Citation: | Yu Miao, Zhang Bijia, Wang Zejin, Yu Fengzhen, Zhao Xinhang, Yang Jiarong, Li Pin, Fan Dayong, Xu Chengyang. Relationship of functional traits and site conditions with NO−3 uptake capacity of tree root[J]. Journal of Beijing Forestry University, 2024, 46(1): 35-43. DOI: 10.12171/j.1000-1522.20220497 |
Nutrient is an important limiting factor for tree growth in drought and barren sites, and the way trees absorbing and using nutrients in drought and barren sites determines their ecological adaptation strategies. In this paper, the kinetics of root nitrogen uptake and the coupling relationship between root morphological traits were measured in situ in the field, which laid a foundation for revealing the physiological function of trees in drought and barren environments.
We took Prunus davidiana, Acer truncatum and Quercus variabilis in Baiwangshan Forest Park of Beijing as the research objectives. We used modified Hogland nutrient solution with NO−3 concentration gradients to carry out in-situ measurement of root NO−3 uptake kinetics in generally and extremely drought and barren site conditions, respectively. The relationship between root NO−3 uptake rate and root functional traits was analyzed by Pearson correlation and path analysis.
Tree species, site conditions and the interaction of above two factors all had an significant or extremely significant effect on root NO−3 uptake rate and kinetic parameters. Three tree species all had high nitrogen affinity. The uptake rate of NO−3 in the root of A. truncatum was lower, and it was significantly lower than that of P. davidiana and Q. variabilis under the above two site conditions. Under the site conditions of more drought and barren, fast growing tree species had compensatory absorption of NO−3. Root functional traits and the uptake rate of NO−3 had a good coupling relationship. The result showed that the morphological traits of specific root length (SRL) and specific root surface area (SRA) had significantly positive effects on NO−3 uptake rate of roots, while root diameter (RD) and root tissue density (RTD) had negative effects. In terms of branching structure traits, branching intensity and number of links had weak effects on NO−3 uptake rate.
The NO−3 uptake rate of P. davidiana and Q. variabilis with a faster growth rate decreases significantly under the extremely drought and barren site stress, while A. truncatum is the opposite. The “speed strategy” of increasing the maximum absorption rate and reducing nitrogen affinity ensures the compensatory absorption of NO−3 by the roots of fast-growing tree species. The combination of morphological traits with higher SRL, higher SRA, lower RD and lower RTD can effectively improve the uptake rate of NO−3 by roots in drought and barren sites.
[1] |
Smolander A, Henttonen H M, Nöjd P, et al. Long-term response of soil and stem wood properties to repeated nitrogen fertilization in a N-limited Scots pine stand[J]. European Journal of Forest Research, 2022, 141(3): 421−431. doi: 10.1007/s10342-022-01448-6
|
[2] |
Lynch J P. Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems[J]. Annals of Botany, 2013, 112(2): 347−357. doi: 10.1093/aob/mcs293
|
[3] |
任浩, 高国强, 马耀远, 等. 不同年龄红松根系氮素吸收及其与根形态和化学性状的关系[J]. 北京林业大学学报, 2021, 43(10): 65−72. doi: 10.12171/j.1000-1522.20200385
Ren H, Gao G Q, Ma Y Y, et al. Root nitrogen uptake and its relationship with root morphological and chemical traits in Korean pine ( Pinus koraiensis) at different ages[J]. Journal of Beijing Forestry University, 2021, 43(10): 65−72. doi: 10.12171/j.1000-1522.20200385
|
[4] |
Nguyen T, Xu C Y, Tahmasbian I , et al. Effects of biochar on soil available inorganic nitrogen: a review and meta-analysis[J]. Geoderma, 2017, 288: 79−96.
|
[5] |
Griffiths M, York L M. Targeting root ion uptake kinetics to increase plant productivity and nutrient use efficiency[J]. Plant Physiology, 2020, 182(4): 1854−1868. doi: 10.1104/pp.19.01496
|
[6] |
Li C, Li Q, Qiao N, et al. Inorganic and organic nitrogen uptake by nine dominant subtropical tree species[J]. IForest-Biogeosciences and Forestry, 2015, 9(2): 253.
