Processing math: 100%
  • Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Yu Miao, Zhang Bijia, Wang Zejin, Yu Fengzhen, Zhao Xinhang, Yang Jiarong, Li Pin, Fan Dayong, Xu Chengyang. Relationship of functional traits and site conditions with NO3 uptake capacity of tree root[J]. Journal of Beijing Forestry University, 2024, 46(1): 35-43. DOI: 10.12171/j.1000-1522.20220497
Citation: Yu Miao, Zhang Bijia, Wang Zejin, Yu Fengzhen, Zhao Xinhang, Yang Jiarong, Li Pin, Fan Dayong, Xu Chengyang. Relationship of functional traits and site conditions with NO3 uptake capacity of tree root[J]. Journal of Beijing Forestry University, 2024, 46(1): 35-43. DOI: 10.12171/j.1000-1522.20220497

Relationship of functional traits and site conditions with NO3 uptake capacity of tree root

More Information
  • Received Date: December 06, 2022
  • Revised Date: February 06, 2023
  • Accepted Date: December 17, 2023
  • Available Online: December 21, 2023
  • Objective 

    Nutrient is an important limiting factor for tree growth in drought and barren sites, and the way trees absorbing and using nutrients in drought and barren sites determines their ecological adaptation strategies. In this paper, the kinetics of root nitrogen uptake and the coupling relationship between root morphological traits were measured in situ in the field, which laid a foundation for revealing the physiological function of trees in drought and barren environments.

    Method 

    We took Prunus davidiana, Acer truncatum and Quercus variabilis in Baiwangshan Forest Park of Beijing as the research objectives. We used modified Hogland nutrient solution with NO3 concentration gradients to carry out in-situ measurement of root NO3 uptake kinetics in generally and extremely drought and barren site conditions, respectively. The relationship between root NO3 uptake rate and root functional traits was analyzed by Pearson correlation and path analysis.

    Result 

    Tree species, site conditions and the interaction of above two factors all had an significant or extremely significant effect on root NO3 uptake rate and kinetic parameters. Three tree species all had high nitrogen affinity. The uptake rate of NO3 in the root of A. truncatum was lower, and it was significantly lower than that of P. davidiana and Q. variabilis under the above two site conditions. Under the site conditions of more drought and barren, fast growing tree species had compensatory absorption of NO3. Root functional traits and the uptake rate of NO3 had a good coupling relationship. The result showed that the morphological traits of specific root length (SRL) and specific root surface area (SRA) had significantly positive effects on NO3 uptake rate of roots, while root diameter (RD) and root tissue density (RTD) had negative effects. In terms of branching structure traits, branching intensity and number of links had weak effects on NO3 uptake rate.

    Conclusion 

    The NO3 uptake rate of P. davidiana and Q. variabilis with a faster growth rate decreases significantly under the extremely drought and barren site stress, while A. truncatum is the opposite. The “speed strategy” of increasing the maximum absorption rate and reducing nitrogen affinity ensures the compensatory absorption of NO3 by the roots of fast-growing tree species. The combination of morphological traits with higher SRL, higher SRA, lower RD and lower RTD can effectively improve the uptake rate of NO3 by roots in drought and barren sites.

  • [1]
    Smolander A, Henttonen H M, Nöjd P, et al. Long-term response of soil and stem wood properties to repeated nitrogen fertilization in a N-limited Scots pine stand[J]. European Journal of Forest Research, 2022, 141(3): 421−431. doi: 10.1007/s10342-022-01448-6
    [2]
    Lynch J P. Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems[J]. Annals of Botany, 2013, 112(2): 347−357. doi: 10.1093/aob/mcs293
    [3]
    任浩, 高国强, 马耀远, 等. 不同年龄红松根系氮素吸收及其与根形态和化学性状的关系[J]. 北京林业大学学报, 2021, 43(10): 65−72. doi: 10.12171/j.1000-1522.20200385

