• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhang Lanqi, Li Li, Yang Hua, Xie Yi. Stand structure optimization and adjustment of natural forest in Changbai Mountains based on AHP-CRITIC combination weight method[J]. Journal of Beijing Forestry University, 2023, 45(8): 74-83. DOI: 10.12171/j.1000-1522.20220479
Citation: Zhang Lanqi, Li Li, Yang Hua, Xie Yi. Stand structure optimization and adjustment of natural forest in Changbai Mountains based on AHP-CRITIC combination weight method[J]. Journal of Beijing Forestry University, 2023, 45(8): 74-83. DOI: 10.12171/j.1000-1522.20220479

Stand structure optimization and adjustment of natural forest in Changbai Mountains based on AHP-CRITIC combination weight method

More Information
  • Received Date: November 27, 2022
  • Revised Date: February 04, 2023
  • Available Online: August 09, 2023
  • Published Date: August 24, 2023
  •   Objective  Rational cutting can promote the growth of trees and increase the productivity of stands. It is of no important practical significance to determine cutting with the aim of optimizing the spatial structure of stands. In this study, the natural forest composed of different tree species in Changbai Mountain of northeastern China was taken as the object, and the combination weight method of AHP-CRITIC was adopted to construct single tree cutting index, in order to provide a new guiding tool for the selection of natural forest cutting wood in this area.
      Method  In this paper, the monitoring data of 4 natural forest fixed samples with different dominant tree species were adopted, four spatial structure indexes, including mingling degrees (M), uniform angle index (W), dominance degrees (U) and Hegyi competition index (CI) were used, and the individual tree felling index (Fi) was constructed according to AHP-CRITIC combination weight method. The spatial structure changes of stand before and after cutting simulation with different intensities were analyzed.
      Result  After cutting, the spatial structure of the four sample plots was optimized to a certain extent: the mingling degrees increased, the degree of tree size differentiation decreased, the horizontal distribution pattern of stand tended to random distribution, and the pressure of stand competition was greatly relieved. The competition index showed a trend of continuous decline with the increase of cutting intensity. Under 30% cutting intensity, the competition index decreased by 24.80%−34.88% at most, the size ratio decreased by 24.97% at most, and the mixing degree increased by 12.76% at the highest. The felled trees were mainly concentrated in the area with high density, and most of the felled trees were small and medium-sized in DBH.
      Conclusion  Through comparative analysis of data before and after simulated cutting, it is proved that for natural pure forest, moderately increasing cutting intensity can better regulate the spatial structure of the stand, while for natural mixed forest, relatively low intensity cutting can optimize its overall structure and maintain a higher degree of tree species mixing. At the same time, the research proves that it is reasonable for AHP-CRITIC combination weight method to construct cutting index, which basically realizes the optimization and adjustment of natural forest stand structure in Changbai Mountain, and can provide technical support for reasonable selection of cutting wood and reasonable management of forest.
  • [1]
    Buongiorno J, Michie B R. A matrix model of uneven-aged forest management[J]. Forest Science, 1980, 26(4): 609−625.
    [2]
    Gove J H, Fairweather S E. Optimizing the management of uneven-aged forest stands: a stochastic approach[J]. Forest Science, 1992, 38(3): 623−640.
    [3]
    沈林. 基于空间结构云冷杉林择伐优化决策模型研究[D]. 北京: 北京林业大学, 2013.

    Shen L. Study on selective cutting optimization decision model based on spatial structure of spruce-fir forest[D]. Beijing: Beijing Forestry University, 2013.
    [4]
    肖智慧, 李志洪, 薛春泉, 等. 梅县典型针阔混交林林分直径结构的动态变化规律[J]. 中南林业科技大学学报, 2013, 33(6): 17−21.

    Xiao Z H, Li Z H, Xue C Q, et al. Diameter distribution and dynamics of typical coniferous and broad-leaved mixed forests in Meizhou County, Guangdong Province[J]. Journal of Central South University of Forestry & Technology, 2013, 33(6): 17−21.
    [5]
    吴志军, 苏东凯, 牛丽君, 等. 阔叶红松林森林资源可持续利用方案[J]. 生态学报, 2015, 35(1): 24−30.