|
[7] |
Olmo M, Lopez-Iglesias B, Villar R. Drought changes the structure and elemental composition of very fine roots in seedlings of ten woody plant species. Implications for a drier climate[J]. Plant and Soil, 2014, 384(1−2): 113−129. doi: 10.1007/s11104-014-2178-6
|
[8] |
Hong J T, Ma X X, Yan Y, et al. Which root traits determine nitrogen uptake by alpine plant species on the Tibetan Plateau?[J]. Plant and Soil, 2018, 424(1−2): 63−72. doi: 10.1007/s11104-017-3434-3
|
[9] |
Weemstra M, Kiorapostolou N, van Ruijven J, et al. The role of fine-root mass, specific root length and life span in tree performance: a whole-tree exploration[J]. Functional Ecology, 2020, 34(3): 575−585. doi: 10.1111/1365-2435.13520
|
[10] |
Liu Q, Wang H, Xu X. Root nitrogen acquisition strategy of trees and understory species in a subtropical pine plantation in southern China[J]. European Journal of Forest Research, 2020, 139(5): 791−804. doi: 10.1007/s10342-020-01284-6
|
[11] |
Nikolova P S, Bauerle T L, Häberle K H, et al. Fine-root traits reveal contrasting ecological strategies in European beech and Norway spruce during extreme drought[J]. Frontiers in Plant Science, 2020, 11: 1211. doi: 10.3389/fpls.2020.01211
|
[12] |
Wysokinski A, Lozak I. The dynamic of nitrogen uptake from different sources by pea ( Pisum sativum L.)[J]. Agriculture, 2021, 11(1): 81. doi: 10.3390/agriculture11010081
|
[13] |
韦柳端, 朱济友, 李夏榕, 等. 根系功能性状对干瘠立地适应的种间差异: 以北京石质山地主要观赏树种为例[J]. 生态学报, 2021, 41(23): 9492−9501.
Wei L D, Zhu J Y, Li X R, et al. Interspecific trait variation in the adaptation of root functional traits to dry-barren sites: a case study of the main ornamental plant species in stony mountainous region of Beijing[J]. Acta Ecologica Sinica, 2021, 41(23): 9492−9501.
|
[14] |
吕德国, 王英, 秦嗣军, 等. 冷凉条件对山荆子幼苗根系氮素吸收动力学参数的影响[J]. 园艺学报, 2010, 37(9): 1493−1498. doi: 10.16420/j.issn.0513-353x.2010.09.014
Lü D G, Wang Y, Qin S J, et al. Effects of cool and cold conditions on nitrogen uptake kinetics in Malus baccata Borkh. seedlings[J]. Acta Horticulturae Sinica, 2010, 37(9): 1493−1498. doi: 10.16420/j.issn.0513-353x.2010.09.014
|
[15] |
Henke M, Sarlikioti V, Kurth W, et al. Exploring root developmental plasticity to nitrogen with a three-dimensional architectural model[J]. Plant & Soil, 2014, 385(1−2): 49−62.
|
[16] |
韩丛蔚. PBZ和TIBA对大叶黄杨苗木养分吸收的影响[D]. 北京: 北京林业大学, 2018.
Han C W. Effects of PBZ and TIBA on nutrient uptake of Euonymus japonicus seedlings[D]. Beijing: Beijing Forestry University, 2018.
|
[17] |
白雪, 赵成章, 康满萍. 金塔绿洲不同林龄多枝柽柳根系分叉数与分支角度的关系[J]. 生态学报, 2021, 41(5): 1878−1884.
Bai X, Zhao C Z, Kang M P. Relationship between root forks and branch angle of Tamarix ramosissima at different stand ages in oasis of Jinta county[J]. Acta Ecologica Sinica, 2021, 41(5): 1878−1884.
|
[18] |
宋小园, 朱仲元, 刘艳伟, 等. 通径分析在SPSS逐步线性回归中的实现[J]. 干旱区研究, 2016, 33(1): 108−113. doi: 10.13866/j.azr.2016.01.13
Song X Y, Zhu Z Y, Liu Y W, et al. Application of path analysis in stepwise linear regression SPSS[J]. Aird Zone Research, 2016, 33(1): 108−113. doi: 10.13866/j.azr.2016.01.13
|
[19] |
López-Bucio J, Cruz-Ramírez A, Herrera-Estrella L. The role of nutrient availability in regulating root architecture[J]. Current Opinion in Plant Biology, 2003, 6: 280−287. doi: 10.1016/S1369-5266(03)00035-9
|
[20] |
Boer M D, Santos T J, Ten T K H. Modeling of root nitrate responses suggests preferential foraging arises from the integration of demand, supply and local presence signals[J]. Frontiers in Plant Science, 2020, 11: 708. doi: 10.3389/fpls.2020.00708
|
[21] |
Li Q, Wu Y, Chen W, et al. Cultivar differences in root nitrogen uptake ability of maize hybrids[J]. Frontiers in Plant Science, 2017, 8: 1060. doi: 10.3389/fpls.2017.01060
|
[22] |
Swift J, Alvarez J M, Araus V, et al. Nutrient dose-responsive transcriptome changes driven by Michaelis-Menten kinetics underlie plant growth rates[J]. Proceedings of the National Academy of Sciences, 2020, 117(23): 12531−12540. doi: 10.1073/pnas.1918619117
|
[23] |
沈文森. 北京低山地区人工林土壤质量的研究[D]. 北京: 北京林业大学, 2013.
