• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Du Zhi, Chen Zhenxiong, Li Rui, Liu Ziwei, Huang Xin. Development of climate-sensitive nonlinear mixed-effects tree height-DBH model for Cunninghamia lanceolata[J]. Journal of Beijing Forestry University, 2023, 45(9): 52-61. DOI: 10.12171/j.1000-1522.20230052
Citation: Du Zhi, Chen Zhenxiong, Li Rui, Liu Ziwei, Huang Xin. Development of climate-sensitive nonlinear mixed-effects tree height-DBH model for Cunninghamia lanceolata[J]. Journal of Beijing Forestry University, 2023, 45(9): 52-61. DOI: 10.12171/j.1000-1522.20230052

Development of climate-sensitive nonlinear mixed-effects tree height-DBH model for Cunninghamia lanceolata

More Information
  • Received Date: March 09, 2023
  • Revised Date: April 11, 2023
  • Accepted Date: May 11, 2023
  • Available Online: May 14, 2023
  • Published Date: September 24, 2023
  •   Objective  The nonlinear mixed-effects tree height-DBH model of Cunninghamia lanceolata based on stand dominant height and climate factors is established, which provides theoretical basis for the research on growth and forest management.
      Method  Based on the annual monitoring and evaluation of national forest resources of Guangxi Zhuang Autonomous Region, southern China in 2020, this study used the data of DBH and height of each tree, climate data of 25 Cunninghamia lanceolata sample plots, chose the basic model with the highest simulation accuracy among seven common height-DBH models. On this basis, stand competition, site condition and climatic factors were used to build generalized nonlinear model, then used the sample plot effect to build nonlinear mixed-effects model. The 10-fold cross-validation method was applied to the test of three models.
      Result  Chapman-Richards model was the basic height-DBH model with the highest accuracy. The stand dominant height, basal area of forest stands and the mean annual precipitation were significantly related to the tree height growth, which were used to build generalized nonlinear model. Through comparative analysis, the study selected three random parameters to build nonlinear mixed-effects model. The adjustment determination coefficient of basic model, generalized nonlinear model and nonlinear mixed-effects model were 0.674 2, 0.797 3 and 0.857 3, respectively, the mean absolute errors were 1.607 5, 1.270 1 and 1.010 6 m, the root-mean-square errors were 2.032 1, 1.632 1 and 1.338 4 m, and the relative root mean square errors were 20.796 4%, 16.703 3% and 13.697 3%, respectively. The nonlinear mixed-effects model showed the best fitting effect.
      Conclusion  Using nonlinear mixed-effects tree height-DBH model based on stand dominant height and climatic factors can better describe the height-DBH curve of Cunninghamia lanceolata, which is suitable for the prediction of tree height on a large scale.
  • [1]
    邓祥鹏, 许芳泽, 赵善超, 等. 基于贝叶斯法的新疆天山云杉树高−胸径模型研究[J]. 北京林业大学学报, 2023, 45(1): 11−20.

    Deng X P, Xu F Z, Zhao S C, et al. Tree height-DBH model for Picea schrenkiana in Tianshan Mountain, Xinjiang of northwestern China based on Bayesian method[J]. Journal of Beijing Forestry University, 2023, 45(1): 11−20.
    [2]
    Curtis R O. Height-diameter and height-diameter-age equations for second-growth Douglas-fir[J]. Forestry Science, 1967, 13(4): 365−375.
    [3]
    Fang Z X, Bailey R L. Height-diameter models for tropical forests on Hainan Island in southern China[J]. Forest Ecology and Management, 1998, 110: 315−327. doi: 10.1016/S0378-1127(98)00297-7
    [4]
    王明亮, 唐守正. 标准树高曲线的研制[J]. 林业科学研究, 1997, 10(4): 259−264.

    Wang M L, Tang S Z. Research on universal height-diameter curves[J]. Forest Research, 1997, 10(4): 259−264.
    [5]
    骆期邦, 曾伟生, 彭长清. 可变参数相对树高曲线模型及其应用研究[J]. 林业科学, 1997, 33(3): 202−210.

