a karst area of suspected China[J]. Acta Ecologica Sinica, 2022, 42(3): 1−12.
    [29]
    杜满义, 范少辉, 刘广路, 等. 中国毛竹林碳氮磷生态化学计量特征[J]. 植物生态学报, 2016, 40(8): 15.

    Du M Y, Fan S H, Liu G L, et al. Stoichiometric characteristics of carbon, nitrogen and phosphorus in Phyllostachys edulis forests of China[J]. Chinese Journal of Plant Ecology, 2016, 40(8): 15.
    [30]
    斯贵才, 王建, 夏燕青. 念青唐古拉山沼泽土壤微生物群落和酶活性随海拔变化特征[J]. 湿地科学, 2014, 12(3): 340−348.

    Si G C, Wang J, Xia Y Q. Variation characteristics of soil microbial community and enzyme activity with altitude in Nianqing Tanggula Mountain[J]. Wetland Science, 2014, 12(3): 340−348.
    [31]
    何斌, 李青, 冯图, 等. 黔西北不同林龄马尾松人工林针叶−凋落物−土壤C、N、P化学计量特征[J]. 生态环境学报, 2019, 28(11): 2149−2157.

    He B, Li Q, Feng T, et al. Stoichiometric characteristics of C, N and P in coniferous litter soil of Pinus massoniana plantation of different forest ages in Northwest Guizhou[J]. Journal of Ecological Environment, 2019, 28(11): 2149−2157.
    [32]
    李雪峰, 韩士杰, 胡艳玲, 等. 长白山次生针阔混交林叶凋落物中有机物分解与碳、氮和磷释放的关系[J]. 应用生态学报, 2008, 19(2): 245−251.

    Li X F, Han S J, Hu Y L, et al. Relationship between organic matter decomposition and carbon, nitrogen and phosphorus release in leaf litter of secondary coniferous and broad-leaved mixed forest in Changbai Mountain[J]. Journal of Applied Ecology, 2008, 19(2): 245−251.
    [33]
    Saswati M, Vadakepuram C J. Influence of leaf litter types on microbial functions and nutrient status of soil: ecological suitability of forest trees for afforestation in tropical laterite wastelands[J]. Soil Biology and Biochemistry, 2010, 42(12): 2306−2315. doi: 10.1016/j.soilbio.2010.09.007
    [34]
    王飞. 青藏高原高寒草甸物种丰富度和均匀度对凋落物分解以及氮、磷释放的影响[D]. 兰州: 兰州大学, 2013.

    Wang F. Effects of species richness and evenness on litter decomposition and nitrogen and phosphorus release in alpine meadow of Qinghai Tibet Plateau [D]. Lanzhou: Lanzhou University, 2013.
    [35]
    陈金磊, 张仕吉, 李雷达, 等. 亚热带不同植被恢复阶段林地凋落物层现存量和养分特征[J]. 生态学报, 2020, 40(12): 4073−4086.

    Chen J L, Zhang S J, Li L D, et al. Stock and nutrient characteristics of litter layer at different vegetation restoration stages in subtropical region, China[J]. Acta Ecologica Sinica, 2020, 40(12): 4073−4086.
    [36]
    Kawakami E, Katayama A, Hishi T. Effects of declining understory vegetation on leaf litter decomposition in a Japanese cool-temperate forest[J]. Journal of Forest Research, 2020(4): 1−9.
    [37]
    赵成姣. 不同密度沙地樟子松人工林生态化学计量特征[D]. 阜新: 辽宁工程技术大学, 2019.

