• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Song Qing, Su Yiran, Wang Tiemei, Xu Jian, Liang Liuxi, Dong Haoye, Tai Tala. Comparative analyses on chloroplast genome between Spiraea media and Spiraea pubescens in the forest-grass transition zone of Inner Mongolia, northern China[J]. Journal of Beijing Forestry University, 2024, 46(3): 103-114. DOI: 10.12171/j.1000-1522.20220518
Citation: Song Qing, Su Yiran, Wang Tiemei, Xu Jian, Liang Liuxi, Dong Haoye, Tai Tala. Comparative analyses on chloroplast genome between Spiraea media and Spiraea pubescens in the forest-grass transition zone of Inner Mongolia, northern China[J]. Journal of Beijing Forestry University, 2024, 46(3): 103-114. DOI: 10.12171/j.1000-1522.20220518

Comparative analyses on chloroplast genome between Spiraea media and Spiraea pubescens in the forest-grass transition zone of Inner Mongolia, northern China

More Information
  • Received Date: December 21, 2022
  • Revised Date: August 27, 2023
  • Available Online: November 09, 2023
  • Objective 

    China is the modern distribution and differentiation center of Spiraea plants. S. media and S. pubescens are sympatric species of Spiraea distributed in the forest-grass transition zone of Inner Mongolia, northern China. Analysis of chloroplast genomic differences between the two species can provide a basis for identifying plant relatives in the same genus.

    Method 

    In this study, the complete chloroplast genome sequences of the two species were obtained by assembly and annotation using second-generation sequencing technology and Illumina Novaseq 6000 platform, and the sequence structures were analyzed using bioinformatics methods to construct phylogenetic trees.

    Result 

    The total length of chloroplast genome of S. media was 155 916 bp with 36.72% total GC content, and the total length of chloroplast genome of S. pubescens was 155 942 bp with 36.76% total GC content. Both were annotated to obtain 130 genes, 111 of which were unique, containing 78 protein-coding genes, 29 tRNA genes and 4 rRNA genes. S. media and S. pubescens detected 238 and 241 simple repeats, respectively, with codon preference ending in A or U over codon preference ending in G or C and the genomic variation regions were mainly distributed in non-coding regions. They were both with the largest number of codons encoding leucine and the least number of codons encoding cysteine. The phylogenetic tree showed that these two species formed a sister group, and had a relatively close relation. Spiraea and Sibiraea were closely related, showing a sister group relationship.

    Conclusion 

    The results of the study can provide basic information for the phylogeny, taxonomic identification and resource development and utilization of Spiraea.

  • [1]
    俞德浚. 中国植物志[M]. 北京: 科学出版社, 1974.

    Yu D J. Flora of China[M]. Beijing: Science Press, 1974.
    [2]
    El-Ansari M A, Abdel-Latif R R, Baczek K, et al. A new dimeric flavonol glucoside and other flavonoids from the cytotoxic methanolic extract of the flowers of Filipendula vulgaris collected in Poland[J]. Chemistry of Natural Compounds, 2022, 58(3): 433−437. doi: 10.1007/s10600-022-03703-z
    [3]
    阿娟, 燕玲, 邢燕红, 等. 土庄绣线菊化学成分的分析及综合评价[J]. 干旱区资源与环境, 2011, 25(4): 155−160.

    A J, Yan L, Xing Y H, et al. Analysis and comprehensive evaluation of chemical composition of Spiraea pubescens[J]. Journal of Arid Land Resources and Environment, 2011, 25(4): 155−160.
    [4]
    姚争争, 李斌, 杜文鹏, 等. 绣线菊属植物化学成分及生物活性研究进展[J]. 中药材, 2016, 39(4): 934−941. doi: 10.13863/j.issn1001-4454.2016.04.059