    Luo Q B, Zeng W S, Peng C Q. Variable relative tree height curve model and its application in tree volume estimation[J]. Scientia Silvae Sinicae, 1997, 33(3): 202−210.
    [6]
    赵俊卉, 亢新刚, 刘燕. 长白山主要针叶树种最优树高曲线研究[J]. 北京林业大学学报, 2009, 31(4): 13−18.

    Zhao J H, Kang X G, Liu Y. Optimal height-diameter models for dominant coniferous species in Changbai Mountain, northeastern China[J]. Journal of Beijing Forestry University, 2009, 31(4): 13−18.
    [7]
    Temesgen H, Gadow K V. Generalized height-diameter models: an application for major tree species in complex stands of interior British Columbia[J]. European Journal of Forest Research, 2004, 123: 45−51. doi: 10.1007/s10342-004-0020-z
    [8]
    赵俊卉, 亢新刚, 张慧东, 等. 长白山3个主要针叶树种的标准树高曲线[J]. 林业科学, 2010, 46(10): 191−194.

    Zhao J H, Kang X G, Zhang H D, et al. Generalized height-diameter models for three main coniferous trees species in Changbai Mountain[J]. Scientia Silvae Sinicae, 2010, 46(10): 191−194.
    [9]
    赵俊卉, 亢新刚, 张慧东, 等. 长白山主要针叶树种胸径和树高变异系数与竞争因子的关系[J]. 应用生态学报, 2009, 20(8): 1832−1837.

    Zhao J H, Kang X G, Zhang H D, et al. Relationships between coefficient of variation of diameter and height competition index of main coniferous trees in Changbai Mountains[J]. Chinese Journal of Applied Ecology, 2009, 20(8): 1832−1837.
    [10]
    蒋益, 邓华锋, 高东启, 等. 用度量误差模型方法建立油松树高曲线方程组[J]. 东北林业大学学报, 2015, 43(5): 126−129.

    Jiang Y, Deng H F, Gao D Q, et al. Constructing height-diameter curve equations with measurement error models for Chinese pine stands[J]. Journal of Northeast Forestry University, 2015, 43(5): 126−129.
    [11]
    娄明华, 张会儒, 雷相东, 等. 基于空间自相关的天然蒙古栎阔叶混交林林木胸径−树高模型[J]. 林业科学, 2017, 53(6): 67−76.

    Lou M H, Zhang H R, Lei X D, et al. Individual diameter-height models for mixed Quercus mongolica broadleaved natural stands based on spatial autocorrelation[J]. Scientia Silvae Sinice, 2017, 53(6): 67−76.
    [12]
    Sharma M, Parton J. Height-diameter equations for boreal tree species in Ontario using a mixed-effects modeling approach[J]. Forest Ecology and Management, 2007, 249(3): 187−198. doi: 10.1016/j.foreco.2007.05.006
    [13]
    Felipe C, Margarida T, Paula S, et al. A generalized nonlinear mixed-effects height-diameter model for Eucalyptus globulus L. in northwestern Spain[J]. Forest Ecology and Management, 2009, 259: 943−952.
    [14]
    Karol B, Lauri M, Paula S. Mixed-effects generalized height-diameter model for young silver birch stands on post-agricultural lands[J]. Forest Ecology and Management, 2020, 460: 117901. doi: 10.1016/j.foreco.2020.117901
    [15]
    李杰. 基于分级的福建将乐地区栲树树高曲线模型研究[J]. 西北农林科技大学学报, 2019, 47(11): 34−42.

    Li J. Classification based height-diameter model for Castanopsis fargesii in Jiangle, Fujian[J]. Journal of Northwest A&F University, 2019, 47(11): 34−42.
    [16]
    李海奎, 法蕾. 基于分级的全国主要树种树高−胸径曲线模型[J]. 林业科学, 2011, 47(10): 83−90.

    Li H K, Fa L. Height-diameter model for major tree species in China using the classified height method[J]. Scientia Silvae Sinicae, 2011, 47(10): 83−90.
    [17]
    郭嘉, 孙帅超, 田相林, 等. 引入优势木树高建立的秦岭林区松栎林树高−胸径模型[J]. 东北林业大学学报, 2019, 47(11): 66−72.

