Citation: | Yang Zhenyu, Zhu Xuli, Cao Yige, Ren Xiangyu, Wu Rongling. Network construction of genome-wide epistatic interaction for plant height traits in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2023, 45(9): 21-32. DOI: 10.12171/j.1000-1522.20220146 |
[1] |
Boyle E A, Li Y I, Pritchard J K. An expanded view of complex traits: from polygenic to omnigenic[J]. Cell, 2017, 169(7): 1177−1186. doi: 10.1016/j.cell.2017.05.038
|
[2] |
Sandhu K S, Lozada D N, Zhang Z, et al. Deep learning for predicting complex traits in spring wheat breeding program[J]. Frontiers in Plant Science, 2020, 11: 613325.
|
[3] |
Munkvold J D, Tanaka J, Benscher D, et al. Mapping quantitative trait loci for preharvest sprouting resistance in white wheat[J]. Theoretical and Applied Genetics, 2009, 119(7): 1223−1235. doi: 10.1007/s00122-009-1123-1
|
[4] |
Ma C, Casella G, Wu R. Functional mapping of quantitative trait loci underlying the character process: a theoretical framework[J]. Genetics, 2002, 161(4): 1751.
|
[5] |
Zeng J, Xue A, Jiang L, et al. Widespread signatures of natural selection across human complex traits and functional genomic categories[J]. Nature Communications, 2021, 12(1): 1164. doi: 10.1038/s41467-021-21446-3
|
[6] |
Gibson G. Rare and common variants: twenty arguments.[J]. Nature Reviews Genetics, 2011, 13(2): 135−145.
|
[7] |
Wray N R, Yang J, Hayes B J, et al. Pitfalls of predicting complex traits from SNPs[J]. Nature Reviews Genetics, 2013, 14(7): 507−515. doi: 10.1038/nrg3457
|
[8] |
Yang J, Zeng J, Goddard M E, et al. Concepts, estimation and interpretation of SNP-based heritability[J]. Nature Genetics, 2017, 49(9): 1304−1311. doi: 10.1038/ng.3941
|
[9] |
Evans L M, Tahmasbi R, Vrieze S I, et al. Comparison of methods that use whole genome data to estimate the heritability and genetic architecture of complex traits[J]. Nature Genetics, 2018, 50(5): 737−745. doi: 10.1038/s41588-018-0108-x
|
[10] |
Banerjee P, Carmelo V A O, Kadarmideen H N. Genome-wide epistatic interaction networks affecting feed efficiency in Duroc and Landrace pigs[J]. Frontiers in Genetics, 2020, 111: 121.
|
[11] |
Jian Y, Benyamin B, Mcevoy B P, et al. Common SNPs explain a large proportion of the heritability for human height[J]. Nature Genetics, 2010, 42(7): 565−569. doi: 10.1038/ng.608
|
[12] |
Genc Y, Oldach K, Verbyla A P, et al. Sodium exclusion QTL associated with improved seedling growth in bread wheat under salinity stress[J]. Theoretical and Applied Genetics, 2010, 121(5): 877−894. doi: 10.1007/s00122-010-1357-y
|
[13] |
Bai C, Liang Y, Hawkesford M J. Identification of QTLs associated with seedling root traits and their correlation with plant height in wheat[J]. Journal of Experimental Botany, 2013, 64(6): 1745−1753. doi: 10.1093/jxb/ert041
|
[14] |
Cowen L, Ideker T, Raphael B J, et al. Network propagation: a universal amplifier of genetic associations[J]. Nature Reviews Genetics, 2017, 18(9): 551−562. doi: 10.1038/nrg.2017.38
|
[15] |
Jiang L, Shi H, Sang M, et al. A computational model for inferring QTL control networks underlying developmental covariation[J]. Frontiers in Plant Science, 2019, 10: 1557. doi: 10.3389/fpls.2019.01557
|
[16] |