Shen W S. Soil quality of different man-made forest types in lower mountain area, Beijing[D]. Beijing: Beijing Forestry University, 2013.
|
[24] |
León-Sánchez L, Nicolás E, Prieto I, et al. Altered leaf elemental composition with climate change is linked to reductions in photosynthesis, growth and survival in a semi-arid shrubland[J]. Journal of Ecology, 2020, 108(1): 47−60.
|
[25] |
Mou P, Jones R H, Tan Z, et al. Morphological and physiological plasticity of plant roots when nutrients are both spatially and temporally heterogeneous[J]. Plant & Soil, 2013, 364(1−2): 373−384.
|
[26] |
Sterck F J, Poorter G L. Mechanical branch constraints contribute to life-history variation across tree species in a Bolivian forest[J]. Journal of Ecology, 2006, 94(6): 1192−1200. doi: 10.1111/j.1365-2745.2006.01162.x
|
[27] |
Sun C H, Yu J Q, Hu D G. Nitrate: a crucial signal during lateral roots development[J]. Frontiers in Plant Science, 2017, 8: 485.
|
[28] |
Ito T, Tanaka-Oda A, Masumoto T, et al. Different relationships of fine root traits with root ammonium and nitrate uptake ratess in conifer forests[J]. Journal of Forest Research, 2023, 28(1): 25−32.
|
[29] |
Asim M, Ullah Z, Xu F Z, et al. Nitrate signaling, functions, and regulation of root system architecture: insights from Arabidopsis thaliana[J]. Genes, 2020, 11: 633. doi: 10.3390/genes11060633
|
[30] |
McCormack M L, Guo D, Iversen C M, et al. Building a better foundation: improving root-trait measurements to understand and model plant and ecosystem processes[J]. New Phytologist, 2017, 215: 27−37. doi: 10.1111/nph.14459
|
[31] |
Bardgett R D, Mommer L, de Vries F T. Going underground: root traits as drivers of ecosystem processes[J]. Trends in Ecology & Evolution, 2014, 29(12): 692−699.
|
[32] |
Abalos D, de Deyn G B, Kuyper T W, et al. Plant species identity surpasses species richness as a key driver of N2O emissions from grassland[J]. Global Change Biology, 2014, 20(1): 265−275. doi: 10.1111/gcb.12350
|
[33] |
Cardon Z G, Stark J M, Herron P M, et al. Sagebrush carrying out hydraulic lift enhances surface soil nitrogen cycling and nitrogen uptake into inflorescences[J]. Proceedings of the National Academy of Sciences, 2013, 110(47): 18988−18993. doi: 10.1073/pnas.1311314110
|
[34] |
毛兰花, 查轩, 张婧, 等. 红壤侵蚀退化地马尾松幼苗生长及养分利用效率对施肥的响应[J]. 水土保持学报, 2022, 36(1): 316−324.
Mao L H, Zha X, Zhang J, et al. Response of Pinus massoniana seedling growth and fertilizer uptake efficiency to fertilization in eroded and degrade red soil regions of southern China[J]. Journal of Soil and Water Conservation, 2022, 36(1): 316−324.
|
[35] |
Kong D, Wang J, Wu H, et al. Nonlinearity of root trait relationships and the root economics spectrum[J]. Nature Communications, 2019, 10(1): 1−9. doi: 10.1038/s41467-018-07882-8
|
[36] |
Mommer L, Weemstra M. The role of roots in the resource economics spectrum[J]. New Phytologist, 2012, 195: 725−727. doi: 10.1111/j.1469-8137.2012.04247.x
|
[37] |
张立芸, 段青松, 李永梅. 坡耕地山原红壤大豆根系构型及根土复合体力学特性[J]. 中国生态农业学报(中英文), 2022, 30(9): 1464−1476.