    Yao Z Z, Li B, Du W P, et al. Research progress on chemical constituents and biological activities of Spiraea[J]. Journal of Chinese Medicinal Materials, 2016, 39(4): 934−941. doi: 10.13863/j.issn1001-4454.2016.04.059
    [5]
    刘红微, 赵丽芹, 张田田, 等. 土庄绣线菊水浸液对小鼠急性酒精肝损伤保护作用的研究[J]. 中国畜牧兽医, 2012, 39(4): 166−169. doi: 10.3969/j.issn.1671-7236.2012.04.039

    Liu H W, Zhao L Q, Zhang T T, et al. Protection effect of Spiraea pubescens against acute alcohol-induced liver injury in mice[J]. China Animal Husbandry & Veterinary Medicine, 2012, 39(4): 166−169. doi: 10.3969/j.issn.1671-7236.2012.04.039
    [6]
    杨洋, 李珍, 杜之平, 等. 土庄绣线菊茶多酚抗氧化活性作用研究[J]. 中国药事, 2020, 34(3): 342−348.

    Yang Y, Li Z, Du Z P, et al. On antioxidant activity of tea polyphenols from Spiraea pubescens Turcz[J]. Chinese Pharmaceutical Affairs, 2020, 34(3): 342−348.
    [7]
    Shirshova T I, Bezmaternykh K V, Beshlei I V, et al. Antioxidant properties of extracts of leaves and inflorescences of Spiraea media Franz Schmidt from the Flora of Komi Republic[J]. Pharmaceutical Chemistry Journal, 2020, 54(6): 622−625. doi: 10.1007/s11094-020-02246-3
    [8]
    Shinozaki K, Ohme M, Tanaka M, et al. The complete nucleotide sequence of the tobacco chloroplast genome[J]. Plant Molecular Biology Reporter, 1986, 4(3): 111−148. doi: 10.1007/BF02669253
    [9]
    Ohyama K, Fukuzawa H, Kohchi T, et al. Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA[J]. Nature, 1986, 322: 572−574. doi: 10.1038/322572a0
    [10]
    张韵洁, 李德铢. 叶绿体系统发育基因组学的研究进展[J]. 植物分类与资源学报, 2011, 33(4): 365−375.

    Zhang Y J, Li D Z. Advances in phylogenomic based on complete chloroplast genomes[J]. Plant Diversity and Resources, 2011, 33(4): 365−375.
    [11]
    Sun C Q, Chen F D, Teng N J, et al. Comparative analysis of the complete chloroplast genome of seven Nymphaea species[J]. Aquatic Botany, 2021, 170: 103353. doi: 10.1016/j.aquabot.2021.103353
    [12]
    Wang R J, Cheng C L, Chang C C, et al. Dynamics and evolution of the inverted repeat-large single copy junctions in the chloroplast genomes of monocots[J]. BMC Evolutionary Biology, 2008, 8: 36. doi: 10.1186/1471-2148-8-36
    [13]
    Tang D F, Lin Y, Wei F, et al. Characteristics and comparative analysis of Mesona chinensis Benth chloroplast genome reveals DNA barcode regions for species identification[J]. Functional & Integrative Genomics, 2022, 22(4): 467−479.
    [14]
    Doreen T, Alina P, Alexander M, et al. Genomic profiling: The strengths and limitations of chloroplast genome-based plant variety authentication[J]. Journal of Agricultural and Food Chemistry, 2020, 68(49): 14323−14333. doi: 10.1021/acs.jafc.0c03001
    [15]
    Kim H S, Shukhertei A, Yang J Y, et al. Characterization of the complete chloroplast genome sequence of Potentilla gageodoensis (Rosaceae), endemic to the continental islands of Korea[J]. Mitochondrial DNA Part B Resources, 2022, 7(4): 678−680. doi: 10.1080/23802359.2022.2067497
    [16]
    Badr A, El-Sherif N, Aly S, et al. Genetic diversity among selected Medicago sativa cultivars using inter-retrotransposon-amplified polymorphism, chloroplast DNA barcodes and morpho-agronomic trait analyses[J]. Plants, 2020, 9(8): 995. doi: 10.3390/plants9080995
    [17]
    Guimin C, Anton S, Olha L, et al. Biodiversity of duckweed (Lennoaceae) in water reservoirs of Ukraine and China assessed by chloroplast DNA barcoding[J]. Plants, 2022, 11(11): 1468. doi: 10.3390/plants11111468
    [18]
    Linh N N, Hang P L B, Hue H T T, et al. Species discrimination of novel chloroplast DNA barcodes and their application for identification of Panax (Aralioideae, Araliaceae)[J]. PhytoKeys, 2022, 188: 1−18. doi: 10.3897/phytokeys.188.75937
    [19]
    Enan M R, Ahmed A. Cultivar-level phylogeny using chloroplast DNA barcode psbK-psbI spacers for identification of Emirati date palm ( Phoenix dactylifera L.) varieties[J]. Genetics and Molecular Research, 2016, 15(3): gmr. 15038470.
    [20]
    Tehmina A, Rasheda J, Steve A, et al. Exploring Parthenium weed biotypes by chloroplast DNA barcode analysis[J]. Planta Daninha, 2020, 38: e020191623. doi: 10.1590/s0100-83582020380100052
    [21]
    Lenka Z D, Markéta P, Roman B. Phylogeny and infrageneric delimitation in Spiraea (Rosaceae) inferred from AFLP markers and a comparison with morphology[J]. Botanical Journal of the Linnean Society, 2017, 185(4): 525−541. doi: 10.1093/botlinnean/box071
    [22]
    Yu S X, Gadagkar S R, Potter D, et al. Phylogeny of Spiraea (Rosaceae) based on plastid and nuclear molecular data: implications for morphological character evolution and systematics[J]. Perspectives in Plant Ecology, Evolution and Systematics, 2018, 34: 109−119. doi: 10.1016/j.ppees.2018.08.003
    [23]
    常晶茹, 姚萱航, 张雪薇, 等. 黄芪属植物DNA条形码与聚类分析的研究[J]. 中草药, 2022, 53(22): 7201−7206.

