• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Kang Xiangyang. On conventional and unconventional tree breeding and their relationships[J]. Journal of Beijing Forestry University, 2023, 45(6): 1-7. DOI: 10.12171/j.1000-1522.20230042
Citation: Kang Xiangyang. On conventional and unconventional tree breeding and their relationships[J]. Journal of Beijing Forestry University, 2023, 45(6): 1-7. DOI: 10.12171/j.1000-1522.20230042

On conventional and unconventional tree breeding and their relationships

More Information
  • Received Date: February 27, 2023
  • Revised Date: March 13, 2023
  • Accepted Date: May 08, 2023
  • Available Online: May 08, 2023
  • Published Date: June 24, 2023
  • In today’s rapid development of new technology breeding, clarifying the connotations and roles of conventional and unconventional tree breeding and their interrelationships, and drawing on the experience of tree, crop and livestock breeding in forestry-developed countries can help scientifically choose suitable breeding technologies according to the characteristics of tree species and their breeding status, and promote the process of improved variety efficiently in China. This paper briefly reviews the development history, characteristics and roles of biological breeding technologies from ancient breeding to modern breeding and new technology breeding. The conventional breeding and the unconventional breeding were also defined. The roles of the conventional and unconventional forest tree breeding technologies of forest tree breeding and their relationships were elucidated based on the characteristics of population genetic variations. It is emphasized that the conventional forest tree breeding is the core and cornerstone of forest tree breeding, while the unconventional forest tree breeding, especially new technology breeding, is the innovation and development of forest tree breeding. The problems that need to be paid attention to during the development of forest tree breeding and seed industry innovation were discussed in China.
  • [1]
    沈熙环. 林木育种学[M]. 北京: 中国林业出版社, 1988.

    Shen X H. Forest tree breeding[M]. Beijing: China Forestry Publishing House, 1988.
    [2]
    Zobel B, Talbert J. Applied forest tree improvement[M]. New York: John Wiley & Sons, 1984.
    [3]
    White T L, Adams W T, Neale D B. Forest genetics[M]. Cambridge: CABI Publishing, 2007.
    [4]
    康向阳. 林木遗传育种研究进展[J]. 南京林业大学学报, 2020, 44(3): 1−10.

    Kang X Y. Research progress of forest genetics and tree breeding[J]. Journal of Nanjing Forestry University, 2020, 44(3): 1−10.
    [5]
    郑勇奇. 常规林木育种研究现状与发展趋势[J]. 世界林业研究, 2001(3): 10−17. doi: 10.3969/j.issn.1001-4241.2001.03.002

    Zheng Y Q. Current status and development prospects of traditional tree breeding[J]. World Forestry Research, 2001(3): 10−17. doi: 10.3969/j.issn.1001-4241.2001.03.002
    [6]
    Tuskan G A, Difazio S, Jansson S, et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray) [J]. Science, 2006, 313: 1596–1604.
    [7]
    陈赢男, 韦素云, 曲冠正, 等. 现代林木育种关键核心技术研究现状与展望[J]. 南京林业大学学报, 2022, 46(6): 1−9.

    Chen Y N, Wei S Y, Qu G Z, et al. The key and core technologies for accelerating the tree breeding process[J]. Journal of Nanjing Forestry University, 2022, 46(6): 1−9.
    [8]
    Wallace G, Rodgers-Melnick E, Buckler E. On the road to breeding 4.0: unraveling the good, the bad, and the boring of crop quantitative genomics[J]. Annual Review of Genetics, 2018, 52(1): 421−444. doi: 10.1146/annurev-genet-120116-024846
    [9]
    蔡旭. 植物遗传育种学[M]. 北京: 科学出版社, 1976.

    Cai X. Plant gentics and breeding[M]. Beijing: Science Press, 1976.
    [10]
    Cunningham E P, Dooley J J, Splan R K, et al. Microsatellite diversity, pedigree relatedness and the contributions of founder lineages to thoroughbred horses[J]. Animal Genetics, 2001, 32: 360−364. doi: 10.1046/j.1365-2052.2001.00785.x
    [11]
    Bower M A, Campana M G, Whitten M, et al. The cosmopolitan maternal heritage of the thoroughbred racehorse breed shows a significant contribution from British and Irish native mares[J]. Biology Letters, 2011, 7: 316−320. doi: 10.1098/rsbl.2010.0800
    [12]
    朱丽, 赵晓溪, 吴清梅, 等. 欧洲动植物育种技术与孟德尔发现遗传学定律的关系[J]. 生物学通报, 2021, 56(12): 14−16. doi: 10.3969/j.issn.0006-3193.2021.12.005

