• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhang Lanqi, Li Li, Yang Hua, Xie Yi. Stand structure optimization and adjustment of natural forest in Changbai Mountains based on AHP-CRITIC combination weight method[J]. Journal of Beijing Forestry University, 2023, 45(8): 74-83. DOI: 10.12171/j.1000-1522.20220479
Citation: Zhang Lanqi, Li Li, Yang Hua, Xie Yi. Stand structure optimization and adjustment of natural forest in Changbai Mountains based on AHP-CRITIC combination weight method[J]. Journal of Beijing Forestry University, 2023, 45(8): 74-83. DOI: 10.12171/j.1000-1522.20220479

Stand structure optimization and adjustment of natural forest in Changbai Mountains based on AHP-CRITIC combination weight method

More Information
  • Received Date: November 27, 2022
  • Revised Date: February 04, 2023
  • Available Online: August 09, 2023
  • Published Date: August 24, 2023
  •   Objective  Rational cutting can promote the growth of trees and increase the productivity of stands. It is of no important practical significance to determine cutting with the aim of optimizing the spatial structure of stands. In this study, the natural forest composed of different tree species in Changbai Mountain of northeastern China was taken as the object, and the combination weight method of AHP-CRITIC was adopted to construct single tree cutting index, in order to provide a new guiding tool for the selection of natural forest cutting wood in this area.
      Method  In this paper, the monitoring data of 4 natural forest fixed samples with different dominant tree species were adopted, four spatial structure indexes, including mingling degrees (M), uniform angle index (W), dominance degrees (U) and Hegyi competition index (CI) were used, and the individual tree felling index (Fi) was constructed according to AHP-CRITIC combination weight method. The spatial structure changes of stand before and after cutting simulation with different intensities were analyzed.
      Result  After cutting, the spatial structure of the four sample plots was optimized to a certain extent: the mingling degrees increased, the degree of tree size differentiation decreased, the horizontal distribution pattern of stand tended to random distribution, and the pressure of stand competition was greatly relieved. The competition index showed a trend of continuous decline with the increase of cutting intensity. Under 30% cutting intensity, the competition index decreased by 24.80%−34.88% at most, the size ratio decreased by 24.97% at most, and the mixing degree increased by 12.76% at the highest. The felled trees were mainly concentrated in the area with high density, and most of the felled trees were small and medium-sized in DBH.
      Conclusion  Through comparative analysis of data before and after simulated cutting, it is proved that for natural pure forest, moderately increasing cutting intensity can better regulate the spatial structure of the stand, while for natural mixed forest, relatively low intensity cutting can optimize its overall structure and maintain a higher degree of tree species mixing. At the same time, the research proves that it is reasonable for AHP-CRITIC combination weight method to construct cutting index, which basically realizes the optimization and adjustment of natural forest stand structure in Changbai Mountain, and can provide technical support for reasonable selection of cutting wood and reasonable management of forest.
  • [1]
    Buongiorno J, Michie B R. A matrix model of uneven-aged forest management[J]. Forest Science, 1980, 26(4): 609−625.
    [2]
    Gove J H, Fairweather S E. Optimizing the management of uneven-aged forest stands: a stochastic approach[J]. Forest Science, 1992, 38(3): 623−640.
    [3]
    沈林. 基于空间结构云冷杉林择伐优化决策模型研究[D]. 北京: 北京林业大学, 2013.

    Shen L. Study on selective cutting optimization decision model based on spatial structure of spruce-fir forest[D]. Beijing: Beijing Forestry University, 2013.
    [4]
    肖智慧, 李志洪, 薛春泉, 等. 梅县典型针阔混交林林分直径结构的动态变化规律[J]. 中南林业科技大学学报, 2013, 33(6): 17−21.

    Xiao Z H, Li Z H, Xue C Q, et al. Diameter distribution and dynamics of typical coniferous and broad-leaved mixed forests in Meizhou County, Guangdong Province[J]. Journal of Central South University of Forestry & Technology, 2013, 33(6): 17−21.
    [5]
    吴志军, 苏东凯, 牛丽君, 等. 阔叶红松林森林资源可持续利用方案[J]. 生态学报, 2015, 35(1): 24−30.

    Wu Z J, Su D K, Niu L J, et al. Evaluation of a sustainable forest utilization program for broadleaved Korean pine mixed forests in the Changbai Mountain region of Northeast China[J]. Acta Ecologica Sinica, 2015, 35(1): 24−30.
    [6]
    廖宝文, 张乔民. 中国红树林的分布、面积和树种组成[J]. 湿地科学, 2014, 12(4): 435−440.