    Chang J R, Yao X H, Zhang X W, et al. DNA barcoding sequences and cluster analysis of 10 species of Astragalus[J]. Chinese Traditional and Herbal Drugs, 2022, 53(22): 7201−7206.
    [24]
    Girma G, Spillane C, Gedil M. DNA barcoding of the main cultivated yams and selected wild species in the genus Dioscorea[J]. Journal of Systematics and Evolution, 2016, 54(3): 228−237. doi: 10.1111/jse.12183
    [25]
    熊瑶, 金晨, 王晓云, 等. 鸡血藤及其混伪品的DNA条形码分子鉴定研究[J]. 中草药, 2020, 51(12): 3274−3283. doi: 10.7501/j.issn.0253-2670.2020.12.020

    Xiong Y, Jin C, Wang X Y, et al. Molecular identification of Spatholobi caulis and its adulterants based on DNA barcoding[J]. Chinese Traditional and Herbal Drugs, 2020, 51(12): 3274−3283. doi: 10.7501/j.issn.0253-2670.2020.12.020
    [26]
    李德铢, 曾春霞. 植物DNA条形码研究展望[J]. 生物多样性, 2015, 23(3): 297−298. doi: 10.17520/biods.2015135

    Li D Z, Zeng C X. Prospects for plant DNA barcoding[J]. Biodiversity Science, 2015, 23(3): 297−298. doi: 10.17520/biods.2015135
    [27]
    Yang J Y, Kang G, Pak J, et al. Characterization and comparison of two complete plastomes of Rosaceae species ( Potentilla dickinsii var. glabrata and Spiraea insularis) endemic to Ulleung Island, Korea[J]. International Journal of Molecular Sciences, 2020, 21(14): 4933. doi: 10.3390/ijms21144933
    [28]
    Yan J M, Yu P G, Ye Z, et al. The complete chloroplast genome of Spiraea mongolica Maxim[J]. Mitochondrial DNA Part B Resources, 2021, 6(5): 1614−1616. doi: 10.1080/23802359.2021.1926351
    [29]
    Sharp P M, Cowe E. Synonymous codon usage in Saccharomyces cerevisiae[J]. Yeast, 1991, 7(7): 657−678. doi: 10.1002/yea.320070702
    [30]
    Lyu X L, Liu Y. Nonoptimal codon usage is critical for protein structure and function of the master general amino acid control regulator CPC-1[J]. mBio, 2020, 11(5): e02605−20.
    [31]
    Mukhopadhyay P, Basak S, Ghosh T C. Nature of selective constraints on synonymous codon usage of rice differs in GC-poor and GC-rich genes[J]. Gene, 2007, 400(1): 71−81.
    [32]
    李卓蔚, 邱迁, 郎佳琪, 等. 尖刀唇石斛和翅梗石斛叶绿体全基因组分析[J]. 中草药, 2022, 53(16): 5159−5169.