    Ren H, Gao G Q, Ma Y Y, et al. Root nitrogen uptake and its relationship with root morphological and chemical traits in Korean pine ( Pinus koraiensis) at different ages[J]. Journal of Beijing Forestry University, 2021, 43(10): 65−72. doi: 10.12171/j.1000-1522.20200385
    [4]
    Nguyen T, Xu C Y, Tahmasbian I , et al. Effects of biochar on soil available inorganic nitrogen: a review and meta-analysis[J]. Geoderma, 2017, 288: 79−96.
    [5]
    Griffiths M, York L M. Targeting root ion uptake kinetics to increase plant productivity and nutrient use efficiency[J]. Plant Physiology, 2020, 182(4): 1854−1868. doi: 10.1104/pp.19.01496
    [6]
    Li C, Li Q, Qiao N, et al. Inorganic and organic nitrogen uptake by nine dominant subtropical tree species[J]. IForest-Biogeosciences and Forestry, 2015, 9(2): 253.
    [7]
    Olmo M, Lopez-Iglesias B, Villar R. Drought changes the structure and elemental composition of very fine roots in seedlings of ten woody plant species. Implications for a drier climate[J]. Plant and Soil, 2014, 384(1−2): 113−129. doi: 10.1007/s11104-014-2178-6
    [8]
    Hong J T, Ma X X, Yan Y, et al. Which root traits determine nitrogen uptake by alpine plant species on the Tibetan Plateau?[J]. Plant and Soil, 2018, 424(1−2): 63−72. doi: 10.1007/s11104-017-3434-3
    [9]
    Weemstra M, Kiorapostolou N, van Ruijven J, et al. The role of fine-root mass, specific root length and life span in tree performance: a whole-tree exploration[J]. Functional Ecology, 2020, 34(3): 575−585. doi: 10.1111/1365-2435.13520
    [10]
    Liu Q, Wang H, Xu X. Root nitrogen acquisition strategy of trees and understory species in a subtropical pine plantation in southern China[J]. European Journal of Forest Research, 2020, 139(5): 791−804. doi: 10.1007/s10342-020-01284-6
    [11]
    Nikolova P S, Bauerle T L, Häberle K H, et al. Fine-root traits reveal contrasting ecological strategies in European beech and Norway spruce during extreme drought[J]. Frontiers in Plant Science, 2020, 11: 1211. doi: 10.3389/fpls.2020.01211
    [12]
    Wysokinski A, Lozak I. The dynamic of nitrogen uptake from different sources by pea ( Pisum sativum L.)[J]. Agriculture, 2021, 11(1): 81. doi: 10.3390/agriculture11010081
    [13]
    韦柳端, 朱济友, 李夏榕, 等. 根系功能性状对干瘠立地适应的种间差异: 以北京石质山地主要观赏树种为例[J]. 生态学报, 2021, 41(23): 9492−9501.

    Wei L D, Zhu J Y, Li X R, et al. Interspecific trait variation in the adaptation of root functional traits to dry-barren sites: a case study of the main ornamental plant species in stony mountainous region of Beijing[J]. Acta Ecologica Sinica, 2021, 41(23): 9492−9501.
    [14]
    吕德国, 王英, 秦嗣军, 等. 冷凉条件对山荆子幼苗根系氮素吸收动力学参数的影响[J]. 园艺学报, 2010, 37(9): 1493−1498. doi: 10.16420/j.issn.0513-353x.2010.09.014

    Lü D G, Wang Y, Qin S J, et al. Effects of cool and cold conditions on nitrogen uptake kinetics in Malus baccata Borkh. seedlings[J]. Acta Horticulturae Sinica, 2010, 37(9): 1493−1498. doi: 10.16420/j.issn.0513-353x.2010.09.014
    [15]
    Henke M, Sarlikioti V, Kurth W, et al. Exploring root developmental plasticity to nitrogen with a three-dimensional architectural model[J]. Plant & Soil, 2014, 385(1−2): 49−62.
    [16]
    韩丛蔚. PBZ和TIBA对大叶黄杨苗木养分吸收的影响[D]. 北京: 北京林业大学, 2018.

    Han C W. Effects of PBZ and TIBA on nutrient uptake of Euonymus japonicus seedlings[D]. Beijing: Beijing Forestry University, 2018.
    [17]
    白雪, 赵成章, 康满萍. 金塔绿洲不同林龄多枝柽柳根系分叉数与分支角度的关系[J]. 生态学报, 2021, 41(5): 1878−1884.

    Bai X, Zhao C Z, Kang M P. Relationship between root forks and branch angle of Tamarix ramosissima at different stand ages in oasis of Jinta county[J]. Acta Ecologica Sinica, 2021, 41(5): 1878−1884.
    [18]
    宋小园, 朱仲元, 刘艳伟, 等. 通径分析在SPSS逐步线性回归中的实现[J]. 干旱区研究, 2016, 33(1): 108−113. doi: 10.13866/j.azr.2016.01.13

    Song X Y, Zhu Z Y, Liu Y W, et al. Application of path analysis in stepwise linear regression SPSS[J]. Aird Zone Research, 2016, 33(1): 108−113. doi: 10.13866/j.azr.2016.01.13
    [19]
    López-Bucio J, Cruz-Ramírez A, Herrera-Estrella L. The role of nutrient availability in regulating root architecture[J]. Current Opinion in Plant Biology, 2003, 6: 280−287. doi: 10.1016/S1369-5266(03)00035-9
    [20]
    Boer M D, Santos T J, Ten T K H. Modeling of root nitrate responses suggests preferential foraging arises from the integration of demand, supply and local presence signals[J]. Frontiers in Plant Science, 2020, 11: 708. doi: 10.3389/fpls.2020.00708
    [21]
    Li Q, Wu Y, Chen W, et al. Cultivar differences in root nitrogen uptake ability of maize hybrids[J]. Frontiers in Plant Science, 2017, 8: 1060. doi: 10.3389/fpls.2017.01060
    [22]
    Swift J, Alvarez J M, Araus V, et al. Nutrient dose-responsive transcriptome changes driven by Michaelis-Menten kinetics underlie plant growth rates[J]. Proceedings of the National Academy of Sciences, 2020, 117(23): 12531−12540. doi: 10.1073/pnas.1918619117
    [23]
    沈文森. 北京低山地区人工林土壤质量的研究[D]. 北京: 北京林业大学, 2013.

