Citation: | Xu Guiqian, Zhao Yangyi, Wang Keqin, Duan Xu, Li Zhicheng. Soil erodibility under the influence of preferential flow in the gully system of the Jinsha River Dry Hot Valley[J]. Journal of Beijing Forestry University, 2023, 45(4): 101-113. DOI: 10.12171/j.1000-1522.20220135 |
[1] |
胡月, 卢阳, 金可, 等. 干热河谷生态治理探讨[J]. 长江科学院院报, 2021, 38(10): 69−75. doi: 10.11988/ckyyb.20210242
Hu Y, Lu Y, Jin K, et al. Discussion on ecological restoration in dry-hot valley[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(10): 69−75. doi: 10.11988/ckyyb.20210242
|
[2] |
杨振寅, 苏建荣, 罗栋, 等. 干热河谷植被恢复研究进展与展望[J]. 林业科学研究, 2007, 20(4): 563−568. doi: 10.3321/j.issn:1001-1498.2007.04.024
Yang Z Y, Su J R, Luo D, et al. Progress and perspectives on vegetation restoration in the dry-hot valley[J]. Forest Research, 2007, 20(4): 563−568. doi: 10.3321/j.issn:1001-1498.2007.04.024
|
[3] |
杨丹, 熊东红, 张宝军, 等. 沟床草被对干热河谷冲沟产沙特性影响的野外模拟试验[J]. 农业工程学报, 2015, 31(15): 124−132. doi: 10.11975/j.issn.1002-6819.2015.15.017
Yang D, Xiong D H, Zhang B J, et al. Field experiment on impacts of grass belt length on characteristics of sediment yields and transport rates for gullies in Jinsha dry-hot valley region[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(15): 124−132. doi: 10.11975/j.issn.1002-6819.2015.15.017
|
[4] |
井光花, 于兴修, 李振炜. 土壤可蚀性研究进展综述[J]. 中国水土保持, 2011(10): 44−47, 66. doi: 10.3969/j.issn.1000-0941.2011.10.018
Jing G H, Yu X X, Li Z W. Summary of study progress on soil erodibility[J]. Soil and Water Conservation in China, 2011(10): 44−47, 66. doi: 10.3969/j.issn.1000-0941.2011.10.018
|
[5] |
Wiekenkamp I, Huisman J A, Bogena H R, et al. Spatial and temporal occurrence of preferential flow in a forested headwater catchment[J]. Journal of Hydrology, 2016, 534: 139−149. doi: 10.1016/j.jhydrol.2015.12.050
|
[6] |
Shao W, Bogaard T, Ye S, et al. Coupling a 1D Dual-permeability model with an infinite slope stability approach to quantify the influence of preferential flow on slope stability[J]. Procedia Earth and Planetary Science, 2016, 16: 128−136. doi: 10.1016/j.proeps.2016.10.014
|
[7] |
王赵男, 辛颖, 赵雨森. 黑龙江省水源地优先流区与基质流区土壤特性分析[J]. 水土保持学报, 2017, 31(1): 49−54.
Wang Z N, Xin Y, Zhao Y S. Analysis on soil characters of preferential pathways and soil matrix in water-source area of Heilongjiang Province[J]. Journal of Soil and Water Conservation, 2017, 31(1): 49−54.
|
[8] |
盛丰, 张利勇, 吴丹. 土壤优先流模型理论与观测技术的研究进展[J]. 农业工程学报, 2016, 32(6): 1−10. doi: 10.11975/j.issn.1002-6819.2016.06.001
Sheng F, Zhang L Y, Wu D. Review on research theories and observation techniques of preferential flow in unsaturated soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(6): 1−10. doi: 10.11975/j.issn.1002-6819.2016.06.001
|
[9] |
Song Z, Zhou Q Y, Lu D B, et al. Application of electrical resistivity tomography for investigating the internal structure and estimating the hydraulic conductivity of in situ single fractures[J]. Pure and Applied Geophysics, 2022, 179: 1253−1273. doi: 10.1007/s00024-022-02972-7
|
[10] |
马昀, 孟晨, 岳健敏, 等. 宁夏荒漠草原不同林龄人工柠条林地土壤优先流研究[J]. 生态学报, 2022, 42(3): 895−903.