    Li Z Y, Qiu Q, Lang J Q, et al. Sequence analysis of complete chloroplast genome of Dendrobium heterocarpum and Dendrobium trigonopus [J]. Chinese Traditional and Herbal Drugs, 2022, 53(16): 5159−5169.
    [33]
    贾守宁, 李海月, 范红忠, 等. 藏药材毛果婆婆纳的叶绿体全基因组特征及其系统发育分析[J/OL]. 分子植物育种, 2023[2023−11−06]. http://kns.cnki.net/kcms/detail/46.1068.S.20221017.1549.019.html.

    Jia S N, Li H Y, Fan H Z, et al. The complete chloroplast genome and phylogeny of Veronica eriogyne, a medicinal material[J/OL]. Molecular Plant Breeding, 2023[2023−11−06]. http://kns.cnki.net/kcms/detail/46.1068.S.20221017.1549.019.html.
    [34]
    Heilersig H J B, Loonen A, Bergervoet M, et al. Post-transcriptional gene silencing of GBSSI in potato: effects of size and sequence of the inverted repeats[J]. Plant Molecular Biology, 2006, 60(5): 647−662. doi: 10.1007/s11103-005-5280-6
    [35]
    Lin B, Liu C, Tang J R, et al. Genetic diversity analysis of Camellia fascicularis H. T. Chang based on SSR markers[J]. Journal of Applied Research on Medicinal and Aromatic Plants, 2022, 31: 100404. doi: 10.1016/j.jarmap.2022.100404
    [36]
    Saitwal Y S, Musmade A M, Kale A A, et al. Characterization of Annona genotypes by ISSR and SSR markers[J]. Bhartiya Krishi Anusandhan Patrika, 2022, 37(1): 43−49.
    [37]
    Zhu Y A, Wang S Y, Xie J J, et al. The complete chloroplast genome of Rubus ellipticus var. obcordatus, an edible and medicinal dual-purpose plant[J]. Mitochondrial DNA Part B Resources, 2022, 7(2): 406−408. doi: 10.1080/23802359.2022.2042411
    [38]
    Jeon J, Kim S. Comparative analysis of the complete chloroplast genome sequences of three closely related east-Asian wild roses ( Rosa sect. Synstylae; Rosaceae)[J]. Genes, 2019, 10(1): 23. doi: 10.3390/genes10010023
    [39]
    Li W Q, Lu Y Z, Xie X M, et al. Development of chloroplast genomic resources for Pyrus hopeiensis (Rosaceae)[J]. Conservation Genetics Resources, 2018, 10(3): 511−513. doi: 10.1007/s12686-017-0862-6
    [40]
    施晓静, 张颖敏, 陈威, 等. 滇西乌头叶绿体全基因组及系统发育分析[J/OL]. 分子植物育种, 2023. [2023−11−06]. http://kns.cnki.net/kcms/detail/46.1068.S.20220713.1129.002.html.

    Shi X J, Zhang Y M, Chen W, et al. The complete chloroplast genome and phylogenetic analysis of Aconitum bulleyanum (Ranunculaceae)[J]. Molecular Plant Breeding, 2023[2023−11−06]. http://kns.cnki.net/kcms/detail/46.1068.S.20220713.1129.002.html.
    [41]
    王久利, 高庆波, 付鹏程, 等. 青藏高原及其毗邻山区蒙古绣线菊谱系地理学研究[J]. 西北植物学报, 2014, 34(10): 1981−1991.

