• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Li Jing, Han Hairong, Kang Fengfeng, Hu Baoan, Jing Hongyuan. Spatiotemporal dynamics and climate impact of vegetation NPP in the northern Shanxi Province region based on the improved CASA model[J]. Journal of Beijing Forestry University, 2023, 45(7): 47-60. DOI: 10.12171/j.1000-1522.20220236
Citation: Li Jing, Han Hairong, Kang Fengfeng, Hu Baoan, Jing Hongyuan. Spatiotemporal dynamics and climate impact of vegetation NPP in the northern Shanxi Province region based on the improved CASA model[J]. Journal of Beijing Forestry University, 2023, 45(7): 47-60. DOI: 10.12171/j.1000-1522.20220236

Spatiotemporal dynamics and climate impact of vegetation NPP in the northern Shanxi Province region based on the improved CASA model

More Information
  • Received Date: June 13, 2022
  • Revised Date: October 03, 2022
  • Available Online: June 14, 2023
  • Published Date: July 24, 2023
  •   Objective  The purpose of this study is to explore the influence of factors such as climate and vegetation types on the net primary productivity (NPP) of vegetation in the northern Shanxi Province of northern China, and to clarify the response of vegetation to climate change in arid and semi-arid regions, and to ensure vegetation restoration and sustainable development in ecologically fragile areas. It has important reference value.
      Method  Based on the improved CASA (Carnegie-Ames-Stanford approach) model, this paper simulates vegetation NPP in northern Shanxi Province from 2000 to 2020, quantifies its temporal and spatial distribution pattern, changing trend and spatial variability, and analyzes the correlation between climatic factors and vegetation NPP.
      Result  The annual values of vegetation NPP (calculated by C) in the study area ranged from 225.28 to 484.09 g/m2 from 2000 to 2020, with a mean value of 349.76 g/m2 and the average annual growth rate was 8.75 g/m2. The annual values of vegetation NPP showed a pattern of high in the east and low in the west, and high in the south and low in the north. The annual values of NPP were mainly concentrated in the range of 200−400 g/m2, accounting for 65.15% of the total area of the study area, and the magnitude of NPP annual values of each vegetation type was woodland (691.79 g/m2) > scrub (492.97 g/m2) > cropland (378.39 g/m2) > grassland (343.85 g/m2) > unused land (277.45 g/m2) > construction land (223.96 g/m2). The area proportion of each degree of variation of vegetation NPP in the study area from large to small was general stability (46.4%) > stable (30.9%) > less stable (17.9%) > very stable (4.8%), and the stability showed a decreasing trend from southeast to northwest in spatial scale. Vegetation NPP showed a significant positive correlation with precipitation, an insignificant correlation with temperature, and a negative correlation with solar radiation.
      Conclusion  The vegetation NPP in northern Shanxi Province shows a fluctuating upward trend during the study period, with obvious heterogeneity in spatial distribution and overall volatility. Among the three meteorological factors, precipitation, temperature and solar radiation, both precipitation and solar radiation can affect the NPP of vegetation, and precipitation has the most significant impact on the NPP of vegetation in northern Shanxi Province.
  • [1]
    刘铮, 杨金贵, 马理辉, 等. 黄土高原草地净初级生产力时空趋势及其驱动因素[J]. 应用生态学报, 2021, 32(1): 113−122.