Chatrabgoun H, Soltanian A R, Mahjub H, et al. Learning gene regulatory networks using gaussian process emulator and graphical LASSO[J]. Journal of Bioinformatics and Computational Biology, 2021, 19(3): 2150007. doi: 10.1142/S0219720021500074
|
[17] |
Castro D M, Veaux N R, Miraldi E R, et al. Multi-study inference of regulatory networks for more accurate models of gene regulation[J]. PLoS Computational Biology, 2019, 15(1): e1006591. doi: 10.1371/journal.pcbi.1006591
|
[18] |
Kim S. ppcor: an R package for a fast calculation to semi-partial correlation coefficients[J]. Communications for Statistical Applications and Methods, 2015, 22(6): 665−674. doi: 10.5351/CSAM.2015.22.6.665
|
[19] |
Wang Y, Xu M, Wang Z, et al. How to cluster gene expression dynamics in response to environmental signals[J]. Briefings in Bioinformatics, 2012, 13(2): 162−174. doi: 10.1093/bib/bbr032
|
[20] |
Wu R, Jiang L. Recovering dynamic networks in big static datasets[J]. Physics Reports, 2021, 912: 1−57. doi: 10.1016/j.physrep.2021.01.003
|
[21] |
Pandey A K, Jiang L, Moshelion M, et al. Functional physiological phenotyping with functional mapping: a general framework to bridge the phenotype-genotype gap in plant physiology[J]. iScience, 2021, 24(8): 102846. doi: 10.1016/j.isci.2021.102846
|
[22] |
Jiang L, Griffin C H, Wu R. SEGN: inferring real-time gene networks mediating phenotypic plasticity[J]. Computational and Structural Biotechnology Journal, 2020, 18: 2510−2521. doi: 10.1016/j.csbj.2020.08.029
|
[23] |
Wu R, Ma C X, Hou W, et al. Functional mapping of quantitative trait loci that interact with the hg mutation to regulate growth trajectories in mice[J]. Genetics, 2005, 171(1): 239−249. doi: 10.1534/genetics.104.040162
|
[24] |
Thornley J H M. A new formulation of the logistic growth equation and its application to leaf area growth[J]. Annals of Botany, 1990, 3: 309−311.
|
[25] |
Zhao W, Hou W, Littell R C, et al. Structured antedependence models for functional mapping of multiple longitudinal traits[J]. Statistical Applications in Genetics and Molecular Biology, 2005, 4(1): 33.
|
[26] |
Li P, Lu J, Feng H. The global convergence of a modified BFGS method under inexact line search for nonconvex functions[J]. Mathematical Problems in Engineering, 2021, 2021: 1−9.
|
[27] |
Li J, Das K, Fu G, et al. The Bayesian lasso for genome-wide association studies[J]. Bioinformatics, 2011, 27(4): 516−523. doi: 10.1093/bioinformatics/btq688
|
[28] |
Kim B, McMurry T, Zhao W, et al. Wavelet-based functional clustering for patterns of high-dimensional dynamic gene expression[J]. Journal of Computational Biology, 2010, 17(8): 1067−1080. doi: 10.1089/cmb.2009.0270
|
[29] |
Kim B R, Zhang L, Berg A, et al. A computational approach to the functional clustering of periodic gene-expression profiles[J]. Genetics, 2008, 180(2): 821−834. doi: 10.1534/genetics.108.093690
|
[30] |
Li Z, Sillanpaa M J. Overview of LASSO-related penalized regression methods for quantitative trait mapping and genomic selection[J]. Theoretical and Applied Genetics, 2012, 125(3): 419−435. doi: 10.1007/s00122-012-1892-9
|
[31] |
Li Y, Liu D, Zhu Y, et al. Differential analysis of gene regulatory networks modeled with structural equation models[J]. Journal of Ambient Intelligence and Humanized Computing, 2020, 12(10): 9181−9192.