    Wang J L, Gao Q B, Fu P C, et al. Phylogeography of Spiraea mongolica (Rosaceae) on the Qinghai-Tibetan Plateau and adjacent highlands[J]. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(10): 1981−1991.
    [42]
    褚振州, 古丽巴哈尔·依斯拉木, 屈泽众, 等. 同域分布3种木蓼属植物的叶绿体基因组比较研究[J]. 植物学报, 2022, 58(3): 417−432.

    Chu Z Z, Gulibahaer·Yisilamu, Qu Z Z, et al. Comparative chloroplast genome analyses among three sympatric species of Polygonum[J]. Chinese Bulletin of Botany, 2022, 58(3): 417−432.
  • Related Articles

    [1]Cai Zhiyong, Sun Long, Hu Haiqing, Zhao Nan, Sun Jiabao. Dynamic prediction of forest litter load based on litter decomposition rate[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20230183
    [2]Guan Cheng, Xin Zhenbo, Liu Jinhao, Zhang Houjiang, Zhou Jianhui, Li Huan, Liu Suyang. Modal sensitivity and vibration mode of full-size oriented strand board panel under three boundary conditions[J]. Journal of Beijing Forestry University, 2021, 43(12): 105-115. DOI: 10.12171/j.1000-1522.20210264
    [3]WANG Cun-guo, CHEN Zheng-xia, MA Cheng-en, LIN Gui-gang, HAN Shi-jie. Three potential pathways influencing contrasting decomposition rates of fine roots[J]. Journal of Beijing Forestry University, 2016, 38(4): 123-128. DOI: 10.13332/j.1000-1522.20150437
    [4]ZHENG Jun-qiang, GUO Rui-hong, LI Dong-sheng, LI Dong, LI Jin-gong, ZHU Bao-kun, HAN Shi-jie. Effects of nitrogen deposition and drought on litter decomposition in a temperate forest[J]. Journal of Beijing Forestry University, 2016, 38(4): 21-28. DOI: 10.13332/j.1000-1522.20150464
    [5]ZHANG Qin, LIN Tian xi, WANG Gui chun, SUN Guo wen, FAN Xiu hua. Decomposition of mixed litter of Pinus koraiensis, Quercus mongolica and Acer mono[J]. Journal of Beijing Forestry University, 2014, 36(6): 106-111. DOI: 10.13332/j.cnki.jbfu.2014.06.020
    [6]LIU Zhen-bo, LI Si-dan, LIU Yi-xing, HUANG Ying-lai. Vibration modal analysis of resonance board of Pi-pa.[J]. Journal of Beijing Forestry University, 2012, 34(2): 125-132.
    [7]HU Chuan-shuang, WEN Wei, ZHOU Hai-bin, YUN Hong. Detection of simulated defects of wood beams by using the differences of local modal flexibility[J]. Journal of Beijing Forestry University, 2011, 33(5): 122-125.
    [8]WANG Xiong-bin, GU Jian-cai, ZHU Jian-gang, LU Shao-wei, , YU Xin-xiao, LI Yong-jie. Entropy calculation and its application in forest biomass distribution. [J]. Journal of Beijing Forestry University, 2008, 30(supp.2): 160-164.
    [9]FAN Hou-bao, , LIU Wen-fei, YANG Yue-lin, ZHANG Zi-wen, CAO Hanyang, XU Lei. Decomposition of leaf litter of Chinese fir in response to increased nitrogen deposition[J]. Journal of Beijing Forestry University, 2008, 30(2): 8-13.
    [10]LIU Qiang, PENG Shao-lin, BI Hua, ZHANG Hong-yi, LI Zhi-an, MA Wen-hui, LI Ni-ya. Nutrient dynamics of foliar litter in reciprocal decomposition in tropical and subtropical forests.[J]. Journal of Beijing Forestry University, 2005, 27(1): 24-32.

Catalog

    Article views (335) PDF downloads (59) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return