    Zhao C J. Ecostoichiometric characteristics of Pinus sylvestris plantation in sandy land with different density [D]. Fuxin: Liaoning University of Engineering and Technology, 2019.
  • Related Articles

    [1]Feng Yuan, Li Guixiang, He Liping, Bi Bo, Qin Yangping, Wang Faping, Hu Binxian, Yin Jiuming. Tree height curves of Pinus yunnanensis forest based on nonlinear mixed effects model[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240063
    [2]Li Xinyu, Yeerjiang Baiketuerhan, Wang Juan, Zhang Xinna, Zhang Chunyu, Zhao Xiuhai. Relationship between tree height and DBH of Pinus koraiensis in northeastern China based on nonlinear mixed effects model[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240321
    [3]Du Zhi, Chen Zhenxiong, Li Rui, Liu Ziwei, Huang Xin. Development of climate-sensitive nonlinear mixed-effects tree height-DBH model for Cunninghamia lanceolata[J]. Journal of Beijing Forestry University, 2023, 45(9): 52-61. DOI: 10.12171/j.1000-1522.20230052
    [4]Wang Longfeng, Xiao Weiwei, Wang Shuli. Changes of soil aggregate stability and carbon-nitrogen distribution after artificial management of natural secondary forests[J]. Journal of Beijing Forestry University, 2022, 44(7): 97-106. DOI: 10.12171/j.1000-1522.20210497
    [5]Jin Xiaojuan, Sun Yujun, Pan Lei. Prediction model of base diameter of primary branch for Larix olgensis based on mixed effects[J]. Journal of Beijing Forestry University, 2020, 42(10): 1-10. DOI: 10.12171/j.1000-1522.20200133
    [6]ZANG Hao, LEI Xiang-dong, ZHANG Hui-ru, LI Chun-ming, LU Jun. Nonlinear mixed-effects height-diameter model of Pinus koraiensis[J]. Journal of Beijing Forestry University, 2016, 38(6): 8-9. DOI: 10.13332/j.1000-1522.20160008
    [7]DONG Li-hu, LI Feng-ri, JIA Wei-wei.. Effects of tree competition on biomass and biomass models of Pinus koraiensis plantation.[J]. Journal of Beijing Forestry University, 2013, 35(6): 14-22.
    [8]DONG Li-hu, LI Feng-ri, JIA Wei-wei. Development of tree biomass model for Pinus koraiensis plantation[J]. Journal of Beijing Forestry University, 2012, 34(6): 16-22.
    [9]WANG Xiong-bin, YU Xin-xiao, XU Cheng-li, , GU Jian-cai, ZHOU Bin, FAN Min-rui, JIA Guo-dong, LV xi-zhi. Effects of thinning on edge effect of Larix principisrupprechtii plantation.[J]. Journal of Beijing Forestry University, 2009, 31(5): 29-34.
    [10]LI Chun-ming.. Simulating basal area growth of fir plantations using a nonlinear mixed modeling approach.[J]. Journal of Beijing Forestry University, 2009, 31(1): 44-49.
  • Cited by

    Periodical cited type(44)