Zhang L Y, Duan Q S, Li Y M. Research on soybean roots architecture and root-soil cpmplex mechanical properties in mountain red soil on sloping farmland[J]. Chinese Journal of Eco-Agriculture, 2022, 30(9): 1464−1476.
|
[38] |
Wang P, Shu M, Mou P, et al. Fine root responses to temporal nutrient heterogeneity and competition in seedlings of two tree species with different rooting strategies[J]. Ecology and Evolution, 2018, 8(6): 3367−3375. doi: 10.1002/ece3.3794
|
[39] |
Teste F P, Jones M D, Dickie I A. Dual-mycorrhizal plants: their ecology and relevance[J]. New Phytologist, 2020, 225(5): 1835−1851. doi: 10.1111/nph.16190
|
[40] |
Chen W, Koide R T, Eissenstat D M. Nutrient foraging by mycorrhizas: from species functional traits to ecosystem processes[J]. Functional Ecology, 2018, 32(4): 858−869. doi: 10.1111/1365-2435.13041
|
1. |
许馨元,田刚,唐铭野. 中俄两国森林碳汇合作潜力及绿色效应研究. 商业经济. 2025(01): 80-83 .
![]() | |
2. |
段晓梅,章程,李松青,甘晓丽. 岩溶碳汇产品价值实现路径研究. 生态经济. 2025(02): 22-28 .
![]() | |
3. |
刘贤赵,罗政英,王一笛. 长株潭绿心区碳汇能力时空格局及多情景预测. 应用生态学报. 2025(02): 559-568 .
![]() | |
4. |
胡茸茸,郭杨,欧阳勋志,刘军,潘萍. 赣中杉木林碳密度空间分布格局及其影响因素. 生态学杂志. 2025(02): 365-372 .
![]() | |
5. |
辛守英,王晓红,焦琳琳. 基于遥感数据和优化Blending算法的人工林地上生物量估算研究. 西北林学院学报. 2025(02): 207-219 .
![]() | |
6. |
付甜,杨佳伟,王晓荣,胡兴宜,陈明震,漆小兵,胡定邦. 基于森林资源二类调查数据的县域森林碳汇估算及潜力预测. 环境生态学. 2025(03): 43-47+90 .
![]() | |
7. |
聂薇,邓华锋. 使用二类调查数据对森林碳储量评估及多因素预测. 东北林业大学学报. 2024(02): 52-59 .
![]() | |
8. |
裴薇薇,杨喆,王云英,王新,杜岩功. 祁连山区青海云杉林碳汇特征及调控因子. 中国农业科技导报. 2024(01): 226-233 .
![]() | |
9. |
徐思若,成志影,那雪迎,张栩嘉,马大龙,张鹏. 黑龙江省森林碳汇及其经济价值的变化分析与潜力预测. 生态学杂志. 2024(01): 197-205 .
![]() | |
10. |
王立国,朱海,叶炎婷,贺焱,宋薇. 中国省域旅游业碳中和时空分异与模拟. 生态学报. 2024(02): 625-636 .
![]() | |
11. |
高怡凡,杨志衍,彭荣开,孙子芸,高培超,宋长青. 森林蓄积量的碳达峰行动目标与经济发展期望对福建省土地利用/覆被的权衡影响. 北京师范大学学报(自然科学版). 2024(01): 129-137 .
![]() | |
12. |
李郊,王冰,王晨,高鹤,吴辉龙,郑鑫,彭华福. 2005—2020年江西省森林碳储量时空变化趋势及影响因素. 林草资源研究. 2024(01): 17-24 .
![]() | |
13. |
游景晖,欧阳勋志,李坚锋,毛述震,潘萍. 闽楠天然次生林不同林层碳密度变化特征及其影响因素. 东北林业大学学报. 2024(04): 89-94 .
![]() | |
14. |
石铁矛,高杨,王迪. 双碳目标下城市空间碳固存与增汇路径研究. 沈阳建筑大学学报(自然科学版). 2024(02): 193-202 .
![]() | |
15. |
杨俊豪,张皓东,李永昌,刘书敏. 基于可加性模型的云南松和华山松碳储量模型构建. 昆明理工大学学报(自然科学版). 2024(02): 140-150 .