    Wu Z J, Su D K, Niu L J, et al. Evaluation of a sustainable forest utilization program for broadleaved Korean pine mixed forests in the Changbai Mountain region of Northeast China[J]. Acta Ecologica Sinica, 2015, 35(1): 24−30.
    [6]
    廖宝文, 张乔民. 中国红树林的分布、面积和树种组成[J]. 湿地科学, 2014, 12(4): 435−440.

    Liao B W, Zhang Q M. Area, distribution and species composition of mangroves in China[J]. Wetland Science, 2014, 12(4): 435−440.
    [7]
    徐庆祥, 卫星, 王庆成, 等. 抚育间伐对兴安落叶松天然林生长和土壤理化性质的影响[J]. 森林工程, 2013, 29(3): 6−9.

    Xu Q X, Wei X, Wang Q C, et al. Impact of thinning on growth and soil properties of natural Larix gmelinii forest[J]. Forest Engineering, 2013, 29(3): 6−9.
    [8]
    明安刚, 张治军, 谌红辉, 等. 抚育间伐对马尾松人工林生物量与碳贮量的影响[J]. 林业科学, 2013, 49(10): 1−6. doi: 10.11707/j.1001-7488.20131001

    Ming A G, Zhang Z J, Chen H H, et al. Effects of thinning on the biomass and carbon storage in Pinus massoniana plantation[J]. Scientia Silvae Sinicae, 2013, 49(10): 1−6. doi: 10.11707/j.1001-7488.20131001
    [9]
    魏红洋, 董灵波, 刘兆刚. 大兴安岭主要森林类型林分空间结构优化模拟[J]. 应用生态学报, 2019, 30(11): 3824−3832.

    Wei H Y, Dong L B, Liu Z G. Spatial structure optimization simulation of main forest types in Great Xing’an Mountains, Northeast China[J]. Chinese Journal of Applied Ecology, 2019, 30(11): 3824−3832.
    [10]
    管惠文, 董希斌, 张甜, 等. 间伐强度对大兴安岭落叶松天然次生林水文性能的影响[J]. 南京林业大学学报(自然科学版), 2018, 61(6): 68−76.

    Guan H W, Dong X B, Zhang T, et al. Effects of thinning on hydrological properties of the natural secondary Larix gmelinii forest in the Daxing’an Mountains[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2018, 61(6): 68−76.
    [11]
    朱玉杰, 董希斌. 大兴安岭地区落叶松用材林不同抚育间伐强度经营效果评价[J]. 林业科学, 2016, 52(12): 29−38.

    Zhu Y J, Dong X B. Evaluation of the effects of different thinning intensities on larch forest in Great Xing’an Mountains[J]. Scientia Silvae Sinicae, 2016, 52(12): 29−38.
    [12]
    曹小玉, 李际平, 胡园杰, 等. 杉木生态林林分间伐空间结构优化模型[J]. 生态学杂志, 2017, 36(4): 1134−1141.

    Cao X Y, Li J P, Hu Y J, et al. Spatial structure optimizing model of stand thinning of Cunninghamia lanceolata ecological forest[J]. Chinese Journal of Ecology, 2017, 36(4): 1134−1141.
    [13]
    汤孟平, 唐守正, 雷相东, 等. 林分择伐空间结构优化模型研究[J]. 林业科学, 2004, 40(5): 25−31. doi: 10.11707/j.1001-7488.20040504

    Tang M P, Tang S Z, Lei X D, et al. Study on spatial structure optimizing model of stand selection cutting[J]. Scientia Silvae Sinicae, 2004, 40(5): 25−31. doi: 10.11707/j.1001-7488.20040504
    [14]
    仇建习, 汤孟平, 娄明华, 等. 基于Hegyi改进模型的毛竹林空间结构和竞争分析[J]. 生态学报, 2016, 36(4): 1058−1065.