|
[32] |
Wang H, Ye M, Fu Y, et al. Modeling genome-wide by environment interactions through omnigenic interactome networks[J]. Cell Reports, 2021, 35(6): 109114. doi: 10.1016/j.celrep.2021.109114
|
[33] |
R C T. R: a language and environment for statistical computing[J]. Computing, 2011, 1: 12−21.
|
[34] |
Zhong R, Lee C, Zhou J, et al. A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis[J]. The Plant Cell, 2008, 20(10): 2763−2782. doi: 10.1105/tpc.108.061325
|
[35] |
Hu C, Zhu Y, Cui Y, et al. A group of receptor kinases are essential for CLAVATA signalling to maintain stem cell homeostasis[J]. Nature Plants, 2018, 4(3): 205−211.
|
[36] |
Yoo K S, Ok S H, Jeong B C, et al. Single cystathionine synthase domain-containing proteins modulate development by regulating the thioredoxin system in Arabidopsis[J]. The Plant Cell, 2011, 23: 3577−3594. doi: 10.1105/tpc.111.089847
|
[37] |
Zhang L, Pu H, Duan Z, et al. Nucleus-encoded protein BFA1 promotes efficient assembly of the chloroplast ATP synthase coupling factor 1[J]. The Plant Cell, 2018, 30(8): 1770−1788.
|
[38] |
Astley H M, Parsley K, Aubry S, et al. The pyruvate, orthophosphate dikinase regulatory proteins of Arabidopsis are both bifunctional and interact with the catalytic and nucleotide-binding domains of pyruvate, orthophosphate dikinase[J]. The Plant Journal, 2011, 68(6): 1070−1080. doi: 10.1111/j.1365-313X.2011.04759.x
|
[39] |
苏晓华, 刘琦, 宁坤, 等. 植物功能基因网络及其应用[J]. 林业科学研究, 2018, 31(1): 94−104. doi: 10.13275/j.cnki.lykxyj.2018.01.012
Su X H, Liu Q, Ning K, et al. Functional gene network and its application in forestry[J]. Forest Research, 2018, 31(1): 94−104. doi: 10.13275/j.cnki.lykxyj.2018.01.012
|
[40] |
Geng P, Zhang S, Liu J, et al. MYB20, MYB42, MYB43 and MYB85 regulate phenylalanine and lignin biosynthesis during secondary cell wall formation[J]. Plant Physiology, 2019, 182(3): 01070.02019.
|
[41] |
Li R, Li J, Li S, et al. ADP1 affects plant architecture by regulating local auxin biosynthesis[J]. PLoS Genetics, 2014, 10(1): e1003954. doi: 10.1371/journal.pgen.1003954
|
[42] |
Fischer-Kilbienski I, Miao Y, Roitsch T, et al. Nuclear targeted AtS40 modulates senescence associated gene expression in Arabidopsis thaliana during natural development and in darkness[J]. Plant Molecular Biology, 2010, 73: 379−390.
|
[43] |
Alvarez J M, Brooks M D, Swift J, et al. Time-based systems biology approaches to capture and model dynamic gene regulatory networks[J]. Annual Review of Plant Biology, 2021, 72(1): 105−131.
|
[44] |
Mackay T F. Epistasis and quantitative traits: using model organisms to study gene-gene interactions[J]. Nature Reviews Genetics, 2014, 15(1): 22−33. doi: 10.1038/nrg3627
|
[45] |
王真梅, 李海霞, 何莹, 等. 植物丙酮酸磷酸双激酶(PPDK)研究进展[J]. 植物生理学报, 2012, 48(10): 949−957. doi: 10.13592/j.cnki.ppj.2012.10.010
Wang Z M, Li H X, He Y, et al. Advances in plant pyruvate, orthophosphate dikinase[J]. Plant Physiology Journal, 2012, 48(10): 949−957. doi: 10.13592/j.cnki.ppj.2012.10.010
|
[46] |
Ok S H, Yoo K S, Shin J S. CBSXs are sensor relay proteins sensing adenosine-containing ligands in Arabidopsis[J]. Plant Signaling & Behavior, 2012, 7(6): 664−667.
|