    Liu Z, Yang J G, Ma L H, et al. Spatial-temporal trend of grassland net primary production and their driving factors in the Loess Plateau, China[J]. Chinese Journal of Applied Ecology, 2021, 32(1): 113−122.
    [2]
    Liu Y Y, Yang Y, Wang Q, et al. Assessing the dynamics of grassland net primary productivity in response to climate change at the global scale[J]. Chinese Geographical Science, 2019, 29(5): 725−740. doi: 10.1007/s11769-019-1063-x
    [3]
    Sun C M, Zhong X C, Chen C, et al. Evaluating the grassland net primary productivity of southern China from 2000 to 2011 using a new climate productivity model[J]. Journal of Integrative Agriculture, 2016, 15(7): 1638−1644. doi: 10.1016/S2095-3119(15)61253-9
    [4]
    Teng M J, Zeng L X, Hu W J, et al. The impacts of climate changes and human activities on net primary productivity vary across an ecotone zone in Northwest China[J]. Science of The Total Environment, 2020, 714: 136691. doi: 10.1016/j.scitotenv.2020.136691
    [5]
    Wang Z Y, Zhong J L, Lan H, et al. Association analysis between spatiotemporal variation of net primary productivity and its driving factors in Inner Mongolia, China during 1994–2013[J]. Ecological Indicators, 2019, 105: 355−364. doi: 10.1016/j.ecolind.2017.11.026
    [6]
    Sun H Z, Chen Y B, Xiong J N, et al. Relationships between climate change, phenology, edaphic factors, and net primary productivity across the Tibetan Plateau[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 107: 102708. doi: 10.1016/j.jag.2022.102708
    [7]
    Tang C J, Fu X Y, Jiang D, et al. Simulating spatiotemporal dynamics of sichuan grassland net primary productivity using the CASA model and in situ observations[J]. Scientific World Journal, 2014, 2014: 1−12.
    [8]
    刘旻霞, 焦骄, 潘竟虎, 等. 青海省植被净初级生产力(NPP)时空格局变化及其驱动因素[J]. 生态学报, 2020, 40(15): 5306−5317.

    Liu M X, Jiao J, Pan J H, et al. Spatial and temporal patterns of planting NPP and its driving factors in Qinghai Province[J]. Acta Ecologica Sinica, 2020, 40(15): 5306−5317.
    [9]
    李登科, 王钊. 基于MOD17A3的中国陆地植被NPP变化特征分析[J]. 生态环境学报, 2018, 27(3): 397−405.

    Li D K, Wang Z. The characteristics of NPP of terrestrial vegetation in China based on MOD17A3 data[J]. Ecology and Environmental Sciences, 2018, 27(3): 397−405.
    [10]
    Yu D Y, Shao H B, Shi P J, et al. How does the conversion of land cover to urban use affect net primary productivity? A case study in Shenzhen City, China[J]. Agricultural and Forest Meteorology, 2009, 149(11): 2054−2060. doi: 10.1016/j.agrformet.2009.07.012
    [11]
    杨勇, 李兰花, 王保林, 等. 基于改进的CASA模型模拟锡林郭勒草原植被净初级生产力[J]. 生态学杂志, 2015, 34(8): 2344−2352.

    Yang Y, Li L H, Wang B L, et al. Simulation of net primary productivity by a satellite data-driven improved CASA model in Xilingol Grassland[J]. Chinese Journal of Ecology, 2015, 34(8): 2344−2352.
    [12]
    张雪蕾, 肖伟华, 王义成. 基于改进的CASA模型三峡库区NPP时空特征及气候驱动机制[J]. 生态学报, 2021, 41(9): 3488−3498.

    Zhang X L, Xiao W H, Wang Y C. Temporal-spatial variations of NPP and its climatic driving mechanism in the Three Gorges Reservoir Area based on modified CASA model[J]. Acta Ecologica Sinica, 2021, 41(9): 3488−3498.
    [13]
    Zheng Z T, Zhu W Q, Zhang Y J. Seasonally and spatially varied controls of climatic factors on net primary productivity in Alpine grasslands on the Tibetan Plateau[J]. Global Ecology and Conservation, 2020, 21: e00814.
    [14]
    刘洁, 孟宝平, 葛静, 等. 基于CASA模型和MODIS数据的甘南草地NPP时空动态变化研究[J]. 草业学报, 2019, 28(6): 19−32.

    Liu J, Meng B P, Ge J, et al. Spatio-temporal dynamic changes of grassland NPP in Gannan prefecture, as determined by the CASA model[J]. Acta Prataculturae Sinica, 2019, 28(6): 19−32.
    [15]
    李传华, 曹红娟, 范也平, 等. 基于校正的CASA模型NPP遥感估算及分析: 以河西走廊为例[J]. 生态学报, 2019, 39(5): 1616−1626.

    Li C H, Cao H J, Fan Y P, et al. Remote sensing estimation and analysis of net primary productivity (NPP) based on corrected CASA model: a case study of Hexi Corridor[J]. Acta Ecologica Sinica, 2019, 39(5): 1616−1626.
    [16]
    冯益明, 姚爱冬, 姜丽娜. CASA模型的改进及在干旱区生态系统NPP估算中的应用[J]. 干旱区资源与环境, 2014, 28(8): 39−43.