    Qiu J X, Tang M P, Lou M H, et al. Analysis of the spatial structure and competition with a Phyllostachys edulis standbased on an improved Hegyi model[J]. Acta Ecologica Sinica, 2016, 36(4): 1058−1065.
    [15]
    Li Y, Hui G, Wang H, et al. Selection priority for harvested trees according to stand structural indices[J]. Iforest - Biogeosciences and Forestry, 2017, 10(3): 561−566. doi: 10.3832/ifor2115-010
    [16]
    赖国桢, 汪雁楠, 黄宝祥, 等. 林分空间结构优化栅格间伐模型[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 199−205.

    Lai G Z, Wang Y N, Huang B X, et al. A grid thinning model based on forest spatial structure optimization[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2021, 45(3): 199−205.
    [17]
    Ye S, Zheng Z, Diao Z, et al. Effects of thinning on the spatial structure of Larix principis-rupprechtii plantation[J/OL]. Sustainability, 2018, 10(4): 1250[2021−12−06]. https://doi.org/10.3390/su10041250.
    [18]
    Dong L, Wei H, Liu Z. Optimizing forest spatial structure with neighborhood-based indices: four case studies from Northeast China[J]. Forests, 2020, 11(4): 413. doi: 10.3390/f11040413
    [19]
    罗宁, 贺墨琳, 高华, 等. 基于改进的AHP-CRITIC组合赋权与可拓评估模型的配电网综合评价方法[J]. 电力系统保护与控制, 2021, 49(16): 86−96.

    Luo N, He M L, Gao H, et al. Comprehensive evaluation method for a distribution network based on improved AHP-CRITIC combination weighting and an extension evaluation model[J]. Power System Protection and Control, 2021, 49(16): 86−96.
    [20]
    惠刚盈, 胡艳波. 混交林树种空间隔离程度表达方式的研究[J]. 林业科学研究, 2001, 14(1): 23−27. doi: 10.3321/j.issn:1001-1498.2001.01.004

    Hui G Y, Hu Y B. Measuring species spatial isolation in mixed forests[J]. Forest Research, 2001, 14(1): 23−27. doi: 10.3321/j.issn:1001-1498.2001.01.004
    [21]
    惠刚盈. 角尺度−一个描述林木个体分布格局的结构参数[J]. 林业科学, 1999, 35(1): 37−42.

    Hui G Y. The neighbourhood pattern: a new structure parameter for describing distribution of forest tree position[J]. Scientia Silvae Sinicae, 1999, 35(1): 37−42.
    [22]
    惠刚盈. 一个新的林分空间结构参数−大小比数[J]. 林业科学研究, 1999, 12(1): 1−6. doi: 10.3321/j.issn:1001-1498.1999.01.001

    Hui G Y. A new parameter for stand spatial structure: neighbourhood comparison[J]. Forest Research, 1999, 12(1): 1−6. doi: 10.3321/j.issn:1001-1498.1999.01.001
    [23]
    Hegyi F. A simulation model for managing Jack-pine stands simulationn[J]. Stockholm:Sweden Royal College of Forest, 1974, 30: 74−90.
    [24]
    吴晓永. 云冷杉针阔混交林结构特征分析及优化调整[D]. 北京: 北京林业大学, 2020.

    Wu X Y. Structural characteristics analysis and optimal adjustment of spruce-fir conifer and broadleaf mixed forest stands[D]. Beijing: Beijing Forestry University, 2013.
    [25]
    吴晓永, 杨华, 吕延杰, 等. 云杉−白桦混交林结构特征分析[J]. 北京林业大学学报, 2019, 41(1): 64−72.

    Wu X Y, Yang H, Lü Y J, et al. Analysis of structure characteristics in Picea asperata-Betula platyphylla mixed forests[J]. Journal of Beijing Forestry University, 2019, 41(1): 64−72.
    [26]
    李建, 李晓宇, 曹静, 等. 长白山次生针阔混交林群落结构特征及群落动态[J]. 生态学报, 2020, 40(4): 1195−1206.