    1. 韩彦隆,魏亚娟,左小锋,左轶璆,康帅,童国利,李建媛,王永平. 吉兰泰荒漠绿洲过渡带土壤生态化学计量特征及养分恢复状况研究. 水土保持研究. 2025(02): 207-214+223 .
    2. 罗婷,黄甫昭,李健星,陆芳,文淑均,阮枰臻,李先琨. 广西漓江流域喀斯特地区植被不同恢复阶段植物优势种叶片和土壤的生态化学计量特征. 植物资源与环境学报. 2024(02): 80-90 .
    3. 任泽文,陈昕,陈玥,钟曲颖,余泽平,刘骏,杨清培,宋庆妮. 亚热带森林演替中优势种茎干-土壤碳氮磷生态化学计量的变化特征. 江西农业大学学报. 2024(02): 401-410 .
    4. 侯贻菊,姚雾清,杨光能,崔迎春,周华. 黔竹笋期生长特性及配方施肥效应研究. 贵州林业科技. 2024(02): 19-24 .
    5. 刘亚博,冯天骄,王平,卫伟. 黄土丘陵区典型小流域不同植被恢复方式土壤理化性质差异及其影响因素. 生态学报. 2024(15): 6652-6666 .
    6. 史丽娟,吕海涛,张树梓,李联地,任启文,冯广. 白洋淀上游典型林分类型土壤理化性质及其化学计量特征. 土壤通报. 2024(04): 960-967 .
    7. 武仁杰,邢玮,葛之葳,毛岭峰,彭思利. 4种林分凋落叶不同分解阶段化学计量特征. 浙江农林大学学报. 2023(01): 155-163 .
    8. 孙阔,袁兴中,王晓锋,袁嘉,候春丽,魏丽景. 三峡水库消落带土壤养分含量及生态化学计量特征. 长江流域资源与环境. 2023(02): 403-414 .
    9. 刘根,岳翰林,陈雨志,汪富资,李先宝,代智蓝,李德欢,李思雨,卫万荣. 3种修复措施对高原高速公路边坡土壤化学计量特征的影响. 草业科学. 2023(01): 71-78 .
    10. 王艺伟,仇模升,孙彩丽. 植物反馈作用对火棘群落土壤养分、酶活性及化学计量特征的影响. 中南林业科技大学学报. 2023(03): 127-134 .
    11. 梁楚欣,范弢,陈培云. 滇东石漠化坡地不同恢复模式下云南松林土壤碳氮磷化学计量特征及其影响因子. 浙江农林大学学报. 2023(03): 511-519 .
    12. 白金珂,李笑雨,王力. 1980s与2020s青藏高原南部土壤质量变化. 应用生态学报. 2023(05): 1367-1374 .
    13. 徐子涵,王磊,崔明,刘玉国,赵紫晴,李嘉豪. 南水北调水源区不同植被恢复模式的土壤化学计量特征. 南京林业大学学报(自然科学版). 2023(03): 173-181 .
    14. 何芳远,苏权,陈坤铨,陈善栋,姜勇,罗明,梁士楚. 基于功能性状及系统发育的桂林喀斯特石山群落构建. 广西师范大学学报(自然科学版). 2023(03): 171-181 .
    15. 吴丹,温晨,卫伟,张钦弟. 黄土高原小流域不同植物群落土壤生态化学计量的垂直变化特征. 广西植物. 2023(05): 923-935 .
    16. 宁静,杨磊,曹建华,李亮. 基于文献计量分析的岩溶区植被恢复研究现状与热点. 中国岩溶. 2023(02): 321-336 .
    17. 李雪梅,舒英格. 不同土地利用类型下土壤养分变化及生态化学计量特征分析. 中国农学通报. 2023(28): 62-69 .
    18. 周士锋,魏亚娟,何磊,王项飞,刘美萍,刘澜波. 包头市南海湿地不同季节土壤养分分布特征. 北方园艺. 2023(20): 69-76 .
    19. 侯贻菊,姚雾清,杨光能,崔迎春,周华,张喜. 黔竹秆形结构和地上生物量分配格局研究. 竹子学报. 2023(04): 51-57 .
    20. 胡林安,邱江梅,李强. 云南岩溶断陷盆地植被演替土壤碳氮磷化学计量学特征. 中国岩溶. 2023(06): 1213-1223 .
    21. 袁在翔,关庆伟,李俊杰,韩梦豪,金雪梅,陈霞. 不同植被恢复模式对紫金山森林土壤理化性质的影响. 东北林业大学学报. 2022(01): 52-57 .
    22. 曹全恒 ,胡健 ,陈雪玲 ,孙梅玲 ,刘小龙 ,杨丽雪 ,周青平 . 川西北沙地植被恢复对土壤碳氮磷及生态化学计量特征的影响. 草地学报. 2022(03): 523-531 .
    23. 蔡雅梅,冯民权,肖瑜. 人类活动对河岸带植被氮磷生态化学计量特征的影响——以汾河临汾段为例. 水土保持通报. 2022(01): 17-25 .