![]() | |
16. |
张自强,周伟,杨重玉. 碳中和背景下森林采伐限额对中国森林碳汇影响的空间效应. 统计与决策. 2024(08): 84-88 .
![]() | |
17. |
陈文汇,李华. 林草生态系统固碳增汇的增长潜力及交易机制. 科技导报. 2024(07): 93-102 .
![]() | |
18. |
刘世荣,王晖,李海奎,余振,栾军伟. 碳中和目标下中国森林碳储量、碳汇变化预估与潜力提升途径. 林业科学. 2024(04): 157-172 .
![]() | |
19. |
蔡为民,王燕秋,林国斌,霍长宝,孙晓兵,王萌萌. 基于“资源-资产-资本-资金”转化路径的森林碳汇价值实现机制. 中国人口·资源与环境. 2024(03): 60-67 .
![]() | |
20. |
吕洁华,杨廷瑜. 基于“脱碳”视角的中国省际低碳效率时空分异研究. 生态经济. 2024(06): 13-20+29 .
![]() | |
21. |
孙晓驰,朱洁,周松. 京津冀城市群碳足迹压力空间关联网络结构及影响因素研究. 统计与管理. 2024(03): 4-17 .
![]() | |
22. |
黄超群,梁波,何英姿,李震,刘春花. 广西国有七坡林场森林碳汇价值评价. 林业调查规划. 2024(03): 71-75 .
![]() | |
23. |
袁天健,霍礼鑫,王芳,过建春,柯佑鹏. “两山”理念下海南省森林固碳量与影响因素分析. 林业经济问题. 2024(01): 51-58 .
![]() | |
24. |
那雪迎. 中国森林碳储量变化及固碳潜力的研究. 现代园艺. 2024(15): 59-63 .
![]() | |
25. |
王春晓,邓孟婷,汪雪飞,洪武扬. 基于PLUS-InVEST模型的碳储量时空演变与预测模拟. 中国园林. 2024(06): 70-76 .
![]() | |
26. |
肖嘉文,刘金福,郑雯,王智苑,方梦凡,洪宇,谭芳林. 1974—2018年福建省森林碳储量特征及动态变化. 植物资源与环境学报. 2024(04): 101-108 .
![]() | |
27. |
朱娘金,钟德君,李海滨,罗攀峰,刘荣杰,吴林芳,张蒙. 莲花山白盆珠省级自然保护区2017年——2023年森林动态变化研究. 热带林业. 2024(02): 77-81 .
![]() | |
28. |
吴伟光,许骞骞,羊凌玉,刘宇. 林业增汇潜力及其对中国碳中和的经济影响分析. 农业技术经济. 2024(08): 128-144 .
![]() | |
29. |
李元会,吴富雨,刘燕云,余海清,文嫱,刘韩. 甘孜州林业碳汇资源分析及开发策略. 现代农业科技. 2024(16): 76-80+95 .
![]() | |
30. |
张启航,张亚连,谭桂菲,黄崇超,袁宝龙. 中国林业碳汇效率时空演化特征——基于三阶段超效率数据包络分析模型. 生态学报. 2024(15): 6769-6782 .
![]() | |
31. |
卫格冉,李明泽,全迎,王斌,刘建阳,明烺. 基于地理加权随机森林的黑龙江省森林碳储量遥感估测. 中南林业科技大学学报. 2024(07): 64-76 .
![]() | |
32. |
游欣,冯晓菁,魏绪英,柯琳琳,蔡军火,陈美玲. 南昌市土地利用碳储量变化及多情景预测. 南方林业科学. 2024(05): 30-38 .
![]() | |
33. |
白念森,吴超,勾啸,崔嘉辰,李炜桢,贾朋,赵志刚. 珠江三角洲城市公益林资源分布差异. 林业与环境科学. 2024(05): 130-136 .
![]() | |
34. |
卢昆,李汉瑾,Hui Yu,王健,吴春明,孙祥科. 中国海洋产业蓝碳源汇识别与碳汇发展潜力初探. 中国海洋经济. 2024(02): 188-215+222-223 .
![]() | |
35. |
张灵蕤,刘辉,邓岚,李群. “双碳”目标下我国农林业碳排放效率的时空演变及影响因素分析. 林业经济. 2024(08): 59-83 .