    Zhu L, Zhao X X, Wu Q M, et al. The relationship between European animal and plant breeding technology and discovery of Mendel’s genetic laws[J]. Bulletin of Biology, 2021, 56(12): 14−16. doi: 10.3969/j.issn.0006-3193.2021.12.005
    [13]
    Shull G H. The composition of a field of maize[J]. Heredity, 1908, 4: 296−301.
    [14]
    Shull G H. What is “heterosis”?[J]. Genetics, 1948, 33(5): 439. doi: 10.1093/genetics/33.5.439
    [15]
    Jones D F. The productiveness of single and double first generation corn hybrids1[J]. Agronomy Journal, 1922, 14(6): 241−252. doi: 10.2134/agronj1922.00021962001400060006x
    [16]
    Sprague G F, Tatum L A. General vs specific combining ability in single cross of corn[J]. Agronomy Journal, 1942, 34(10): 923−932. doi: 10.2134/agronj1942.00021962003400100008x
    [17]
    Hull F H. Recurrent selection for specific combining ability in corn1[J]. Agronomy Journal, 1945, 37(2): 134−145. doi: 10.2134/agronj1945.00021962003700020006x
    [18]
    Hull F H. Recurrent selection and overdominance[M]. Ames: Iowa State College Press, 1952.
    [19]
    James J W. Open nucleus breeding systems[J]. Animal Production, 1977, 24(3): 287−305.
    [20]
    Hopkins I R, James J W. Theory of nucleus breeding schemes with overlapping generations[J]. Theoretical and Applied Genetics, 1978, 53(1): 17−24. doi: 10.1007/BF00273131
    [21]
    刘杰, 黄学辉. 作物杂种优势研究现状与展望[J]. 中国科学: 生命科学, 2021, 51(10): 1396−1404. doi: 10.1360/SSV-2021-0171

    Liu J, Huang X H. Advances and perspectives in crop heterosis[J]. Scientia Sinica Vitae, 2021, 51(10): 1396−1404. doi: 10.1360/SSV-2021-0171
    [22]
    吴铮, 闫昊, 曹士亮, 等. 主要作物杂种优势群及利用模式研究进展[J/OL]. 分子植物育种: 1−9[2023−05−08]. http://kns.cnki.net/kcms/detail/46.1068.S.20220729.1410.012.html.

    Wu Z, Yan H, Cao S L, et al. Research progress on heterotic groups and utilization patterns of main crops [J/OL]. Molecular Plant Breeding: 1−9[2023−05−08]. http://kns.cnki.net/kcms/detail/46.1068.S.20220729.1410.012.html.
    [23]
    刘孟洲. 猪的群体继代选育法[J]. 动物科学与动物医学, 2005(9): 50−54.

    Liu M Z. Population subgeneration breeding method of pigs[J]. Animal Science & Veterinary Medicine, 2005(9): 50−54.
    [24]
    Lewis W H. Polyploidy in species populations[J]. Polyploidy, 1980, 13: 103−144. doi: 10.1007/978-1-4613-3069-1
    [25]
    鲍文奎. 从小黑麦工作想到的两个问题[J]. 生物学通报, 1981(1): 26−29.

    Bao W K. Two problems that came to mind from work of Secale sylvestre[J]. Bulletin of Biology, 1981(1): 26−29.
    [26]
    李振声, 陈潄阳, 刘冠军, 等. 小麦与偃麦草远缘杂交的研究[J]. 科学通报, 1962(4): 40−42.

    Li Z S, Chen S Y, Liu G J, et al. Study on the distant hybridization between wheat and Elytrigia japonica[J]. Chinese Science Bulletin, 1962(4): 40−42.
    [27]
    周光宇, 龚蓁蓁, 王自芬. 远缘杂交的分子基础: DNA片段杂交假设的一个论证[J]. 遗传学报, 1979(4): 405−413.

    Zhou G Y, Gong Z Z, Wang Z F. The molecular basis of remote hybridization: an evidence of the hypothesis that DNA segments of distantly related plants may be hybridized[J]. Journal of Genetics and Genomics, 1979(4): 405−413.
    [28]
    邓丽琴, 祝朋芳, 陈长青. 试论常规育种与分子育种的研究应用[J]. 杂粮作物, 2004(5): 280−281.