Ma Y, Meng C, Yue J M, et al. Study on preferential flow of soil of artificially planted Caragana korshinskii shrubland in different years of desert grassland in Ningxia[J]. Acta Ecologica Sinica, 2022, 42(3): 895−903.
|
[11] |
盛丰, 文鼎, 熊祎玮, 等. 基于电阻率层析成像技术的农田土壤优先流原位动态监测[J]. 农业工程学报, 2021, 37(8): 117−124. doi: 10.11975/j.issn.1002-6819.2021.08.013
Sheng F, Wen D, Xiong Y W, et al. In-situ monitoring of preferential soil water flow with electrical resistivity tomography technology[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(8): 117−124. doi: 10.11975/j.issn.1002-6819.2021.08.013
|
[12] |
Karup D, Moldrup P, Paradelo M, et al. Water and solute transport in agricultural soils predicted by volumetric clay and silt contents[J]. Journal of Contaminant Hydrology, 2016, 192: 194−202. doi: 10.1016/j.jconhyd.2016.08.001
|
[13] |
阮芯竹. 重庆四面山不同土地利用类型优先路径特征[D]. 北京: 北京林业大学, 2016.
Ruan X Z. The characteristics of preferential paths in different land use types at Simianshan in Chongqing[D]. Beijing: Beijing Forestry University, 2016.
|
[14] |
邵一敏, 赵洋毅, 段旭, 等. 金沙江干热河谷典型林草地植物根系对土壤优先流的影响[J]. 应用生态学报, 2020, 31(3): 725−734.
Shao Y M, Zhao Y Y, Duan X, et al. Effects of plant roots on soil preferential flow in typical forest and grassland in the dry-hot valley of Jinsha River, China[J]. Chinese Journal of Applied Ecology, 2020, 31(3): 725−734.
|
[15] |
邵一敏, 赵洋毅, 段旭, 等. 基于分形分析的干热河谷区典型地类土壤优先路径分布特征[J]. 西北农林科技大学学报(自然科学版), 2020, 48(7): 102−112.
Shao Y M, Zhao Y Y, Duan X, et al. Distribution characteristics of typical soil-specific routes in dry-heat valley regions based on fractal analysis[J]. Journal of Northwest A&F University (Natural Science Edition), 2020, 48(7): 102−112.
|
[16] |
万艳萍, 赵洋毅, 段旭, 等. 干湿交替对红河干旱河谷区土壤优先流形成特征的影响[J]. 应用生态学报, 2021, 32(7): 2397−2406.
Wan Y P, Zhao Y Y, Duan X, et al. Influence of alternated drying and wetting on the characteristics of soil preferential flow formation in Honghe Arid Valley.[J]. Chinese Journal of Applied Ecology, 2021, 32(7): 2397−2406.
|
[17] |
Wu X L, Dang X H, Meng Z J, et al. Mechanisms of grazing management impact on preferential water flow and infiltration patterns in a semi-arid grassland in northern China. [J/OL]. The Science of the total environment, 2021, 813: 152082[2022−04−20]. https://doi.org/10.1016/j.scitotenv.2021.152082.
|
[18] |
Verachtert E, van den Eeckhaut M, Poesen J, et al. Spatial interaction between collapsed pipes and landslides in hilly regions with loess-derived soils[J]. Earth Surface Processes and Landforms, 2013, 38(8): 826−835. doi: 10.1002/esp.3325
|
[19] |
张素, 熊东红, 张宝军, 等. 干湿交替下干热河谷冲沟不同土层的抗侵蚀性研究[J]. 农业机械学报, 2016, 47(12): 152−159, 212. doi: 10.6041/j.issn.1000-1298.2016.12.019
Zhang S, Xiong D H, Zhang B J, et al. Soil erosion resistance under dry-wet alternation in different layers of dry-hot valley region[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(12): 152−159, 212. doi: 10.6041/j.issn.1000-1298.2016.12.019
|
[20] |
何周窈. 金沙江干热河谷乡土植物恢复对冲沟沟壁溯源侵蚀的影响[D]. 雅安: 四川农业大学, 2020.
