• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Xu Guiqian, Zhao Yangyi, Wang Keqin, Duan Xu, Li Zhicheng. Soil erodibility under the influence of preferential flow in the gully system of the Jinsha River Dry Hot Valley[J]. Journal of Beijing Forestry University, 2023, 45(4): 101-113. DOI: 10.12171/j.1000-1522.20220135
Citation: Xu Guiqian, Zhao Yangyi, Wang Keqin, Duan Xu, Li Zhicheng. Soil erodibility under the influence of preferential flow in the gully system of the Jinsha River Dry Hot Valley[J]. Journal of Beijing Forestry University, 2023, 45(4): 101-113. DOI: 10.12171/j.1000-1522.20220135

Soil erodibility under the influence of preferential flow in the gully system of the Jinsha River Dry Hot Valley

More Information
  • Received Date: April 10, 2022
  • Revised Date: March 05, 2023
  • Available Online: March 07, 2023
  • Published Date: April 24, 2023
  •   Objective  This paper aims to explore the patterns of soil erodibility variation under the influence of preferential flow in the gully system of Jinsha River Dry Hot Valley, and in doing so, revealing the interaction mechanism between soil and water in the gully development area, so as to provide a theoretical basis for soil and water loss control and ecological restoration in dry hot valleys.
      Method  A complete gully in a typical gully development area of the dry hot valley was selected as the research object. Based on dye tracing, soil erosion resistance and soil physicochemical experiments, statistical analysis methods such as principal component analysis (PCA) were used to obtain the soil preferential flow, soil erodibility indicators and their correlations, clarify the soil preferential flow characteristics of the complete gully system at the catchment area, gully wall, gully bed and gully bottom, as well as explore the correlation between preferential flow and soil erodibility.
      Result  The findings showed that the preferential flow in the gully of the dry hot valley was mainly “macropore flow”, accompanied by “finger flow” and “funnel flow”. Preferential flow percentages in catchment > gully wall > gully bed > gully bottom. This indicated that the development degree of preferential flow in the upstream of the gully was higher than that in the downstream. Moreover, the gully’s preferential flow area also featured higher organic matter and soil moisture contents, better mechanical composition (clay, silt and sand), and lower soil bulk density relative to those in the matrix flow area. Also to take note is that the soil anti-scour coefficient in the gully’s preferential flow area was smaller compared with that in the matrix flow area, suggesting that the preferential flow can reduce soil stability. Furthermore, the erosion resistance index of each gully section in the preferential flow area was higher than that in the matrix flow area, indicating that soil water and solute transport can improve local soil erosion resistance. The soil erodibility factor (K) of the gully system was positively correlated with the percentage of preferential pathway, the dry coverage of preferential pathway and the maximum dyed depth. Additionally, PCA showed that the above three factors were all the main factors affecting soil erodibility.
      Conclusion  In soil layers with high preferential flow development, the K in the preferential flow area is always higher than that in the matrix flow area, which is contrary to the soil layer with insufficient preferential flow development. This implies that the development of preferential flow improves soil erodibility to some extent.
  • [1]
    胡月, 卢阳, 金可, 等. 干热河谷生态治理探讨[J]. 长江科学院院报, 2021, 38(10): 69−75. doi: 10.11988/ckyyb.20210242

    Hu Y, Lu Y, Jin K, et al. Discussion on ecological restoration in dry-hot valley[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(10): 69−75. doi: 10.11988/ckyyb.20210242
    [2]
    杨振寅, 苏建荣, 罗栋, 等. 干热河谷植被恢复研究进展与展望[J]. 林业科学研究, 2007, 20(4): 563−568. doi: 10.3321/j.issn:1001-1498.2007.04.024

    Yang Z Y, Su J R, Luo D, et al. Progress and perspectives on vegetation restoration in the dry-hot valley[J]. Forest Research, 2007, 20(4): 563−568. doi: 10.3321/j.issn:1001-1498.2007.04.024
    [3]
    杨丹, 熊东红, 张宝军, 等. 沟床草被对干热河谷冲沟产沙特性影响的野外模拟试验[J]. 农业工程学报, 2015, 31(15): 124−132. doi: 10.11975/j.issn.1002-6819.2015.15.017