    Liao B W, Zhang Q M. Area, distribution and species composition of mangroves in China[J]. Wetland Science, 2014, 12(4): 435−440.
    [7]
    徐庆祥, 卫星, 王庆成, 等. 抚育间伐对兴安落叶松天然林生长和土壤理化性质的影响[J]. 森林工程, 2013, 29(3): 6−9.

    Xu Q X, Wei X, Wang Q C, et al. Impact of thinning on growth and soil properties of natural Larix gmelinii forest[J]. Forest Engineering, 2013, 29(3): 6−9.
    [8]
    明安刚, 张治军, 谌红辉, 等. 抚育间伐对马尾松人工林生物量与碳贮量的影响[J]. 林业科学, 2013, 49(10): 1−6. doi: 10.11707/j.1001-7488.20131001

    Ming A G, Zhang Z J, Chen H H, et al. Effects of thinning on the biomass and carbon storage in Pinus massoniana plantation[J]. Scientia Silvae Sinicae, 2013, 49(10): 1−6. doi: 10.11707/j.1001-7488.20131001
    [9]
    魏红洋, 董灵波, 刘兆刚. 大兴安岭主要森林类型林分空间结构优化模拟[J]. 应用生态学报, 2019, 30(11): 3824−3832.

    Wei H Y, Dong L B, Liu Z G. Spatial structure optimization simulation of main forest types in Great Xing’an Mountains, Northeast China[J]. Chinese Journal of Applied Ecology, 2019, 30(11): 3824−3832.
    [10]
    管惠文, 董希斌, 张甜, 等. 间伐强度对大兴安岭落叶松天然次生林水文性能的影响[J]. 南京林业大学学报(自然科学版), 2018, 61(6): 68−76.

    Guan H W, Dong X B, Zhang T, et al. Effects of thinning on hydrological properties of the natural secondary Larix gmelinii forest in the Daxing’an Mountains[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2018, 61(6): 68−76.
    [11]
    朱玉杰, 董希斌. 大兴安岭地区落叶松用材林不同抚育间伐强度经营效果评价[J]. 林业科学, 2016, 52(12): 29−38.

    Zhu Y J, Dong X B. Evaluation of the effects of different thinning intensities on larch forest in Great Xing’an Mountains[J]. Scientia Silvae Sinicae, 2016, 52(12): 29−38.
    [12]
    曹小玉, 李际平, 胡园杰, 等. 杉木生态林林分间伐空间结构优化模型[J]. 生态学杂志, 2017, 36(4): 1134−1141.

    Cao X Y, Li J P, Hu Y J, et al. Spatial structure optimizing model of stand thinning of Cunninghamia lanceolata ecological forest[J]. Chinese Journal of Ecology, 2017, 36(4): 1134−1141.
    [13]
    汤孟平, 唐守正, 雷相东, 等. 林分择伐空间结构优化模型研究[J]. 林业科学, 2004, 40(5): 25−31. doi: 10.11707/j.1001-7488.20040504

    Tang M P, Tang S Z, Lei X D, et al. Study on spatial structure optimizing model of stand selection cutting[J]. Scientia Silvae Sinicae, 2004, 40(5): 25−31. doi: 10.11707/j.1001-7488.20040504
    [14]
    仇建习, 汤孟平, 娄明华, 等. 基于Hegyi改进模型的毛竹林空间结构和竞争分析[J]. 生态学报, 2016, 36(4): 1058−1065.

    Qiu J X, Tang M P, Lou M H, et al. Analysis of the spatial structure and competition with a Phyllostachys edulis standbased on an improved Hegyi model[J]. Acta Ecologica Sinica, 2016, 36(4): 1058−1065.
    [15]
    Li Y, Hui G, Wang H, et al. Selection priority for harvested trees according to stand structural indices[J]. Iforest - Biogeosciences and Forestry, 2017, 10(3): 561−566. doi: 10.3832/ifor2115-010
    [16]
    赖国桢, 汪雁楠, 黄宝祥, 等. 林分空间结构优化栅格间伐模型[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 199−205.