He Z Y. Impacts of native native vegetation on headcut erosion in hot and dry valley of Jinsha River[D]. Yaan: Sichuan Agricultural University, 2020.
|
[21] |
Johnbosco C E, Ogbonnaya I. Assessing the role of soil engineering properties in gully growth and enlargement in southeast Nigeria using geostatistical and novel indexical techniques[J/OL]. Environmental Earth Sciences, 2022, 81: 7[2022−05−03]. https://doi.org/10.1007/s12665-021-10127-5.
|
[22] |
González M J C, Borselli L, Meza J V G. Soil horizon erodibility assessment in an area of Mexico susceptible to gully erosion[J]. Journal of South American Earth Sciences, 2021, 111: 103−117.
|
[23] |
Haddad H, Magali J, Cédric L, et al. Spatial variability of the erodibility of fine sediments deposited in two alpine gravel-bed rivers: the Isère and Galabre[J/OL]. Catena, 2022, 212(6): 106084[2022−12−30]. https://doi.org/10.1016/j.catena.2022.106084.
|
[24] |
张岩, 高驰宇, 杨瑾, 等. 基于历史卫星影像估算黄土丘陵区冲沟发育速率[J]. 农业工程学报, 2022, 38(1): 109−116. doi: 10.11975/j.issn.1002-6819.2022.01.012
Zhang Y, Gao C Y, Yang J, et al. Estimating the gully growth rate in the hilly Loess Plateau using historical satellite images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(1): 109−116. doi: 10.11975/j.issn.1002-6819.2022.01.012
|
[25] |
文孝丽, 董一帆, 杨己, 等. 元谋干热河谷冲沟发育区植被恢复对土壤碳氮的影响[J]. 水土保持学报, 2021, 35(4): 282−288.
Wen X L, Dong Y F, Yang J, et al. Effects of vegetation restoration on soil carbon and nitrogen in gully development area of Yuanmou Dry-Hot Valley[J]. Journal of Soil and Water Conservation, 2021, 35(4): 282−288.
|
[26] |
Zhang K L, Shu A P, Xu X L, et al. Soil erodibility and its estimation for agricultural soils in China[J]. Journal of Arid Environments, 2008, 72(6): 1002−1011. doi: 10.1016/j.jaridenv.2007.11.018
|
[27] |
陈安强, 张丹, 范建容, 等. 元谋干热河谷沟壁崩塌的力学机制与模拟试验[J]. 中国水土保持科学, 2012, 10(3): 29−35. doi: 10.3969/j.issn.1672-3007.2012.03.005
Chen A Q, Zhang D, Fan J R, et al. Mechanical mechanism and simulation experiment of the collapse of gully cliff in Yuanmou Dry-Hot Valley[J]. Science of Soil and Water Conservation, 2012, 10(3): 29−35. doi: 10.3969/j.issn.1672-3007.2012.03.005
|
[28] |
Liu Y, Zhang Y H, Xie L M, et al. Effect of soil characteristics on preferential flow of Phragmites australis community in Yellow River Delta[J/OL]. Ecological Indicators, 2021, 125: 107486[2022−05−10]. https://doi.org/10.1016/j.ecolind.2021.107486.
|
[29] |
Zhang Y H, Zhang M X, Niu J Z, et al. Rock fragments and soil hydrological processes: significance and progress[J]. Catena, 2016, 147: 153−166. doi: 10.1016/j.catena.2016.07.012
|
[30] |
de Rooij G H. Modeling fingered flow of water in soils owing to wetting front instability: a review[J]. Journal of Hydrology, 2000, 231−232(1−4): 277−294.
|
[31] |
朱明勇, 谭淑端, 顾胜利, 等. 湖北丹江口水库库区小流域土壤可蚀性特征[J]. 土壤通报, 2010, 42(2): 434−436.
Zhu M Y, Tan S D, Gu S L, et al. Characteristics of soil erodibility in the Danjiangkou Reservoir Region, Hubei Province[J]. Chinese Journal of Soil Science, 2010, 42(2): 434−436.
|
[32] |
Müller K, Katuwal S, Young I, et al. Characterising and linking X-ray CT derived macroporosity parameters to infiltration in soils with contrasting structures[J]. Geoderma, 2018, 313: 82−91. doi: 10.1016/j.geoderma.2017.10.020
|
[33] |
卢华兴, 段旭, 赵洋毅, 等. 滇中磨盘山典型林分土壤优先流特征及其归因分析[J]. 西北农林科技大学学报(自然科学版), 2022, 50(7): 48−62.