    Shen W S. Soil quality of different man-made forest types in lower mountain area, Beijing[D]. Beijing: Beijing Forestry University, 2013.
    [24]
    León-Sánchez L, Nicolás E, Prieto I, et al. Altered leaf elemental composition with climate change is linked to reductions in photosynthesis, growth and survival in a semi-arid shrubland[J]. Journal of Ecology, 2020, 108(1): 47−60.
    [25]
    Mou P, Jones R H, Tan Z, et al. Morphological and physiological plasticity of plant roots when nutrients are both spatially and temporally heterogeneous[J]. Plant & Soil, 2013, 364(1−2): 373−384.
    [26]
    Sterck F J, Poorter G L. Mechanical branch constraints contribute to life-history variation across tree species in a Bolivian forest[J]. Journal of Ecology, 2006, 94(6): 1192−1200. doi: 10.1111/j.1365-2745.2006.01162.x
    [27]
    Sun C H, Yu J Q, Hu D G. Nitrate: a crucial signal during lateral roots development[J]. Frontiers in Plant Science, 2017, 8: 485.
    [28]
    Ito T, Tanaka-Oda A, Masumoto T, et al. Different relationships of fine root traits with root ammonium and nitrate uptake ratess in conifer forests[J]. Journal of Forest Research, 2023, 28(1): 25−32.
    [29]
    Asim M, Ullah Z, Xu F Z, et al. Nitrate signaling, functions, and regulation of root system architecture: insights from Arabidopsis thaliana[J]. Genes, 2020, 11: 633. doi: 10.3390/genes11060633
    [30]
    McCormack M L, Guo D, Iversen C M, et al. Building a better foundation: improving root-trait measurements to understand and model plant and ecosystem processes[J]. New Phytologist, 2017, 215: 27−37. doi: 10.1111/nph.14459
    [31]
    Bardgett R D, Mommer L, de Vries F T. Going underground: root traits as drivers of ecosystem processes[J]. Trends in Ecology & Evolution, 2014, 29(12): 692−699.
    [32]
    Abalos D, de Deyn G B, Kuyper T W, et al. Plant species identity surpasses species richness as a key driver of N2O emissions from grassland[J]. Global Change Biology, 2014, 20(1): 265−275. doi: 10.1111/gcb.12350
    [33]
    Cardon Z G, Stark J M, Herron P M, et al. Sagebrush carrying out hydraulic lift enhances surface soil nitrogen cycling and nitrogen uptake into inflorescences[J]. Proceedings of the National Academy of Sciences, 2013, 110(47): 18988−18993. doi: 10.1073/pnas.1311314110
    [34]
    毛兰花, 查轩, 张婧, 等. 红壤侵蚀退化地马尾松幼苗生长及养分利用效率对施肥的响应[J]. 水土保持学报, 2022, 36(1): 316−324.

    Mao L H, Zha X, Zhang J, et al. Response of Pinus massoniana seedling growth and fertilizer uptake efficiency to fertilization in eroded and degrade red soil regions of southern China[J]. Journal of Soil and Water Conservation, 2022, 36(1): 316−324.
    [35]
    Kong D, Wang J, Wu H, et al. Nonlinearity of root trait relationships and the root economics spectrum[J]. Nature Communications, 2019, 10(1): 1−9. doi: 10.1038/s41467-018-07882-8
    [36]
    Mommer L, Weemstra M. The role of roots in the resource economics spectrum[J]. New Phytologist, 2012, 195: 725−727. doi: 10.1111/j.1469-8137.2012.04247.x
    [37]
    张立芸, 段青松, 李永梅. 坡耕地山原红壤大豆根系构型及根土复合体力学特性[J]. 中国生态农业学报(中英文), 2022, 30(9): 1464−1476.