    Guo J, Sun S C, Tian X L, et al. Predicting tree height from tree diameter and dominant height for pine-oak forests in Qinling Mountains[J]. Journal of Northeast Forestry University, 2019, 47(11): 66−72.
    [18]
    符利勇. 非线性混合效应模型及其在林业上应用[D]. 北京: 中国林业科学研究院, 2012.

    Fu L Y. Nonlinear mixed effects model and its application in forestry[D]. Beijing: Chinese Academy of Forestry, 2012.
    [19]
    董云飞. 福建杉木人工林单木主长模型的研究[D]. 北京: 北京林业大学, 2015.

    Dong Y F. Study on individual tree growth model for Chinese fir plantation in Fujian[D]. Beijing: Beijing Forestry University, 2015.
    [20]
    张海平, 李凤日, 董利虎, 等. 基于气象因子的白桦天然林单木直径生长模型[J]. 应用生态学报, 2017, 28(6): 1851−1859.

    Zhang H P, Li F R, Dong L H, et al. Individual tree diameter increment model for natural Betula platyphylla forests based on meteorological factors[J]. Chinese Journal of Applied Ecology, 2017, 28(6): 1851−1859.
    [21]
    杨鑫, 王建军, 杜志, 等. 基于气候因子的兴安落叶松天然林单木直径生长模型构建[J]. 北京林业大学学报, 2022, 44(8): 1−11.

    Yang X, Wang J J, Du Z, et al. Development of individual-tree diameter increment model for natural Larix gmelinii forests based on climatic factors[J]. Journal of Beijing Forestry University, 2022, 44(8): 1−11.
    [22]
    王淼, 白淑菊, 陶大立, 等. 大气增温对长白山林木直径生长的影响[J]. 应用生态学报, 1995, 6(2): 128−132.

    Wang M, Bai S J, Tao D L, et al. Effect of rise in air-temperature on tree ring growth of forest on Changbai Mountain[J]. Chinese Journal of Applied Ecology, 1995, 6(2): 128−132.
    [23]
    于健, 徐倩倩, 刘文慧, 等. 长白山东坡不同海拔长白落叶松径向生长对气候变化的响应[J]. 植物生态学报, 2016, 40(1): 24−35. doi: 10.17521/cjpe.2015.0216

    Yu J, Xu Q Q, Liu W H, et al. Response of radial growth to climate change for Larix olgensis along an altitudinal gradient on the eastern slope of Changbai Mountain, Northeast China[J]. Chinese Journal of Plant Ecology, 2016, 40(1): 24−35. doi: 10.17521/cjpe.2015.0216
    [24]
    韩艳刚, 周旺明, 齐麟, 等. 长白山树木径向生长对气候因子的响应[J]. 应用生态学报, 2019, 30(5): 1513−1520.

    Han Y G, Zhou W M, Qi L, et al. Tree radial growth-climate relationship in Changbai Mountain, Northeast China[J]. Chinese Journal of Applied Ecology, 2019, 30(5): 1513−1520.
    [25]
    Wang X, Fang J, Tang Z, et al. Climatic control primary forest structure and DBH-height allometry in northeast China[J]. Forest Ecology and Management, 2006, 234(1): 264−274.
    [26]
    Leites L P, Robinson A P, Rehfeldt G E, et al. Height-growth response to climatic changes differs among populations of Douglas-fir: a novel analysis of historic data[J]. Ecological Applications, 2012, 22(1): 154−165. doi: 10.1890/11-0150.1
    [27]
    Yang Y, Huang S. Effects of competition and climate variables on modelling height to live crown for three boreal tree species in Alberta, Canada[J]. European Journal of Forest Research, 2018, 137(2): 153−167. doi: 10.1007/s10342-017-1095-7
    [28]
    Fortin M, van Couwenberghe R, Perez V, et al. Evidence of climate effects on the height-diameter relationships of tree species [J/OL]. Annals of Forest Science, 2019, 76(1): 1[2022−12−19]. https://link.springer.com/article/10.1007/s13595-018-0784-9.
    [29]
    国家林业和草原局. 2021中国林草资源及生态状况[M]. 北京: 中国林业出版社, 2022.