    Deng L Q, Zhu P F, Chen C Q. Discussion on application of conventional breeding and molecular breeding[J]. Miscellaneous Crops, 2004(5): 280−281.
    [29]
    景海春, 田志喜, 种康, 等. 分子设计育种的科技问题及其展望概论[J]. 中国科学:生命科学, 2021, 51(10): 1356−1365,1355. doi: 10.1360/SSV-2021-0214

    Jing H C, Tian Z X, Chong K, et al. Progress and perspective of molecular design breeding[J]. Scientia Sinica Vitae, 2021, 51(10): 1356−1365,1355. doi: 10.1360/SSV-2021-0214
    [30]
    郭军, 戴荣国, 王瑞生, 等. 蜜蜂育种技术概述[J]. 四川畜牧兽医, 2011, 38(1): 31−33. doi: 10.3969/j.issn.1001-8964.2011.01.014

    Guo J, Dai R G, Wang R S, et al. Outline of the honeybee breeding technology[J]. Sichuan Animal & Veterinary Sciences, 2011, 38(1): 31−33. doi: 10.3969/j.issn.1001-8964.2011.01.014
    [31]
    Ruotealainen S. Increased forest production through forest tree breeding[J]. Scandinavian Journal of Forest Research, 2014, 29(4): 333−344. doi: 10.1080/02827581.2014.926100
    [32]
    王章荣. 高世代种子园营建的一些技术问题[J]. 南京林业大学学报, 2012, 36(1): 8−10.

    Wang Z R. Techniques on establishment and management of advanced-generation seed orchard[J]. Journal of Nanjing Forestry University, 2012, 36(1): 8−10.
    [33]
    康向阳. 关于林木育种策略的思考[J]. 北京林业大学学报, 2019, 41(12): 15−22. doi: 10.12171/j.1000-1522.20190412

    Kang X Y. Thoughts on tree breeding strategies[J]. Journal of Beijing Forestry University, 2019, 41(12): 15−22. doi: 10.12171/j.1000-1522.20190412
    [34]
    Jayawickrama K J S, Carson M J. A breeding strategy for the new zealand radiata pine breeding cooperative[J]. Silvae Genetica, 2000, 49: 82−90.
    [35]
    White T L, Hodge G R, Powell G L. An advanced-generation tree improvement plan for slash pine in the southeastern United States[J]. Silvae Genetica, 1993, 42: 359−371.
    [36]
    康向阳. 关于无性系林业若干问题的认识和建议: 以杨树为例[J]. 北京林业大学学报, 2017, 39(9): 1−7. doi: 10.13332/j.1000-1522.20170019

    Kang X Y. Cognition and suggestions on some issues related to clonal forestry: taking poplar as an example[J]. Journal of Beijing Forestry University, 2017, 39(9): 1−7. doi: 10.13332/j.1000-1522.20170019
    [37]
    朱之悌. 毛白杨遗传改良[M]. 北京: 中国林业出版社, 2006.

    Zhu Z T. Genetic improvement of Populus tomentosa[M]. Beijing: China Forestry Publishing House, 2006.
    [38]
    王章荣. 林木高世代育种原理及其在我国的应用[J]. 林业科技开发, 2012, 26(1): 1−5.

    Wang Z R. Principles of forest tree high-generation breeding and its application in China[J]. Journal of Forestry Engineering, 2012, 26(1): 1−5.
    [39]
    马常耕. 强化林木育种, 支撑林业工程建设[J]. 林业科技管理, 2003, 1(1): 24−26.

    Ma C G. Strengthening forest tree breeding and supporting forestry engineering construction[J]. Forestry Science and Technology Management, 2003, 1(1): 24−26.
    [40]
    Kang X Y, Wei H R. Breeding polyploid Populus: progress and perspective[J]. Forestry Research, 2022, 1: 4. doi: 10.48130/FR-2022-0004
  • Related Articles