    Yang D, Xiong D H, Zhang B J, et al. Field experiment on impacts of grass belt length on characteristics of sediment yields and transport rates for gullies in Jinsha dry-hot valley region[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(15): 124−132. doi: 10.11975/j.issn.1002-6819.2015.15.017
    [4]
    井光花, 于兴修, 李振炜. 土壤可蚀性研究进展综述[J]. 中国水土保持, 2011(10): 44−47, 66. doi: 10.3969/j.issn.1000-0941.2011.10.018

    Jing G H, Yu X X, Li Z W. Summary of study progress on soil erodibility[J]. Soil and Water Conservation in China, 2011(10): 44−47, 66. doi: 10.3969/j.issn.1000-0941.2011.10.018
    [5]
    Wiekenkamp I, Huisman J A, Bogena H R, et al. Spatial and temporal occurrence of preferential flow in a forested headwater catchment[J]. Journal of Hydrology, 2016, 534: 139−149. doi: 10.1016/j.jhydrol.2015.12.050
    [6]
    Shao W, Bogaard T, Ye S, et al. Coupling a 1D Dual-permeability model with an infinite slope stability approach to quantify the influence of preferential flow on slope stability[J]. Procedia Earth and Planetary Science, 2016, 16: 128−136. doi: 10.1016/j.proeps.2016.10.014
    [7]
    王赵男, 辛颖, 赵雨森. 黑龙江省水源地优先流区与基质流区土壤特性分析[J]. 水土保持学报, 2017, 31(1): 49−54.

    Wang Z N, Xin Y, Zhao Y S. Analysis on soil characters of preferential pathways and soil matrix in water-source area of Heilongjiang Province[J]. Journal of Soil and Water Conservation, 2017, 31(1): 49−54.
    [8]
    盛丰, 张利勇, 吴丹. 土壤优先流模型理论与观测技术的研究进展[J]. 农业工程学报, 2016, 32(6): 1−10. doi: 10.11975/j.issn.1002-6819.2016.06.001

    Sheng F, Zhang L Y, Wu D. Review on research theories and observation techniques of preferential flow in unsaturated soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(6): 1−10. doi: 10.11975/j.issn.1002-6819.2016.06.001
    [9]
    Song Z, Zhou Q Y, Lu D B, et al. Application of electrical resistivity tomography for investigating the internal structure and estimating the hydraulic conductivity of in situ single fractures[J]. Pure and Applied Geophysics, 2022, 179: 1253−1273. doi: 10.1007/s00024-022-02972-7
    [10]
    马昀, 孟晨, 岳健敏, 等. 宁夏荒漠草原不同林龄人工柠条林地土壤优先流研究[J]. 生态学报, 2022, 42(3): 895−903.

    Ma Y, Meng C, Yue J M, et al. Study on preferential flow of soil of artificially planted Caragana korshinskii shrubland in different years of desert grassland in Ningxia[J]. Acta Ecologica Sinica, 2022, 42(3): 895−903.
    [11]
    盛丰, 文鼎, 熊祎玮, 等. 基于电阻率层析成像技术的农田土壤优先流原位动态监测[J]. 农业工程学报, 2021, 37(8): 117−124. doi: 10.11975/j.issn.1002-6819.2021.08.013

    Sheng F, Wen D, Xiong Y W, et al. In-situ monitoring of preferential soil water flow with electrical resistivity tomography technology[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(8): 117−124. doi: 10.11975/j.issn.1002-6819.2021.08.013
    [12]
    Karup D, Moldrup P, Paradelo M, et al. Water and solute transport in agricultural soils predicted by volumetric clay and silt contents[J]. Journal of Contaminant Hydrology, 2016, 192: 194−202. doi: 10.1016/j.jconhyd.2016.08.001
    [13]
    阮芯竹. 重庆四面山不同土地利用类型优先路径特征[D]. 北京: 北京林业大学, 2016.

    Ruan X Z. The characteristics of preferential paths in different land use types at Simianshan in Chongqing[D]. Beijing: Beijing Forestry University, 2016.
    [14]
    邵一敏, 赵洋毅, 段旭, 等. 金沙江干热河谷典型林草地植物根系对土壤优先流的影响[J]. 应用生态学报, 2020, 31(3): 725−734.

    Shao Y M, Zhao Y Y, Duan X, et al. Effects of plant roots on soil preferential flow in typical forest and grassland in the dry-hot valley of Jinsha River, China[J]. Chinese Journal of Applied Ecology, 2020, 31(3): 725−734.
    [15]
    邵一敏, 赵洋毅, 段旭, 等. 基于分形分析的干热河谷区典型地类土壤优先路径分布特征[J]. 西北农林科技大学学报(自然科学版), 2020, 48(7): 102−112.