    Lai G Z, Wang Y N, Huang B X, et al. A grid thinning model based on forest spatial structure optimization[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2021, 45(3): 199−205.
    [17]
    Ye S, Zheng Z, Diao Z, et al. Effects of thinning on the spatial structure of Larix principis-rupprechtii plantation[J/OL]. Sustainability, 2018, 10(4): 1250[2021−12−06]. https://doi.org/10.3390/su10041250.
    [18]
    Dong L, Wei H, Liu Z. Optimizing forest spatial structure with neighborhood-based indices: four case studies from Northeast China[J]. Forests, 2020, 11(4): 413. doi: 10.3390/f11040413
    [19]
    罗宁, 贺墨琳, 高华, 等. 基于改进的AHP-CRITIC组合赋权与可拓评估模型的配电网综合评价方法[J]. 电力系统保护与控制, 2021, 49(16): 86−96.

    Luo N, He M L, Gao H, et al. Comprehensive evaluation method for a distribution network based on improved AHP-CRITIC combination weighting and an extension evaluation model[J]. Power System Protection and Control, 2021, 49(16): 86−96.
    [20]
    惠刚盈, 胡艳波. 混交林树种空间隔离程度表达方式的研究[J]. 林业科学研究, 2001, 14(1): 23−27. doi: 10.3321/j.issn:1001-1498.2001.01.004

    Hui G Y, Hu Y B. Measuring species spatial isolation in mixed forests[J]. Forest Research, 2001, 14(1): 23−27. doi: 10.3321/j.issn:1001-1498.2001.01.004
    [21]
    惠刚盈. 角尺度−一个描述林木个体分布格局的结构参数[J]. 林业科学, 1999, 35(1): 37−42.

    Hui G Y. The neighbourhood pattern: a new structure parameter for describing distribution of forest tree position[J]. Scientia Silvae Sinicae, 1999, 35(1): 37−42.
    [22]
    惠刚盈. 一个新的林分空间结构参数−大小比数[J]. 林业科学研究, 1999, 12(1): 1−6. doi: 10.3321/j.issn:1001-1498.1999.01.001

    Hui G Y. A new parameter for stand spatial structure: neighbourhood comparison[J]. Forest Research, 1999, 12(1): 1−6. doi: 10.3321/j.issn:1001-1498.1999.01.001
    [23]
    Hegyi F. A simulation model for managing Jack-pine stands simulationn[J]. Stockholm:Sweden Royal College of Forest, 1974, 30: 74−90.
    [24]
    吴晓永. 云冷杉针阔混交林结构特征分析及优化调整[D]. 北京: 北京林业大学, 2020.

    Wu X Y. Structural characteristics analysis and optimal adjustment of spruce-fir conifer and broadleaf mixed forest stands[D]. Beijing: Beijing Forestry University, 2013.
    [25]
    吴晓永, 杨华, 吕延杰, 等. 云杉−白桦混交林结构特征分析[J]. 北京林业大学学报, 2019, 41(1): 64−72.

    Wu X Y, Yang H, Lü Y J, et al. Analysis of structure characteristics in Picea asperata-Betula platyphylla mixed forests[J]. Journal of Beijing Forestry University, 2019, 41(1): 64−72.
    [26]
    李建, 李晓宇, 曹静, 等. 长白山次生针阔混交林群落结构特征及群落动态[J]. 生态学报, 2020, 40(4): 1195−1206.

    Li J, Li X Y, Cao J, et al. Community structure and dynamics of secondary coniferous and broad-leaved mixed forest in Changbai Mountains[J]. Acta Ecologica Sinica, 2020, 40(4): 1195−1206.
    [27]
    林富成, 王维芳, 门秀莉, 等. 兴安落叶松人工林空间结构优化[J]. 北京林业大学学报, 2021, 43(4): 68−76.

    Lin F C, Wang W F, Men X L, et al. Spatial structure optimal of Larix gmelinii plantation[J]. Journal of Beijing Forestry University, 2021, 43(4): 68−76.
    [28]
    赵晨昊, 王建军, 周光, 等. 基于空间结构优化的金盆山天然混交林采伐模拟[J]. 西南林业大学学报(自然科学), 2022, 42(5): 126−133.

    Zhao C H, Wang J J, Zhou G, et al. Logging simulation of natural mixed forest in Jinpen Mountain based on optimization of spatial structure[J]. Journal of Southwest Forestry University (Natural Science), 2022, 42(5): 126−133.
    [29]
    惠刚盈, 胡艳波, 赵中华. 结构化森林经营研究进展[J]. 林业科学研究, 2018, 31(1): 85−93.