![]() | |
36. |
张子璇,张颖,孙剑锋,孟娜. 森林碳汇计量研究进展与展望. 北京林业大学学报(社会科学版). 2024(04): 52-61 .
![]() | |
37. |
朱念福,郑晔施,童冉,原文文,刘道平,洪奕丰,吴统贵. 长三角地区乔木林碳汇及其对“双碳”目标贡献预测. 生态学杂志. 2024(12): 3817-3827 .
![]() | |
38. |
陈周光,崔伟伟,龙飞. 交通基础设施能影响森林碳汇增长吗?. 兰州财经大学学报. 2023(01): 81-91 .
![]() | |
39. |
史茂源,杜珊,田乐宇,余雪标,周华,吴金群. 海南屯昌不同林龄槟榔人工林地下部分碳储量的分布特征. 海南大学学报(自然科学版). 2023(01): 38-47 .
![]() | |
40. |
姚永华,赵泽新,熊安华. 基于森林资源二类调查的县域森林碳汇及其价值估算研究——以湖北省当阳市为例. 湖北林业科技. 2023(01): 36-42 .
![]() | |
41. |
朱安明,洪奕丰,张旭峰,于海霞,王洪涛,王雅梅,于文吉. 全生命周期木/竹产品碳足迹研究进展. 林产工业. 2023(02): 83-87 .
![]() | |
42. |
刘雨欣. 间伐保留密度对杉木中龄林碳储量的影响. 福建林业科技. 2023(01): 17-22+30 .
![]() | |
43. |
解瑞丽,田丹宇,刘伯翰,柴麒敏. 生态系统碳汇特征分析及对我国生态系统碳汇发展的启示. 环境保护. 2023(03): 30-34 .
![]() | |
44. |
胡勐鸿,李万峰,吕寻. 日本落叶松自由授粉家系选择和无性繁殖利用. 温带林业研究. 2023(01): 7-16 .
![]() | |
45. |
刘亚,黄安胜. 森林碳汇环境库兹涅茨曲线特征及其影响因素分析. 世界林业研究. 2023(02): 132-137 .
![]() | |
46. |
汤颖颖,吴秀芹. 广西岩溶碳汇对气候变化和石漠化治理措施的响应. 北京大学学报(自然科学版). 2023(02): 189-196 .
![]() | |
47. |
陈治中,昝梅,杨雪峰,董煜. 新疆森林植被碳储量预测研究. 生态环境学报. 2023(02): 226-234 .
![]() | |
48. |
牛晓耕,李莹,屈秋实. 碳达峰碳中和目标下河北省森林碳汇估算与潜力预测. 保定学院学报. 2023(03): 18-25 .
![]() | |
49. |
魏玺,邵亚,蔡湘文,林珍铭,肖连刚,刘泽昊. 漓江流域陆地生态系统碳储量时空特征与预测. 环境工程技术学报. 2023(03): 1223-1233 .
![]() | |
50. |
董瑞林,侯艳闯,丁宇婷. 基于饱和发生率、人工防治时滞等非线性变化特征的松材线虫病生态侵染模型构建研究. 南开大学学报(自然科学版). 2023(03): 92-102 .
![]() | |
51. |
徐彩瑶,任燕,孔凡斌. 浙江省土地利用变化对生态系统固碳服务的影响及其预测. 应用生态学报. 2023(06): 1610-1620 .
![]() | |
52. |
肖君. 福州市主要森林类型林下灌木层生物量和碳密度研究. 林业勘察设计. 2023(01): 1-4 .
![]() | |
53. |
刘晓曼,王超,高吉喜,袁静芳,黄艳,王斌,彭阳. 服务双碳目标的中国人工林生态系统碳增汇途径. 生态学报. 2023(14): 5662-5673 .
![]() | |
54. |
曾霞,张勰,廖德志,唐洁,杨艳,黎蕾,李永进,曾梦雪,吉悦娜,刘珉,赵文,易平英,阳涛,徐建军. 不同经营模式杉木人工林乔木层碳储量研究. 湖南林业科技. 2023(04): 45-50 .
![]() | |
55. |
陈科屹,林田苗,王建军,何友均,张立文. 天保工程20年对黑龙江大兴安岭国有林区森林碳库的影响. 生态环境学报. 2023(06): 1016-1025 .
![]() | |
56. |
刘建霞,杨文静,肖宇胜,徐舟,张利,邹胜,刘千里. 阿坝州实现碳达峰碳中和现状分析及发展建议. 四川农业科技. 2023(09): 95-97 .