    Shao Y M, Zhao Y Y, Duan X, et al. Distribution characteristics of typical soil-specific routes in dry-heat valley regions based on fractal analysis[J]. Journal of Northwest A&F University (Natural Science Edition), 2020, 48(7): 102−112.
    [16]
    万艳萍, 赵洋毅, 段旭, 等. 干湿交替对红河干旱河谷区土壤优先流形成特征的影响[J]. 应用生态学报, 2021, 32(7): 2397−2406.

    Wan Y P, Zhao Y Y, Duan X, et al. Influence of alternated drying and wetting on the characteristics of soil preferential flow formation in Honghe Arid Valley.[J]. Chinese Journal of Applied Ecology, 2021, 32(7): 2397−2406.
    [17]
    Wu X L, Dang X H, Meng Z J, et al. Mechanisms of grazing management impact on preferential water flow and infiltration patterns in a semi-arid grassland in northern China. [J/OL]. The Science of the total environment, 2021, 813: 152082[2022−04−20]. https://doi.org/10.1016/j.scitotenv.2021.152082.
    [18]
    Verachtert E, van den Eeckhaut M, Poesen J, et al. Spatial interaction between collapsed pipes and landslides in hilly regions with loess-derived soils[J]. Earth Surface Processes and Landforms, 2013, 38(8): 826−835. doi: 10.1002/esp.3325
    [19]
    张素, 熊东红, 张宝军, 等. 干湿交替下干热河谷冲沟不同土层的抗侵蚀性研究[J]. 农业机械学报, 2016, 47(12): 152−159, 212. doi: 10.6041/j.issn.1000-1298.2016.12.019

    Zhang S, Xiong D H, Zhang B J, et al. Soil erosion resistance under dry-wet alternation in different layers of dry-hot valley region[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(12): 152−159, 212. doi: 10.6041/j.issn.1000-1298.2016.12.019
    [20]
    何周窈. 金沙江干热河谷乡土植物恢复对冲沟沟壁溯源侵蚀的影响[D]. 雅安: 四川农业大学, 2020.

    He Z Y. Impacts of native native vegetation on headcut erosion in hot and dry valley of Jinsha River[D]. Yaan: Sichuan Agricultural University, 2020.
    [21]
    Johnbosco C E, Ogbonnaya I. Assessing the role of soil engineering properties in gully growth and enlargement in southeast Nigeria using geostatistical and novel indexical techniques[J/OL]. Environmental Earth Sciences, 2022, 81: 7[2022−05−03]. https://doi.org/10.1007/s12665-021-10127-5.
    [22]
    González M J C, Borselli L, Meza J V G. Soil horizon erodibility assessment in an area of Mexico susceptible to gully erosion[J]. Journal of South American Earth Sciences, 2021, 111: 103−117.
    [23]
    Haddad H, Magali J, Cédric L, et al. Spatial variability of the erodibility of fine sediments deposited in two alpine gravel-bed rivers: the Isère and Galabre[J/OL]. Catena, 2022, 212(6): 106084[2022−12−30]. https://doi.org/10.1016/j.catena.2022.106084.
    [24]
    张岩, 高驰宇, 杨瑾, 等. 基于历史卫星影像估算黄土丘陵区冲沟发育速率[J]. 农业工程学报, 2022, 38(1): 109−116. doi: 10.11975/j.issn.1002-6819.2022.01.012

    Zhang Y, Gao C Y, Yang J, et al. Estimating the gully growth rate in the hilly Loess Plateau using historical satellite images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(1): 109−116. doi: 10.11975/j.issn.1002-6819.2022.01.012
    [25]
    文孝丽, 董一帆, 杨己, 等. 元谋干热河谷冲沟发育区植被恢复对土壤碳氮的影响[J]. 水土保持学报, 2021, 35(4): 282−288.