Lu H X, Duan X, Zhao Y Y, et al. Characteristics and attribution analysis of soil preferential flow in typical stand of Mopan Mountain in Central Yunnan[J]. Journal of Northwest A&F University (Natural Science Edition), 2022, 50(7): 48−62.
|
[34] |
解璐萌, 张英虎, 张明祥, 等. 黄河三角洲刺槐群落土壤优先流及养分分布特征[J]. 生态学报, 2021, 41(19): 7713−7724.
Xie L M, Zhang Y H, Zhang M X, et al. Soil preferential flow and nutrient distribution of Robinia pseudoacacia Linn. community in Yellow River Delta[J]. Acta Ecologica Sinica, 2021, 41(19): 7713−7724.
|
[35] |
Edwards W M, Shipitalo M J, Owens L B, et al. Factors affecting preferential flow of water and atrazine through earthworm burrows under continuous no-till corn[J]. Journal of Environmental Quality, 1993, 22(3): 453−457.
|
[36] |
Julich D, Julich S, Feger K H, et al. Phosphorus in preferential flow pathways of forest soils in Germany[J/OL]. Forests, 2016, 8(1): 19[2021−04−10]. https://doi.org/10.3390/f8010019.
|
[1] | Ma Erni, Wang Yuyao, Li Jingyu, Zhong Xiang. Research progress on the effect of water on pore structure of wood cell wall[J]. Journal of Beijing Forestry University, 2024, 46(2): 1-8. DOI: 10.12171/j.1000-1522.20230243 |
[2] | Wang Kaiqing, Zhou Ziyi, Ma Erni. Effects of cell wall pore changes on water of wood modified by furfuryl alcohol[J]. Journal of Beijing Forestry University, 2023, 45(9): 127-136. DOI: 10.12171/j.1000-1522.20230156 |
[3] | Wu Haiyan, Zhao Yuanyuan, Du Linfang, Chi Wenfeng, Ding Guodong, Gao Guanglei. Effects of land use/cover changes on water retention services in the Beijing-Tianjin Sandstorm Source Control Project Area[J]. Journal of Beijing Forestry University, 2023, 45(4): 88-100. DOI: 10.12171/j.1000-1522.20220245 |
[4] | Meng Chen, Niu Jianzhi, Yu Hailong, Du Lingtong, Yin Zhengcong. Research progress in influencing factors and measuring methods of three-dimensional characteristics of soil macropores[J]. Journal of Beijing Forestry University, 2020, 42(11): 9-16. DOI: 10.12171/j.1000-1522.20190158 |
[5] | Lü Jiao, Mustaq Shah, Cui Yi, Xu Chengyang. Effects of soil compactness and litter covering on soil water holding capacity and water infiltration ability in urban forest[J]. Journal of Beijing Forestry University, 2020, 42(8): 102-111. DOI: 10.12171/j.1000-1522.20190476 |
[6] | Liu Junting, Zhang Jianjun, Sun Ruoxiu, Li Liang. Effects of the conversion time of cropland into forestry on soil physical properties in loess area of western Shanxi Province of northern China[J]. Journal of Beijing Forestry University, 2020, 42(1): 94-103. DOI: 10.12171/j.1000-1522.20180376 |
[7] | Ma Yuan-yuan, Dai Xian-qing, Peng Shao-hao, Yang Guang, Ji Xiao-dong. Effects of natural zeolite on physical and chemical properties and water retention capacity of chernozem in Songnen Plain of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(2): 51-57. DOI: 10.13332/j.1000-1522.20170218 |
[8] | XIA Xiang-you, WANG En-heng, YANG Xiao-yan, CHEN Xiang-wei. Pore characteristics of mollisol argillic horizon under simulated freeze-thaw cycles[J]. Journal of Beijing Forestry University, 2015, 37(6): 70-76. DOI: 10.13332/j.1000-1522.20140474 |
[9] | CHEN Shi-chao, LIN Jian-hui, SUN Yu-rui, Peter Schulze Lammers. Predicting topsoil porosity using soil surface roughness under rainfall influence.[J]. Journal of Beijing Forestry University, 2013, 35(2): 69-74. |
[10] | FANG Wei-dong, KANG Xin-gang, ZHAO Hao-yan, HUANG Xin-feng, GONG Zhi-wen, GAO Yan, FENG Qi-xiang. Soil characteristics and water conservation of different forest types in Changbai Mountain[J]. Journal of Beijing Forestry University, 2011, 33(4): 40-47. |