    Hui G Y, Hu Y B, Zhao Z H. Research progress of structure-based forest management[J]. Forest Research, 2018, 31(1): 85−93.
    [30]
    李存庆, 董灵波, 刘兆刚. 抚育采伐强度对天然落叶松林林分结构和蓄积的影响[J]. 东北林业大学学报, 2021, 49(5): 1−5.

    Li C Q, Dong L B, Liu Z G. Effect of tending cutting intensity on the stand structure and accumulation of natural larch forest[J]. Journal of Northeast Forestry University, 2021, 49(5): 1−5.
    [31]
    向博文, 曾思齐, 甘世书, 等. 湖南次生栎林空间结构优化[J]. 中南林业科技大学学报, 2019, 39(8): 33−40.

    Xiang B W, Zeng S Q, Gan S S, et al. Spatial structure optimization of Quercus in Hunan[J]. Journal of Central South University of Forestry & Technology, 2019, 39(8): 33−40.
  • Related Articles

    [1]Song Yuhan, Zhang Chen, Cai Tijiu, Ju Cunyong. Quantitative analysis of spatial structural characteristics of broadleaved Korean pine forest based on Voronoi diagram[J]. Journal of Beijing Forestry University, 2021, 43(1): 20-26. DOI: 10.12171/j.1000-1522.20200056
    [2]Liu Zhili, Bi Lianzhu, Songx Song Guohua, Wang Quanbo, Liu Qi, Jin Guangze. Spatial heterogeneity of leaf area index in a typical mixed broadleaved-Korean pine forest in Xiaoxing'an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(11): 1-11. DOI: 10.13332/j.1000-1522.20170468
    [3]ZHU Liang-jun, JIN Guang-ze, DU Wen-xian, WANG Xiao-chun. Characteristics of canopy disturbance for a typical broadleaf-Korean pine mixed forest in Xiaoxing'an Mountains, Liangshui, northeastern China.[J]. Journal of Beijing Forestry University, 2016, 38(6): 17-27. DOI: 10.13332/j.1000-1522.20150458
    [4]MAO Hong-rui, CHEN Jin-ling, JIN Guang-ze. Effects of nitrogen addition on litter decomposition and nutrient release in typical broadleaf-Korean pine mixed forest[J]. Journal of Beijing Forestry University, 2016, 38(3): 21-31. DOI: 10.13332/j.1000-1522.20150139
    [5]ZHAO Tian-liang. Niche characteristics of dominants in Platycladus orientalis forests in Yanshan Nature Reserve, Shanxi[J]. Journal of Beijing Forestry University, 2015, 37(8): 24-30. DOI: 10.13332/j.1000-1522.20150039
    [6]MA Guo-qing, JIANG Li-wei. Composition and geographic elements of the flora in Nuluer Hushan National Nature Reserve, Liaoning of northeastern China[J]. Journal of Beijing Forestry University, 2012, 34(4): 136-141.
    [7]XU Fei, CAI Ti-jiu, JU Cun-yong, ZHAO Yu-long. Autumn habitat selection of wild boar in the Fenghuangshan Nature Reserve, Heilongjiang Province[J]. Journal of Beijing Forestry University, 2011, 33(3): 86-91.
    [8]XU Ji-liang, CUI Guo-fa, LI Zhong. Approaches for setting the minimum area of nature reserve[J]. Journal of Beijing Forestry University, 2006, 28(5): 129-132.
    [9]ZHANG Chun-yu, ZHAO Xiu-hai, ZHENG Jing-ming. Size structure of canopy gaps in broadleaved Korean pine forests in the Changbai Mountains[J]. Journal of Beijing Forestry University, 2006, 28(4): 34-38.
    [10]ZHAO Xiao-song, GUAN De-xin, WU Jia-bing, JIN Chang-jie, HAN Shi-jie. Distribution of footprint and flux source area of the mixed forest of broad-leaved and Korean pine in Changbai Mountain[J]. Journal of Beijing Forestry University, 2005, 27(3): 17-23.
  • Cited by

    Periodical cited type(2)

    1. 高梅香,叶妍妍,孙佳欢,宋国华,金光泽,原作强,王绪高,张卫国,周利军. 东北阔叶红松林地表葬甲群落多样性及其空间变异特征. 生态学报. 2023(18): 7536-7552 .
    2. 李格格,刘启龙,陈婷,刘爽,卢廷玉,高梅香. 胜山阔叶红松林蚂蚁巢穴对其他地表节肢动物多样性的影响. 生态学杂志. 2022(02): 324-333 .

    Other cited types(5)

Catalog

    Article views (359) PDF downloads (63) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return