    24. 孟海,王海燕,侯文宁,赵晗,宁一泓. 重庆笋溪河流域河岸带水体-土壤-植物的氮磷特征及影响因素. 水土保持学报. 2022(02): 275-282+291 .
    25. 章润阳,钱前,刘坤平,梁月明,张伟,靳振江,潘复静. 喀斯特不同土地利用方式和恢复模式对土壤酶活性C∶N∶P比值的影响. 广西植物. 2022(06): 970-982 .
    26. 王杰. 河岸带土壤氮磷时空分布及影响因素分析. 水土保持应用技术. 2022(04): 13-16 .
    27. 孙渝雯,马赞文,陶贞,张乾柱,唐文魁,吴迪,钟庆祥,王振刚,丁健. 海南岛西南部土壤生物硅分布的时空差异及其驱动机制. 生态学报. 2022(17): 7092-7104 .
    28. 张萌,沈雅飞,陈天,王丽君,曾立雄,孙鹏飞,肖文发,田耀武,程瑞梅. 宜阳县不同森林类型土壤化学计量特征. 陆地生态系统与保护学报. 2022(02): 1-8 .
    29. 陈培云,范弢,何停,户红红. 滇东岩溶高原不同恢复阶段云南松林叶片-枯落物-土壤碳氮磷化学计量特征. 应用与环境生物学报. 2022(06): 1549-1556 .
    30. 刘翔,张连凯,黄超,徐灿,马一奇,杨慧. 广西岩溶区芒果园土壤碳氮磷化学计量特征. 南方农业学报. 2022(12): 3346-3356 .
    31. 李强. 土地利用方式对岩溶断陷盆地土壤细菌和真核生物群落结构的影响. 地球学报. 2021(03): 417-425 .
    32. 陈云,李玉强,王旭洋,牛亚毅. 中国典型生态脆弱区生态化学计量学研究进展. 生态学报. 2021(10): 4213-4225 .
    33. 蔡雅梅,冯民权. 汾河河岸带土壤氮、磷的时空分布规律及其影响因素研究. 水土保持学报. 2021(04): 222-229+236 .
    34. 蔡国俊,锁盆春,张丽敏,符裕红,李安定. 黔南喀斯特峰丛洼地3种建群树种不同器官C、N、P化学计量特征. 贵州师范大学学报(自然科学版). 2021(05): 36-44 .
    35. 魏亚娟,汪季,党晓宏,韩彦隆,高岩,李鹏,金山. 白刺灌丛沙堆演化过程中叶片C、N、P、K含量及其生态化学计量的变化特征. 中南林业科技大学学报. 2021(10): 102-110+139 .
    36. 杨洪炳,肖以华,李明,许涵,史欣,郭晓敏. 典型城市森林旱季土壤团聚体稳定性与微生物胞外酶活性耦合关系. 生态环境学报. 2021(10): 1976-1989 .
    37. 陈剑,王四海,杨卫,吴超. 外来入侵植物肿柄菊群落动态变化特征. 生态学杂志. 2020(02): 469-477 .
    38. 郑鸾,龙翠玲. 茂兰喀斯特森林不同地形土壤生态化学计量特征. 南方农业学报. 2020(03): 545-551 .
    39. 夏光辉,郭青霞,卢庆民,杜轶,康庆. 黄土丘陵区不同土地利用方式下土壤养分及生态化学计量特征. 水土保持通报. 2020(02): 140-147+153 .
    40. 吴鹏,崔迎春,赵文君,侯贻菊,朱军,丁访军,杨文斌. 茂兰喀斯特区68种典型植物叶片化学计量特征. 生态学报. 2020(14): 5063-5080 .
    41. 朱平宗,张光辉,杨文利,赵建民. 红壤区林地浅沟不同植被类型土壤生态化学计量特征. 水土保持研究. 2020(06): 60-65 .
    42. 余杭,罗清虎,李松阳,林勇明,王道杰. 灾害干扰受损森林土壤的碳、氮、磷初期恢复特征与变异性. 山地学报. 2020(04): 532-541 .
    43. 郭汝凤,刘鑫铭,李冠军,黄婷,吴承祯,林勇明,李键. 武夷山人工湿地系统植物生长期内土壤-植物碳氮磷变化特点. 应用与环境生物学报. 2020(02): 433-441 .
    44. 闫丽娟,王海燕,李广,吴江琪. 黄土丘陵区4种典型植被对土壤养分及酶活性的影响. 水土保持学报. 2019(05): 190-196+204 .

    Other cited types(42)

Catalog

    Article views (348) PDF downloads (44) Cited by(86)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return