    Feng Y M, Yao A D, Jiang L N. Improving the CASA model and applying it to estimate the net primary productivity of arid region ecology system[J]. Journal of Arid Land Resources and Environment, 2014, 28(8): 39−43.
    [17]
    Zhang M, Yuan N Q, Lin H, et al. Quantitative estimation of the factors impacting spatiotemporal variation in NPP in the Dongting Lake Wetlands using Landsat time series data for the last two decades[J]. Ecological Indicators, 2022, 135: 108544.
    [18]
    Xiao X M, Zhang Q Y, Saleska S, et al. Satellite-based modeling of gross primary production in a seasonally moist tropical evergreen forest[J]. Remote Sensing of Environment, 2005, 94(1): 105−122. doi: 10.1016/j.rse.2004.08.015
    [19]
    Xiao X M, Hollinger D, Aber J, et al. Satellite-based modeling of gross primary production in an evergreen needleleaf forest[J]. Remote Sensing of Environment, 2004, 89(4): 519−534. doi: 10.1016/j.rse.2003.11.008
    [20]
    侯丽丽, 银山, 都瓦拉, 等. 基于CASA模型的浑善达克沙地植被NPP模拟及时空分析[J]. 水土保持研究, 2020, 27(2): 165−171.

    Hou L L, Yin S, Duwala, et al. Simulation and spatial-temporal analysis of vegetation NPP in Hunshandake Sandy Land based on CASA model[J]. Research of Soil and Water Conservation, 2020, 27(2): 165−171.
    [21]
    王莺, 夏文韬, 梁天刚. 基于CASA模型的甘南地区草地净初级生产力时空动态遥感模拟[J]. 草业学报, 2011, 20(4): 316−324.

    Wang Y, Xia W T, Liang T G. Spatial-temporal dynamics simulation of grassland net primary productivity using a satellite data-driven CASA model in Gannan prefecture[J]. Acta Prataculturae Sinica, 2011, 20(4): 316−324.
    [22]
    Bao G, Bao Y H, Qin Z H, et al. Modeling net primary productivity of terrestrial ecosystems in the semi-arid climate of the Mongolian Plateau using LSWI-based CASA ecosystem model[J]. International Journal of Applied Earth Observations & Geoinformation, 2016, 46: 84−93.
    [23]
    周才平, 欧阳华, 曹宇, 等. “一江两河”中部流域植被净初级生产力估算[J]. 应用生态学报, 2008, 19(5): 1071−1076.

    Zhou C P, Ouyang H, Cao Y, et al. Estimation of net primary productivity in middle reaches of Yarlung Zangbo River and its two tributaries[J]. Chinese Journal of Applied Ecology, 2008, 19(5): 1071−1076.
    [24]
    赵芬. 基于CASA模型的锡林郭勒盟草地净初级生产力遥感估算与验证[D]. 北京: 中国农业科学院, 2015.

    Zhao F. Remote sensing estimation and validation of net primary production in the Xilingol Grassland based on CASA model[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015.
    [25]
    靳东升, 张强, 张变华, 等. 山西煤炭开采对生态环境的影响及对策研究[J]. 山西农业科学, 2016, 44(3): 369−371.

    Jin D S, Zhang Q, Zhang B H, et al. Study on countermeasures and influence of coal mining on the ecological environment in Shanxi[J]. Journal of Shanxi Agricultural Sciences, 2016, 44(3): 369−371.
    [26]
    郑雪, 姚顺波, 鲁亚楠. 退耕还林工程对粮食生产的影响: 以山西省为例[J]. 水土保持通报, 2020, 40(2): 239−246.

    Zheng X, Yao S B, Lu Y N. Impacts of sloping land conversion program on grain production[J]. Bulletin of Soil and Water Conservation, 2020, 40(2): 239−246.
    [27]
    杨丹, 王晓峰. 黄土高原气候和人类活动对植被NPP变化的影响[J]. 干旱区研究, 2022, 39(2): 584−593.

    Yang D, Wang X F. Contribution of climatic change and human activities to changes in net primary productivity in the Loess Plateau[J]. Arid Zone Research, 2022, 39(2): 584−593.
    [28]
    史晓亮, 杨志勇, 王馨爽, 等. 黄土高原植被净初级生产力的时空变化及其与气候因子的关系[J]. 中国农业气象, 2016, 37(4): 445−453.