    Li J, Li X Y, Cao J, et al. Community structure and dynamics of secondary coniferous and broad-leaved mixed forest in Changbai Mountains[J]. Acta Ecologica Sinica, 2020, 40(4): 1195−1206.
    [27]
    林富成, 王维芳, 门秀莉, 等. 兴安落叶松人工林空间结构优化[J]. 北京林业大学学报, 2021, 43(4): 68−76.

    Lin F C, Wang W F, Men X L, et al. Spatial structure optimal of Larix gmelinii plantation[J]. Journal of Beijing Forestry University, 2021, 43(4): 68−76.
    [28]
    赵晨昊, 王建军, 周光, 等. 基于空间结构优化的金盆山天然混交林采伐模拟[J]. 西南林业大学学报(自然科学), 2022, 42(5): 126−133.

    Zhao C H, Wang J J, Zhou G, et al. Logging simulation of natural mixed forest in Jinpen Mountain based on optimization of spatial structure[J]. Journal of Southwest Forestry University (Natural Science), 2022, 42(5): 126−133.
    [29]
    惠刚盈, 胡艳波, 赵中华. 结构化森林经营研究进展[J]. 林业科学研究, 2018, 31(1): 85−93.

    Hui G Y, Hu Y B, Zhao Z H. Research progress of structure-based forest management[J]. Forest Research, 2018, 31(1): 85−93.
    [30]
    李存庆, 董灵波, 刘兆刚. 抚育采伐强度对天然落叶松林林分结构和蓄积的影响[J]. 东北林业大学学报, 2021, 49(5): 1−5.

    Li C Q, Dong L B, Liu Z G. Effect of tending cutting intensity on the stand structure and accumulation of natural larch forest[J]. Journal of Northeast Forestry University, 2021, 49(5): 1−5.
    [31]
    向博文, 曾思齐, 甘世书, 等. 湖南次生栎林空间结构优化[J]. 中南林业科技大学学报, 2019, 39(8): 33−40.

    Xiang B W, Zeng S Q, Gan S S, et al. Spatial structure optimization of Quercus in Hunan[J]. Journal of Central South University of Forestry & Technology, 2019, 39(8): 33−40.
  • Related Articles