    [1]Sun Fan, Ma Yanguang, Liu Zhanmin, Yang Boning, Wang Huili, Li Wei. Parental selection strategies of high generation seed orchard of Pinus tabuliformis[J]. Journal of Beijing Forestry University, 2024, 46(4): 28-39. DOI: 10.12171/j.1000-1522.20230138
    [2]Kang Xiangyang. Thoughts on the development of forest tree breeding towards intelligent molecular design breeding in China[J]. Journal of Beijing Forestry University, 2024, 46(3): 1-7. DOI: 10.12171/j.1000-1522.20230338
    [3]Liu Shiqi, Jia Liming, Su Shuchai, Ma Lüyi, Cheng Zhichu, Gao Shilun, Gao Yuan, Li Shiran, Zhang Yunqi, Sun Caowen, Zhao Guochun, Duan Jie, Weng Xuehuang. Efficient and sustainable development path of forest-based bioenergy “forestry-oil integration” industry[J]. Journal of Beijing Forestry University, 2019, 41(12): 96-107. DOI: 10.12171/j.1000-1522.20190433
    [4]Kang Xiangyang. Thoughts on tree breeding strategies[J]. Journal of Beijing Forestry University, 2019, 41(12): 15-22. DOI: 10.12171/j.1000-1522.20190412
    [5]Kang Xiangyang. Thinking about clonal breeding strategy of forest trees[J]. Journal of Beijing Forestry University, 2019, 41(7): 1-9. DOI: 10.13332/j.1000-1522.20190098
    [6]Zheng Baoqiang, Zhu Shenglei, Li Kui, Miao Kun, Wang Yan. Analysis on breeding value of native Dendrobium species in China[J]. Journal of Beijing Forestry University, 2018, 40(4): 102-108. DOI: 10.13332/j.1000-1522.20170341
    [7]YUAN Hu-wei, WANG Xiao-fei, DU Qing-ping, NIU Shi-hui, LI Yue, LI Wei. BWB-assisted plus tree selection and deployment design for bulked progenies of the first-cycle Chinese pine seed orchard[J]. Journal of Beijing Forestry University, 2017, 39(11): 28-34. DOI: 10.13332/j.1000-1522.20160330
    [8]WANG Zi-yang, HUANG Yan-zi, WANG Jun-jie, ZHOU Yi-ming, WANG Qing, YU Zhen, GUAN Wen-bin. Probability distribution and selection of seed and fruit traits of different fruit types of Xanthoceras sorbifolium[J]. Journal of Beijing Forestry University, 2017, 39(9): 17-31. DOI: 10.13332/j.1000-1522.20170162
    [9]LIU Chao-yi, LIU Gui-feng, FANG Gong-gui, JIANG Chuan-ming, JIANG Jing. Comparison of tetraploid Betula platyphylla wood fiber traits and selection of superior seed trees[J]. Journal of Beijing Forestry University, 2017, 39(2): 9-15. DOI: 10.13332/j.1000-1522.20160091
    [10]YIN Zhong-hua, SONG Wei-ming.. Changes and compositions of total factor productivity of papermaking and paper product industry in China. [J]. Journal of Beijing Forestry University, 2009, 31(2): 140-145.
  • Cited by

    Periodical cited type(9)

    1. 江荣慧,杨焱冰,颜凤霞,田凡,许志高,王莲辉. 3种杂交石斛种子无菌播种快繁技术. 贵州林业科技. 2024(03): 13-19 .
    2. 刘靓,庄卫东,马晓娟,尤桂春,汤红玲,陈品品. 春石斛种质资源的表型性状及聚类分析. 热带农业科学. 2023(03): 1-10 .
    3. 崔学强,黄昌艳,邓杰玲,李先民,李秀玲,张自斌. 基于SLAF-seq技术的石斛兰SNP标记开发及亲缘关系分析. 生物技术通报. 2023(06): 141-148 .
    4. 彭婵,张新叶,刘宗坤,马林江,陈慧玲. 石斛属植物SSR分子标记的研究进展. 中国农学通报. 2022(13): 36-40 .
    5. 刘怡,王玥瑶,杨柳青,操赛雨,燕鑫,何碧珠,郭梨锦. 天宫石斛快繁技术研究. 种子. 2022(07): 138-143+149 .
    6. 崔学强,唐璇,黄昌艳,邓杰玲,李秀玲,卢家仕,张自斌. 基于iPBS标记的石斛兰种质资源遗传多样性分析及DNA指纹图谱构建. 热带作物学报. 2021(02): 317-324 .
    7. 杨红旗,许兰杰,李磊,董薇,梁慧珍,郝仰坤. 我国石斛新品种选育进展、存在问题及发展对策. 中国种业. 2021(11): 26-30 .
    8. 李娜,杨蕾蕾,陈朋,李凌飞. 蜻蜓石斛类原球茎的诱导与植株再生系统建立. 植物生理学报. 2021(12): 2387-2392 .
    9. 李桂琳,姜艳,刘林,李泽生,高燕,郭彩留,周侯光. 5种石斛花器官特性及人工授粉研究. 热带农业科技. 2019(04): 32-37+44 .

    Other cited types(2)

Catalog

    Article views (792) PDF downloads (175) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return