    Shi X L, Yang Z Y, Wang X S, et al. Spatial and temporal variation of net primary productivity and its relationship with climate factors in the Chinese Loess Plateau[J]. Chinese Journal of Agrometeorology, 2016, 37(4): 445−453.
    [29]
    苏尚军, 靳东升, 张婷. 山西省植被净初级生产力时空变化特征及影响因素[J]. 山西农业科学, 2022, 50(4): 551−558.

    Su S J, Jin D S, Zhang T. Characteristics temporal and spatial change and impact factors of net primary productivity of vegetation in Shanxi Province[J]. Journal of Shanxi Agricultural Sciences, 2022, 50(4): 551−558.
    [30]
    梁爽, 张吴平, 毕如田, 等. 山西省植被NPP时空变化特征及其驱动力分析[J]. 广西植物, 2018, 38(8): 1005−1014.

    Liang S, Zhang W P, Bi R T, et al. Variation characteristics of vegetation net primary productivity and its driving factors in Shanxi Province[J]. Guihaia, 2018, 38(8): 1005−1014.
    [31]
    石志华, 刘梦云, 吴健利, 等. 基于CASA模型的陕西省植被净初级生产力时空分析[J]. 水土保持通报, 2016, 36(1): 206−211.

    Shi Z H, Liu M Y, Wu J L, et al. Spatial-temporal analysis of vegetation net primary productivity in Shanxi Province based on CASA model[J]. Bulletin of Soil and Water Conservation, 2016, 36(1): 206−211.
    [32]
    唐洁, 荣月静, 杜世勋. 山西省晋北地区生态环境敏感性评价[J]. 环境与可持续发展, 2017, 42(4): 204−206.

    Tang J, Rong Y J, Du S X. Evaluation of eco-environmental sensitivity in North Shanxi Province[J]. Environment and Sustainable Development, 2017, 42(4): 204−206.
    [33]
    侯德恒. 晋北沙漠化区生态系统产水服务时空变化[J]. 山西大学学报(自然科学版), 2018, 41(4): 851−856.

    Hou D H. Spatial and temporal variations of water yield services in desertification area of Northern Shanxi Province[J]. Journal of Shanxi University (Natural Science Edition), 2018, 41(4): 851−856.
    [34]
    薛占金, 秦作栋, 孟宪文. 晋北地区环境特征及其土地沙化机制研究[J]. 水土保持研究, 2011, 18(2): 98−102.

    Xue Z J, Qin Z D, Meng X W. Study on the environmental characteristics and mechanisms of land desertification in North Shanxi Province[J]. Research of Soil and Water Conservation, 2011, 18(2): 98−102.
    [35]
    徐庆勇, 黄玫, 李雷, 等. 晋北地区生态环境脆弱性的GIS综合评价[J]. 地球信息科学学报, 2013, 15(5): 705−711. doi: 10.3724/SP.J.1047.2013.00705

    Xu Q Y, Huang M, Li L, et al. Integrated assessment of eco-environmental vulnerability in North Shanxi Province[J]. Journal of Geo-information Science, 2013, 15(5): 705−711. doi: 10.3724/SP.J.1047.2013.00705
    [36]
    Mark A F, Damien S, Bin T, et al. MODIS Collection 5 global land cover: algorithm refinements and characterization of new datasets[J]. Remote Sensing of Environment, 2009, 114(1): 168−182.
    [37]
    徐珂, 邢艳秋, 常晓晴. 亚热带常绿针叶林光能利用率模型优化与总初级生产力估算[J]. 森林工程, 2021, 37(5): 28−36.

    Xu K, Xing Y Q, Chang X Q. Model optimization and GPP estimation of light energy utilization in subtropical evergreen coniferous forest[J]. Forest Engineering, 2021, 37(5): 28−36.
    [38]
    朱文泉, 潘耀忠, 张锦水. 中国陆地植被净初级生产力遥感估算[J]. 植物生态学报, 2007, 31(3): 413−424. doi: 10.17521/cjpe.2007.0050

    Zhu W Q, Pan Y Z, Zhang J S. Estimation of net primary productivity of Chinese terrestrial vegetation based on remote sensing[J]. Chinese Journal of Plant Ecology, 2007, 31(3): 413−424. doi: 10.17521/cjpe.2007.0050
    [39]
    朴世龙, 方精云, 郭庆华. 利用CASA模型估算我国植被净第一性生产力[J]. 植物生态学报, 2001, 25(5): 603−608.