![]() | |
57. |
王韦韦,吕茂奎,胥超,陈光水. 亚热带常绿阔叶林和杉木人工林有机碳流失动态特征对降雨的响应. 生态学报. 2023(18): 7474-7484 .
![]() | |
58. |
佘生斌,李小华,李海俊,张义伟. 双碳经济下林业发展探讨. 现代农业科技. 2023(20): 90-93 .
![]() | |
59. |
黄占兵. 做好“四篇文章”提升内蒙古林业碳汇能力. 北方经济. 2023(09): 14-16 .
![]() | |
60. |
王岩,管子隆,李菲,刘园. 秦岭北麓(西安段)碳排放和碳汇分析与预测研究. 西北水电. 2023(05): 15-20+25 .
![]() | |
61. |
韩雪莲,张加龙,刘灵,廖易,唐金灏,韩东阳. 基于遥感特征变量的高山松碳储量抽样估算. 西南林业大学学报(自然科学). 2023(06): 117-124 .
![]() | |
62. |
韩艺,张峰. 北京市不同功能分区的乔木林储碳功能对比研究. 林业调查规划. 2023(05): 26-31 .
![]() | |
63. |
马浩然. 公益林生态效益补偿单位采用蓄积及其增量的探索. 浙江农林大学学报. 2023(06): 1273-1281 .
![]() | |
64. |
胡景心,沙青娥,刘慧琳,张雪驰,郑君瑜. 珠江三角洲二氧化碳源汇演变特征及驱动因素. 环境科学. 2023(12): 6643-6652 .
![]() | |
65. |
田晓霞,包庆丰. 森林碳汇发展潜力时空演变与障碍因子诊断——基于31个省份. 中国林业经济. 2023(06): 111-117 .
![]() | |
66. |
张雅薇,王允磊,韩启峰,石晓龙. 碳达峰碳中和背景下提升新疆森林碳汇功能的思考. 温带林业研究. 2023(04): 78-80 .
![]() | |
67. |
曹先磊,许骞骞,吴伟光. 碳交易框架下我国林业增汇潜力及对区域碳减排成本的影响研究. 农业技术经济. 2023(12): 96-110 .
![]() | |
68. |
赵桐,蒙吉军. 基于土地利用变化的成都平原经济区碳储量时空演变与情景模拟. 山地学报. 2023(05): 648-661 .
![]() | |
69. |
蔡宇泽. 林业碳汇服务信托应用于林业企业融资的研究. 林业经济问题. 2023(06): 578-585 .
![]() | |
70. |
易昌民,付伟,赵春艳. 基于CiteSpace的中国林业碳汇研究进展与趋势分析. 林草政策研究. 2023(03): 89-96 .
![]() | |
71. |
Zheng-Meng Hou,Ying Xiong,Jia-Shun Luo,Yan-Li Fang,Muhammad Haris,Qian-Jun Chen,Ye Yue,Lin Wu,Qi-Chen Wang,Liang-Chao Huang,Yi-Lin Guo,Ya-Chen Xie. International experience of carbon neutrality and prospects of key technologies: Lessons for China. Petroleum Science. 2023(02): 893-909 .
![]() |
|
72. |
杨礼旦. 适应气候变化的人工林多目标经营与管理对策. 温带林业研究. 2022(01): 12-17 .
![]() | |
73. |
洪李斌,卿蕴贤,田佳赫,康洁敏,卢伟. 基于混合效应模型的塞罕坝华北落叶松人工林单木去皮胸径生长预测. 林业与生态科学. 2022(02): 127-133 .
![]() | |
74. |
张桂莲,仲启铖,张浪. 面向碳中和的城市园林绿化碳汇能力建设研究. 风景园林. 2022(05): 12-16 .
![]() | |
75. |
杨鑫,高雯雯,李莎,李冠衡. 基于遥感影像估算的北京中心城区碳储量与气候环境关联性研究. 风景园林. 2022(05): 31-37 .
![]() | |
76. |
张颖,易爱军. 承德市森林碳汇价值核算及其相关问题研究. 创新科技. 2022(05): 83-92 .
![]() | |
77. |
Menghong HU,Jiying LI,Man SUN. Strong Seedlings of Improved Varieties and High-efficiency Cultivation of Artificial Forests Promotes the Early Realization of "Carbon Neutrality". Agricultural Biotechnology. 2022(04): 136-141 .