    Zhang L Y, Duan Q S, Li Y M. Research on soybean roots architecture and root-soil cpmplex mechanical properties in mountain red soil on sloping farmland[J]. Chinese Journal of Eco-Agriculture, 2022, 30(9): 1464−1476.
    [38]
    Wang P, Shu M, Mou P, et al. Fine root responses to temporal nutrient heterogeneity and competition in seedlings of two tree species with different rooting strategies[J]. Ecology and Evolution, 2018, 8(6): 3367−3375. doi: 10.1002/ece3.3794
    [39]
    Teste F P, Jones M D, Dickie I A. Dual-mycorrhizal plants: their ecology and relevance[J]. New Phytologist, 2020, 225(5): 1835−1851. doi: 10.1111/nph.16190
    [40]
    Chen W, Koide R T, Eissenstat D M. Nutrient foraging by mycorrhizas: from species functional traits to ecosystem processes[J]. Functional Ecology, 2018, 32(4): 858−869. doi: 10.1111/1365-2435.13041
  • Related Articles

    [1]Zhang Yue, Tian Qing, Huang Rong. Responses of typical plant functional traits among summer-flowering tree species in heterogeneous city habitats in Lanzhou City of northwestern China[J]. Journal of Beijing Forestry University, 2023, 45(10): 90-99. DOI: 10.12171/j.1000-1522.20210476
    [2]Li Pin, Hou Xiaofan, Yin Rongbin. Response of functional traits of leaves and fine roots of Populus euramericana cv. ‘74/76’ saplings to ozone dose[J]. Journal of Beijing Forestry University, 2023, 45(2): 49-57. DOI: 10.12171/j.1000-1522.20210347
    [3]Ren Hao, Gao Guoqiang, Ma Yaoyuan, Li Zuwang, Gu Jiacun. Root nitrogen uptake and its relationship with root morphological and chemical traits in Pinus koraiensis at different ages[J]. Journal of Beijing Forestry University, 2021, 43(10): 65-72. DOI: 10.12171/j.1000-1522.20200385
    [4]Wang Yuanmin, Wang Yan, Wang Siyuan, Gao Guoqiang, Gu Jiacun. Fine root anatomical and morphological traits of three temperate liana species in northeastern China[J]. Journal of Beijing Forestry University, 2020, 42(5): 42-49. DOI: 10.12171/j.1000-1522.20190419
    [5]Wang Lei, Xu Jiachen, Zhen Yaxing, Zhang Heng. Pyrolysis kinetics of major landscape tree species in Hohhot of northern China based on thermogravimetric analysis[J]. Journal of Beijing Forestry University, 2020, 42(2): 87-95. DOI: 10.12171/j.1000-1522.20190280
    [6]Lian Zhenghua, Zhang Chunyu, Cheng Yanxia, Xin Benhua. Geographical variations of functional traits of typical tree species in northeastern China[J]. Journal of Beijing Forestry University, 2019, 41(3): 42-48. DOI: 10.13332/j.1000-1522.20180352
    [7]YANG Xin-bing, , YU Xin-xiao, LU Shao-wei, LI Yong-ci. Tree root water uptake model based on soil hydrodynamicsⅡ: Stand.[J]. Journal of Beijing Forestry University, 2008, 30(supp.2): 201-205.
    [8]YANG Xin-bing, YU Xin-xiao, LU Shao-wei, LI Yong-ci. Tree root water uptake model based on soil hydrodynamics I: Single tree[J]. Journal of Beijing Forestry University, 2008, 30(supp.2): 197-200.
    [9]FU Shen-yuan, , CHENG Shu-na, ZHAO Guang-jie. Kinetics of Moso bamboo liquefaction with different catalysts.[J]. Journal of Beijing Forestry University, 2008, 30(6): 119-123.
    [10]YU Hai-xia, DAI Wei, XIA Liang-fang, DENG Zong-fu, WANG Xu-qin, NIE Li-shui. Effects of different plantations on the activity of soil enzymes and their kinetic characteristics in subtropical zone[J]. Journal of Beijing Forestry University, 2007, 29(1): 114-118. DOI: 10.13332/j.1000-1522.2007.01.020
  • Cited by

    Periodical cited type(4)

    1. 杨桦,李祥乾,王帆,方睿,杨伟. 长足大竹象信息素结合蛋白CbuqPBP2互作蛋白的筛选与验证. 西北农林科技大学学报(自然科学版). 2024(01): 87-97 .
    2. 万超,张月,胡莉,伍炳华,袁媛. 茉莉花JsMYB305转录因子的原核表达及蛋白纯化. 福建农业学报. 2022(02): 164-169 .
    3. 武建颖,张燕,孙贺贺,赵玉兰,董金皋,申珅,郝志敏. 玉米大斑病菌蛋白激酶A催化亚基StPKA-C1/C2的表达与互作蛋白筛选. 农业生物技术学报. 2022(10): 1976-1986 .
    4. 胡莉,万超,张蕖,陈清西,伍炳华,袁媛. 茉莉花JsMYB305转录因子互作蛋白的筛选及验证. 福建农业学报. 2022(09): 1135-1144 .

    Other cited types(9)

Catalog

    Article views (428) PDF downloads (42) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return