    Piao S L, Fang J Y, Guo Q H. Application of CASA model to the estimation of Chinese terrestrial net primary productivity[J]. Chinese Journal of Plant Ecology, 2001, 25(5): 603−608.
    [40]
    朱文泉, 潘耀忠, 何浩, 等. 中国典型植被最大光利用率模拟[J]. 科学通报, 2006, 51(6): 700−706. doi: 10.1360/972005-555

    Zhu W Q, Pan Y Z, He H, et al. Simulation of maximum light utilization of typical vegetation in China[J]. Chinese Science Bulletin, 2006, 51(6): 700−706. doi: 10.1360/972005-555
    [41]
    Fensholt R, Sandholt I. Derivation of a shortwave infrared water stress index from MODIS near- and shortwave infrared data in a semiarid environment[J]. Remote Sensing of Environment, 2003, 87(1): 111−121. doi: 10.1016/j.rse.2003.07.002
    [42]
    张友水, 谢元礼. MODIS影像的NDVI和LSWI植被水分含量估算[J]. 地理科学, 2008, 28(1): 72−76.

    Zhang Y S, Xie Y L. Vegetation water content estimation using NDVI and LSWI from MODIS images[J]. Scientia Geographica Sinica, 2008, 28(1): 72−76.
    [43]
    王亚晖, 唐文家, 李森, 等. 青海省草地生产力变化及其驱动因素[J]. 草业学报, 2022, 31(2): 1−13.

    Wang Y H, Tang W J, Li S, et al. Change in grassland productivity in Qinghai Province and its driving factors[J]. Acta Prataculturae Sinica, 2022, 31(2): 1−13.
    [44]
    黄悦悦. 2000—2018年华北平原植被净初级生产力时空分布及其驱动因素研究[D]. 兰州: 西北师范大学, 2020.

    Huang Y Y. Spatial-temporal distribution and driving factors of vegetation net primary productivity in North China Plain from 2000 to 2018[D]. Lanzhou: Northwest Normal University, 2020.
    [45]
    汤曾伟, 王宏, 李晓兵, 等. 锡林郭勒盟2006—2015年植被NPP变化分析[J]. 草业科学, 2018, 35(12): 2812−2821.

    Tang Z W, Wang H, Li X B, et al. Variation of vegetation net primary productivity and its influential factors in Xilingol League from 2006 to 2015[J]. Pratacultural Science, 2018, 35(12): 2812−2821.
    [46]
    茆杨, 蒋勇军, 张彩云, 等. 近20年来西南地区植被净初级生产力时空变化与影响因素及其对生态工程响应[J]. 生态学报, 2022, 42(7): 2878−2890.

    Mao Y, Jiang Y J, Zhang C Y, et al. Spatio-temporal changes and influence factors of vegetation net primary productivity in southwest China in the past 20 years and its response to ecological engineering[J]. Acta Ecologica Sinica, 2022, 42(7): 2878−2890.
    [47]
    张筠. 基于CASA模型的山东省植被NPP时空格局变化及其驱动因素研究[D]. 烟台: 鲁东大学, 2021.

    Zhang Y. Research on the spatio-temporal pattern changes and driving factors of vegetation NPP in Shandong Province based on CASA model[D]. Yantai: Ludong University, 2021.
    [48]
    刘雪佳. 中国陆地主要植被类型生产力及其与气候因子的关系[D]. 太原: 山西大学, 2019.

    Liu X J. Main land vegetation productivity and their relationship with climatic factors in China[D]. Taiyuan: Shanxi University, 2019.
    [49]
    罗玲, 王宗明, 毛德华, 等. 松嫩平原西部草地净初级生产力遥感估算与验证[J]. 中国草地学报, 2011, 33(6): 21−29.

    Luo L, Wang Z M, Mao D H, et al. Remote-sensing estimation and validation of grassland net primary productivity of western Songnen Plain in Northeast China[J]. Chinese Journal of Grassland, 2011, 33(6): 21−29.
    [50]
    程春晓, 徐宗学, 王志慧, 等. 2001—2010年东北三省植被净初级生产力模拟与时空变化分析[J]. 资源科学, 2014, 36(11): 2401−2412.