    Wen X L, Dong Y F, Yang J, et al. Effects of vegetation restoration on soil carbon and nitrogen in gully development area of Yuanmou Dry-Hot Valley[J]. Journal of Soil and Water Conservation, 2021, 35(4): 282−288.
    [26]
    Zhang K L, Shu A P, Xu X L, et al. Soil erodibility and its estimation for agricultural soils in China[J]. Journal of Arid Environments, 2008, 72(6): 1002−1011. doi: 10.1016/j.jaridenv.2007.11.018
    [27]
    陈安强, 张丹, 范建容, 等. 元谋干热河谷沟壁崩塌的力学机制与模拟试验[J]. 中国水土保持科学, 2012, 10(3): 29−35. doi: 10.3969/j.issn.1672-3007.2012.03.005

    Chen A Q, Zhang D, Fan J R, et al. Mechanical mechanism and simulation experiment of the collapse of gully cliff in Yuanmou Dry-Hot Valley[J]. Science of Soil and Water Conservation, 2012, 10(3): 29−35. doi: 10.3969/j.issn.1672-3007.2012.03.005
    [28]
    Liu Y, Zhang Y H, Xie L M, et al. Effect of soil characteristics on preferential flow of Phragmites australis community in Yellow River Delta[J/OL]. Ecological Indicators, 2021, 125: 107486[2022−05−10]. https://doi.org/10.1016/j.ecolind.2021.107486.
    [29]
    Zhang Y H, Zhang M X, Niu J Z, et al. Rock fragments and soil hydrological processes: significance and progress[J]. Catena, 2016, 147: 153−166. doi: 10.1016/j.catena.2016.07.012
    [30]
    de Rooij G H. Modeling fingered flow of water in soils owing to wetting front instability: a review[J]. Journal of Hydrology, 2000, 231−232(1−4): 277−294.
    [31]
    朱明勇, 谭淑端, 顾胜利, 等. 湖北丹江口水库库区小流域土壤可蚀性特征[J]. 土壤通报, 2010, 42(2): 434−436.

    Zhu M Y, Tan S D, Gu S L, et al. Characteristics of soil erodibility in the Danjiangkou Reservoir Region, Hubei Province[J]. Chinese Journal of Soil Science, 2010, 42(2): 434−436.
    [32]
    Müller K, Katuwal S, Young I, et al. Characterising and linking X-ray CT derived macroporosity parameters to infiltration in soils with contrasting structures[J]. Geoderma, 2018, 313: 82−91. doi: 10.1016/j.geoderma.2017.10.020
    [33]
    卢华兴, 段旭, 赵洋毅, 等. 滇中磨盘山典型林分土壤优先流特征及其归因分析[J]. 西北农林科技大学学报(自然科学版), 2022, 50(7): 48−62.

    Lu H X, Duan X, Zhao Y Y, et al. Characteristics and attribution analysis of soil preferential flow in typical stand of Mopan Mountain in Central Yunnan[J]. Journal of Northwest A&F University (Natural Science Edition), 2022, 50(7): 48−62.
    [34]
    解璐萌, 张英虎, 张明祥, 等. 黄河三角洲刺槐群落土壤优先流及养分分布特征[J]. 生态学报, 2021, 41(19): 7713−7724.

    Xie L M, Zhang Y H, Zhang M X, et al. Soil preferential flow and nutrient distribution of Robinia pseudoacacia Linn. community in Yellow River Delta[J]. Acta Ecologica Sinica, 2021, 41(19): 7713−7724.
    [35]
    Edwards W M, Shipitalo M J, Owens L B, et al. Factors affecting preferential flow of water and atrazine through earthworm burrows under continuous no-till corn[J]. Journal of Environmental Quality, 1993, 22(3): 453−457.
    [36]
    Julich D, Julich S, Feger K H, et al. Phosphorus in preferential flow pathways of forest soils in Germany[J/OL]. Forests, 2016, 8(1): 19[2021−04−10]. https://doi.org/10.3390/f8010019.
  • Related Articles