![]() |
|
78. |
曾丽,吕寻,胡勐鸿. 良种是加速实现“碳中和”的有效保障措施——以甘肃省地方良种为例. 林业科技通讯. 2022(08): 35-39 .
![]() | |
79. |
林荣华. 森林经营管理对碳汇的影响及提高对策. 乡村科技. 2022(14): 120-123 .
![]() | |
80. |
沈德才,刘婷,莫罗坚,周海琪. 东莞市森林生态系统土壤有机碳含量的地统计学分析. 热带林业. 2022(03): 45-49 .
![]() | |
81. |
张俊飚,何可. “双碳”目标下的农业低碳发展研究:现状、误区与前瞻. 农业经济问题. 2022(09): 35-46 .
![]() | |
82. |
朱海,王立国. 江西省旅游业碳达峰与碳中和研究. 中国生态旅游. 2022(04): 617-631 .
![]() | |
83. |
薛春泉,陈振雄,杨加志,曾伟生,林丽平,刘紫薇,张红爱,苏志尧. 省市县一体化森林碳储量估测技术体系——以广东省为例. 林业资源管理. 2022(04): 157-163 .
![]() | |
84. |
曾莹,王雪萌,唐昊,廖笳妤,田蒙奎. 碳达峰碳中和战略科学内涵、实现路径及挑战. 现代化工. 2022(10): 1-4+10 .
![]() | |
85. |
张吉统,麦强盛. 云南省森林碳汇经济价值评估研究. 绿色科技. 2022(17): 264-268 .
![]() | |
86. |
原作强,王星,毛子昆,蔺菲,叶吉,房帅,王绪高,郝占庆. 典型温带树种固碳速率研究. 北京林业大学学报. 2022(10): 43-51 .
![]() | |
87. |
范春楠,刘强,郑金萍,郭忠玲,张文涛,刘英龙,谢遵俊,任增君. 采伐强度对阔叶红松林生态系统碳密度恢复的影响. 北京林业大学学报. 2022(10): 33-42 .
![]() | |
88. |
张颖,孟娜,姜逸菲. 中国森林碳汇与林业经济发展耦合及长期变化特征分析. 北京林业大学学报. 2022(10): 129-141 .
![]() | |
89. |
王志恒,李仲堃,王融,孔杉,陈晓峰. 基于双重耦合模型的森林固碳综合价值评估. 广西林业科学. 2022(05): 617-625 .
![]() | |
90. |
陈科屹,王建军,何友均,张立文. 黑龙江大兴安岭重点国有林区森林碳储量及固碳潜力评估. 生态环境学报. 2022(09): 1725-1734 .
![]() | |
91. |
廖杨文科,张佩瑶,张清越,李孝刚. 盐碱地林木耐盐机制及造林技术研究进展. 南京林业大学学报(自然科学版). 2022(06): 96-104 .
![]() | |
92. |
荀文会. “碳中和”视角下的沈阳市国土空间规划路径. 规划师. 2022(10): 88-92 .
![]() | |
93. |
许骞骞,曹先磊,孙婷,朱颖,吴伟光. 中国森林碳汇潜力与增汇成本评估——基于Meta分析方法. 自然资源学报. 2022(12): 3217-3233 .
![]() | |
94. |
董战峰,毕粉粉,冀云卿. 中国陆地生态系统碳汇发展的现状、问题及建议. 科技导报. 2022(19): 15-24 .
![]() | |
95. |
肖军,雷蕾,曾立雄,李肇晨,马成功,肖文发. 不同经营模式对华北油松人工林碳储量的影响. 生态环境学报. 2022(11): 2134-2142 .
![]() | |
96. |
向晋含,余彬,陶志先,张利,刘顺. “碳中和”背景下国家储备林培育的优化路径. 林业科技通讯. 2022(12): 3-9 .
![]() | |
97. |
章敏,王健,韩天一,欧阳勋志,潘萍,刘冬冬. 基于CBM-CFS3模型的马尾松林碳密度特征及其影响因素. 林业资源管理. 2022(06): 44-53 .
![]() | |
98. |
赵哲,冯星,王佳音. 辽宁省林下产业富民的实践探索及发展策略. 中南林业科技大学学报(社会科学版). 2022(06): 64-70 .
![]() | |
99. |
刘海. 闽北典型森林类型植被层碳储量及分配特征. 林业勘察设计. 2022(03): 84-88 .
![]() |