    Cheng C X, Xu Z X, Wang Z H, et al. Temporal-spatial change simulation and analysis of net primary productivity in Northeast China from 2001 to 2010[J]. Resources Science, 2014, 36(11): 2401−2412.
    [51]
    焦伟, 陈亚宁, 李稚. 西北干旱区植被净初级生产力的遥感估算及时空差异原因[J]. 生态学杂志, 2017, 36(1): 181−189.

    Jiao W, Chen Y N, Li Z. Remote sensing estimation and the reasons for temporal-spatial differences of vegetation net primary productivity in arid region of Northwest China[J]. Chinese Journal of Ecology, 2017, 36(1): 181−189.
    [52]
    周妍妍, 郑续, 魏乐民, 等. 疏勒河流域土地利用变化对净初级生产力的影响[J]. 生态科学, 2021, 40(5): 102−108.

    Zhou Y Y, Zheng X, Wei L M, et al. Effects of land-use change on net primary productivity in the Shule River Basin[J]. Ecological Science, 2021, 40(5): 102−108.
    [53]
    程小琴, 韩海荣, 康峰峰. 山西油松人工林生态系统生物量、碳积累及其分布[J]. 生态学杂志, 2012, 31(10): 2455−2460.

    Cheng X Q, Han H R, Kang F F. Biomass, carbon accumulation and its partitioning of a Pinus tabulaeformis plantation ecosystem in Shanxi Province, China[J]. Chinese Journal of Ecology, 2012, 31(10): 2455−2460.
    [54]
    Guo Q F, Ren H. Productivity as related to diversity and age in planted versus natural forests[J]. Global Ecology and Biogeography, 2015, 12(23): 1461−1471.
    [55]
    朱文泉. 中国陆地生态系统植被净初级生产力遥感估算及其与气候变化关系的研究[D]. 北京: 北京师范大学, 2005.

    Zhu W Q. Estimation of net primary productivity of Chinese terrestrial vegetation based on remote sensing and its relationship with global climate change[D]. Beijing: Beijing Normal University, 2005.
    [56]
    陈遐林, 马钦彦, 康峰峰, 等. 山西太岳山典型灌木林生物量及生产力研究[J]. 林业科学研究, 2002, 15(3): 304−309.

    Chen X L, Ma Q Y, Kang F F, et al. Studies on the biomass and productivity of typical shrubs in Taiyue Mountain, Shanxi Province[J]. Forest Research, 2002, 15(3): 304−309.
    [57]
    梁爽. 山西省植被NPP时空分布变化特征及其驱动力分析[D]. 太谷: 山西农业大学, 2018.

    Liang S. Variation of vegetation net primary productivity and its driving factors in Shanxi Province[D]. Taigu: Shanxi Agricultural University, 2018.
    [58]
    王亚文. 历史时期晋北森林分布特征研究[D]. 太原: 山西大学, 2018.

    Wang Y W. Study on the characteristics of forest distribution in North Shanxi Province during the historical period[D]. Taiyuan: Shanxi University, 2018.
    [59]
    徐小明, 杜自强, 张红, 等. 晋北地区1986—2010年土地利用/覆被变化的驱动力[J]. 中国环境科学, 2016, 36(7): 2154−2161.

    Xu X M, Du Z Q, Zhang H, et al. Quantitative analysis on driving forces of land use/cover change in north Shanxi Province during 1986−2010[J]. China Environmental Science, 2016, 36(7): 2154−2161.
    [60]
    薛晓玉, 王晓云, 段含明, 等. 北方农牧交错带植被NPP的时空变化及其驱动因子分析[J]. 水土保持研究, 2021, 28(2): 190−197.

    Xue X Y, Wang X Y, Duan H M, et al. Temporal and spatial changes of NPP and its causes in the agricultural pastoral ecotone of northern China[J]. Research of Soil and Water Conservation, 2021, 28(2): 190−197.
    [61]
    李菲. 典型喀斯特山区不同植被类型土壤水分动态变化及其对植物光合作用的响应[D]. 贵阳: 贵州师范大学, 2016.

    Li F. Seasonal dynamics of soil water and its impact on plants photosynthesis under different vegetation types in typical karst mountain areas[D]. Guiyang: Guizhou Normal University, 2016.

Catalog

    Article views (561) PDF downloads (134) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return