    [1]Ma Erni, Wang Yuyao, Li Jingyu, Zhong Xiang. Research progress on the effect of water on pore structure of wood cell wall[J]. Journal of Beijing Forestry University, 2024, 46(2): 1-8. DOI: 10.12171/j.1000-1522.20230243
    [2]Wang Kaiqing, Zhou Ziyi, Ma Erni. Effects of cell wall pore changes on water of wood modified by furfuryl alcohol[J]. Journal of Beijing Forestry University, 2023, 45(9): 127-136. DOI: 10.12171/j.1000-1522.20230156
    [3]Wu Haiyan, Zhao Yuanyuan, Du Linfang, Chi Wenfeng, Ding Guodong, Gao Guanglei. Effects of land use/cover changes on water retention services in the Beijing-Tianjin Sandstorm Source Control Project Area[J]. Journal of Beijing Forestry University, 2023, 45(4): 88-100. DOI: 10.12171/j.1000-1522.20220245
    [4]Meng Chen, Niu Jianzhi, Yu Hailong, Du Lingtong, Yin Zhengcong. Research progress in influencing factors and measuring methods of three-dimensional characteristics of soil macropores[J]. Journal of Beijing Forestry University, 2020, 42(11): 9-16. DOI: 10.12171/j.1000-1522.20190158
    [5]Lü Jiao, Mustaq Shah, Cui Yi, Xu Chengyang. Effects of soil compactness and litter covering on soil water holding capacity and water infiltration ability in urban forest[J]. Journal of Beijing Forestry University, 2020, 42(8): 102-111. DOI: 10.12171/j.1000-1522.20190476
    [6]Liu Junting, Zhang Jianjun, Sun Ruoxiu, Li Liang. Effects of the conversion time of cropland into forestry on soil physical properties in loess area of western Shanxi Province of northern China[J]. Journal of Beijing Forestry University, 2020, 42(1): 94-103. DOI: 10.12171/j.1000-1522.20180376
    [7]Ma Yuan-yuan, Dai Xian-qing, Peng Shao-hao, Yang Guang, Ji Xiao-dong. Effects of natural zeolite on physical and chemical properties and water retention capacity of chernozem in Songnen Plain of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(2): 51-57. DOI: 10.13332/j.1000-1522.20170218
    [8]XIA Xiang-you, WANG En-heng, YANG Xiao-yan, CHEN Xiang-wei. Pore characteristics of mollisol argillic horizon under simulated freeze-thaw cycles[J]. Journal of Beijing Forestry University, 2015, 37(6): 70-76. DOI: 10.13332/j.1000-1522.20140474
    [9]CHEN Shi-chao, LIN Jian-hui, SUN Yu-rui, Peter Schulze Lammers. Predicting topsoil porosity using soil surface roughness under rainfall influence.[J]. Journal of Beijing Forestry University, 2013, 35(2): 69-74.
    [10]FANG Wei-dong, KANG Xin-gang, ZHAO Hao-yan, HUANG Xin-feng, GONG Zhi-wen, GAO Yan, FENG Qi-xiang. Soil characteristics and water conservation of different forest types in Changbai Mountain[J]. Journal of Beijing Forestry University, 2011, 33(4): 40-47.
  • Cited by

    Periodical cited type(8)

    1. 陈志琪,张海娜,刘佳丽,鲁向晖,杨宝城. 氮添加对稀土尾砂地猴樟幼苗根系生长、生物量分配及非结构性碳水化合物的影响. 植物研究. 2024(01): 86-95 .
    2. 王志保,路兴慧,张演义,王宏骄,谢宪,江洪,韩婧雅,王艺合,梁晶. 氮磷添加对滨海新围垦区大叶女贞细根形态特征和生物量的影响. 广西植物. 2024(08): 1438-1447 .
    3. 孙薇,王斌,楚秀丽,王秀花,张东北,吴小林,周志春. 马尾松容器苗生长和养分性状对磷添加和接种菌根菌的响应及关联. 南京林业大学学报(自然科学版). 2023(01): 226-233 .
    4. 吴莹. 生物炭和氮肥配施对榉树幼苗生长的影响. 绿色科技. 2023(05): 101-103+108 .
    5. 何至杭,刘丽,彭钟通,陈轶群,王艺颖,刘悦,曾曙才,莫其锋. 水氮耦合对辣木幼苗根系形态特征的影响. 广西植物. 2023(05): 936-946 .
    6. 赵玉红. 樟子松种植技术要点. 中国林副特产. 2022(03): 59-61 .
    7. 高文礼 ,陈晓楠 ,伊力努尔·艾力 ,马晓东 . 干旱及复水条件下接种AMF和根瘤菌对疏叶骆驼刺根系生长的影响. 西北植物学报. 2022(07): 1189-1197 .
    8. 郝龙飞,小红,邵东华,刘婷岩,许吉康,张之月,于凡舒. 接种菌根真菌和氮添加处理对樟子松苗木根际微生态环境的影响. 西北林学院学报. 2022(05): 135-140+154 .

    Other cited types(8)

Catalog

    Article views (453) PDF downloads (83) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return