    National Forestry and Grassland Administration. Forest and grassland resources and ecological status in China in 2021 [M]. Beijing: China Forestry Publishing House, 2022.
    [30]
    Wang T, Hamann A, Spittlehouse D L, et al. Climatewna-high-resolution spatial climate data for western north America[J]. Journal of Applied Meteorology and Climatology, 2012, 51(1): 16−29. doi: 10.1175/JAMC-D-11-043.1
    [31]
    Sharma M. Comparing height-diameter relationships of boreal tree species grown in plantations and natural stands[J]. Forest Science, 2016, 62(1): 70−77.
    [32]
    Han Y G, Lei Z Y, Ciceu A, et al. Determining an accurate and cost-effective individual height-diameter model for Mongolian pine on sandy land [J/OL]. Forests, 2021, 12: 1144[2023−01−19]. https://doi.org/10.3390/f12091144.
    [33]
    Vonesh E F, Chinchilli V M. Linear and nonlinear models for the analysis of repeated measurements [M]. New York: Marcel Dekker Inc., 1997.
    [34]
    Neumann M, Mues V, Moreno A, et al. Climate variability drives recent tree mortality in Europe[J]. Global Change Biology, 2017, 23: 4788−4797. doi: 10.1111/gcb.13724
    [35]
    刘敏, 毛子军, 厉悦, 等. 不同纬度阔叶红松林红松径向生长对气候因子的响应[J]. 应用生态学报, 2016, 27(5): 1341−1352.

    Liu M, Mao Z J, Li Y, et al. Response of radial growth of Pinus koraiensis in broad-leaved Korean pine forests with different latitudes to climatical factors[J]. Chinese Journal of Applied Ecology, 2016, 27(5): 1341−1352.
    [36]
    Wang M, Zhao Y H, Zhen Z, et al. Individual-tree diameter growth model for Korean pine plantations based on optimized interpolation of meteorological variables[J]. Journal of Forestry Research, 2021, 32(4): 1535−1552.
    [37]
    Franceschini T, Schneider R. Influence of shade tolerance and development stage on the allometry of ten temperate tree species[J]. Physiological Ecology, 2014, 176(3): 739−749.
    [38]
    Tian D Y, Jiang L C, Shahzad M K, et al. Climate-sensitive tree height-diameter models for mixed forests in Northeastern China[J]. Agricultural and Forest Meteorology, 2022, 326: 1−12.
    [39]
    Fang Z, Bailey R L. Nonlinear mixed effects modeling for slash pine dominant height growth following intensive silvicultural treatments[J]. Forest Science, 2001, 47(3): 287−300.
    [40]
    Calama R, Montero G. Interregional nonlinear height-diameter model with random coefficients for stone pine in Spane[J]. Canadian Journal of Forest Research, 2004, 34: 150−163. doi: 10.1139/x03-199
    [41]
    符利勇, 唐守正, 张会儒, 等. 基于多水平非线性混合效应蒙古栎林单木断面积模型[J]. 林业科学研究, 2015, 28(1): 23−31.

    Fu L Y, Tang S Z, Zhang H R, et al. Multilevel nonlinear mixed-effects basal area models for individual trees of Quercus mongolica[J]. Forest Research, 2015, 28(1): 23−31.
  • Cited by

    Periodical cited type(4)

    1. 孙一鸣,贾黎明,祝维,朱静伟,曲冠博,古丽米热·依力哈木,周欧,王亚飞,张国庆. 毛白杨幼龄林细根对树种组成和林分密度的响应初探. 南京林业大学学报(自然科学版). 2025(02): 45-56 .
    2. 田娇,张维江,冯娜,黄艳,马轶,马波. 降雨集流渗灌条件下红梅杏根系分布研究. 节水灌溉. 2024(08): 124-130 .
    3. 杨向东,邓磊. 共和盆地东缘不同林龄青杨人工林细根生物量和形态特征. 西北林学院学报. 2023(02): 8-16+131 .
    4. 李芳,张西西,吴建芝,刘倩. 土壤氮养分空间异质性对油松根系的影响. 东北林业大学学报. 2023(05): 79-83 .

    Other cited types(1)

Catalog

    Article views (553) PDF downloads (123) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return