    [1]Chen Ling, Chen Feng, Niu Shukui, Li Lianqiang, Tao Changsen. Correlation analysis between the spatial characteristics of landscape pattern and risk of forest fire in Jiufeng Forest Park of Beijing[J]. Journal of Beijing Forestry University, 2021, 43(6): 41-49. DOI: 10.12171/j.1000-1522.20180431
    [2]Li Lianqiang, Yang Huixia, Ding Guoquan, Li Chun. Precipitation redistribution characteristics and its correlation analysis of Pinus densiflora and Quercus mongolica forests in the Liaodong Peninsula of northeastern China[J]. Journal of Beijing Forestry University, 2020, 42(11): 47-55. DOI: 10.12171/j.1000-1522.20200009
    [3]Luo Guisheng, Ma Lüyi, Jia Zhongkui, Wu Danni, Chi Mingfeng, Zhang Shumin, Zhao Guijuan. Correlation analysis between natural regeneration and environment in canopy gap of Chinese pine (Pinus tabuliformis) plantation[J]. Journal of Beijing Forestry University, 2019, 41(9): 59-68. DOI: 10.13332/j.1000-1522.20180416
    [4]Li Lianqiang, Niu Shukui, Tao Changsen, Chen Ling, Chen Feng. Correlations between stand structure and surface potential fire behavior of Pinus tabuliformis forests in Miaofeng Mountain of Beijing[J]. Journal of Beijing Forestry University, 2019, 41(1): 73-81. DOI: 10.13332/j.1000-1522.20180304
    [5]WANG Xin, LIU Qin, HUANG Qin, ZHANG Hua-yu, LI Zong-feng, ZHANG Shi-qiang, DENG Hong-ping. Niche characteristics and CCA ordination of dominant species of Thuja sutchuenensis community[J]. Journal of Beijing Forestry University, 2017, 39(8): 60-67. DOI: 10.13332/j.1000-1522.20160172
    [6]CHEN Wu, KONG De-cang, CUI Yan-hong, CAO Ming, PANG Xiao-ming, LI Ying-yue. Phenotypic genetic diversity of a core collection of Ziziphus jujuba and correlation analysis of dehiscent characters[J]. Journal of Beijing Forestry University, 2017, 39(6): 78-84. DOI: 10.13332/j.1000-1522.20170024
    [7]MA Feng-feng, PAN Gao, LI Xi-quan, HAN Yun-juan. Interspecific relationship and canonical correspondence analysis within woody plant communities in the karst mountains of Southwest Guangxi, southern China[J]. Journal of Beijing Forestry University, 2017, 39(6): 32-44. DOI: 10.13332/j.1000-1522.20160379
    [8]WANG Dan, WANG Bing, DAI Wei, LI Ping. Sensitivity analysis of variables correlated to soil organic matter in Chinese fir plantations[J]. Journal of Beijing Forestry University, 2011, 33(1): 78-83.
    [9]LIU Chun-yan, , GU Jian-cai, LI Ji-yue, CHEN Ping, LU Gu i-qiao, TIAN Guo-heng. Correlated analysis between the growth of Larix principisrupprechtii and climatic factors in Saihanba Nature Reserve, northern Hebei Province.[J]. Journal of Beijing Forestry University, 2009, 31(4): 102-105.
    [10]ZHANG Qiu-hui, ZHAO Guang-jie, ZHONG Jie.. Liquefaction of waste CCA-treated wood in phenol and the technology of metal removing processing.[J]. Journal of Beijing Forestry University, 2009, 31(3): 111-115.
  • Cited by

    Periodical cited type(13)

    1. 熊海贝,龙有为,陈琳,丁叶蔚. 木结构无损检测技术研究与应用综述. 结构工程师. 2023(01): 191-201 .
    2. 王祺,冯鑫浩,史诗琪,杨兆哲,詹先旭,吴智慧. 机器视觉在木制品制造中的应用. 木材科学与技术. 2022(05): 17-24 .
    3. 王锦亚,李振业,倪超. 基于机器视觉的实木地板在线分色识别算法. 林业工程学报. 2021(05): 135-139 .
    4. 庄子龙,刘英,沈鹭翔,丁奉龙,王争光. 基于多层感知机的木材颜色分类. 林业机械与木工设备. 2020(06): 8-14 .
    5. 陈威,刘艳,雷庆. 基于智能视觉的小差异行为特征分类. 计算机科学. 2019(03): 298-302 .
    6. 孙建平,梁懿,蒋志林,柳婧如. 图像处理技术在竹木复合材料性能评估中的应用展望. 西北林学院学报. 2019(02): 246-249+256 .
    7. 王明谦,王昆,许清风. 木结构无损检测技术研究进展. 施工技术. 2019(21): 85-90 .
    8. 杜丽娟. 舰船导航系统超分辨率图像智能提取技术研究. 舰船科学技术. 2018(16): 82-84 .
    9. 何波. 篮球投射过程中的角度智能视觉图像分解判断方法. 现代电子技术. 2018(10): 175-178 .
    10. 马玉芳. 基于智能视觉的微型高精度图像采集系统设计. 现代电子技术. 2018(19): 67-70 .
    11. 魏晓慧,马晓珍,刘亚秋. 基于蜂群单阈值分割的SRC板材缺陷分类方法. 沈阳工业大学学报. 2017(03): 292-298 .
    12. 陈熔,刘杰. 基于智能视觉的特定人员检索平台设计与实现. 现代电子技术. 2017(14): 102-105 .
    13. 李晓东. 视觉传达设计认识探讨. 鸭绿江(下半月版). 2016(12): 175 .

    Other cited types(9)

Catalog

    Article views (362) PDF downloads (64) Cited by(22)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return