Citation: | Du Zhi, Chen Zhenxiong, Li Rui, Liu Ziwei, Huang Xin. Development of climate-sensitive nonlinear mixed-effects tree height-DBH model for Cunninghamia lanceolata[J]. Journal of Beijing Forestry University, 2023, 45(9): 52-61. DOI: 10.12171/j.1000-1522.20230052 |
[1] |
邓祥鹏, 许芳泽, 赵善超, 等. 基于贝叶斯法的新疆天山云杉树高−胸径模型研究[J]. 北京林业大学学报, 2023, 45(1): 11−20.
Deng X P, Xu F Z, Zhao S C, et al. Tree height-DBH model for Picea schrenkiana in Tianshan Mountain, Xinjiang of northwestern China based on Bayesian method[J]. Journal of Beijing Forestry University, 2023, 45(1): 11−20.
|
[2] |
Curtis R O. Height-diameter and height-diameter-age equations for second-growth Douglas-fir[J]. Forestry Science, 1967, 13(4): 365−375.
|
[3] |
Fang Z X, Bailey R L. Height-diameter models for tropical forests on Hainan Island in southern China[J]. Forest Ecology and Management, 1998, 110: 315−327. doi: 10.1016/S0378-1127(98)00297-7
|
[4] |
王明亮, 唐守正. 标准树高曲线的研制[J]. 林业科学研究, 1997, 10(4): 259−264.
Wang M L, Tang S Z. Research on universal height-diameter curves[J]. Forest Research, 1997, 10(4): 259−264.
|
[5] |
骆期邦, 曾伟生, 彭长清. 可变参数相对树高曲线模型及其应用研究[J]. 林业科学, 1997, 33(3): 202−210.
Luo Q B, Zeng W S, Peng C Q. Variable relative tree height curve model and its application in tree volume estimation[J]. Scientia Silvae Sinicae, 1997, 33(3): 202−210.
|
[6] |
赵俊卉, 亢新刚, 刘燕. 长白山主要针叶树种最优树高曲线研究[J]. 北京林业大学学报, 2009, 31(4): 13−18.
Zhao J H, Kang X G, Liu Y. Optimal height-diameter models for dominant coniferous species in Changbai Mountain, northeastern China[J]. Journal of Beijing Forestry University, 2009, 31(4): 13−18.
|
[7] |
Temesgen H, Gadow K V. Generalized height-diameter models: an application for major tree species in complex stands of interior British Columbia[J]. European Journal of Forest Research, 2004, 123: 45−51. doi: 10.1007/s10342-004-0020-z
|
[8] |
赵俊卉, 亢新刚, 张慧东, 等. 长白山3个主要针叶树种的标准树高曲线[J]. 林业科学, 2010, 46(10): 191−194.
Zhao J H, Kang X G, Zhang H D, et al. Generalized height-diameter models for three main coniferous trees species in Changbai Mountain[J]. Scientia Silvae Sinicae, 2010, 46(10): 191−194.
|
[9] |
赵俊卉, 亢新刚, 张慧东, 等. 长白山主要针叶树种胸径和树高变异系数与竞争因子的关系[J]. 应用生态学报, 2009, 20(8): 1832−1837.
Zhao J H, Kang X G, Zhang H D, et al. Relationships between coefficient of variation of diameter and height competition index of main coniferous trees in Changbai Mountains[J]. Chinese Journal of Applied Ecology, 2009, 20(8): 1832−1837.
|
[10] |
蒋益, 邓华锋, 高东启, 等. 用度量误差模型方法建立油松树高曲线方程组[J]. 东北林业大学学报, 2015, 43(5): 126−129.
Jiang Y, Deng H F, Gao D Q, et al. Constructing height-diameter curve equations with measurement error models for Chinese pine stands[J]. Journal of Northeast Forestry University, 2015, 43(5): 126−129.
|
[11] |
娄明华, 张会儒, 雷相东, 等. 基于空间自相关的天然蒙古栎阔叶混交林林木胸径−树高模型[J]. 林业科学, 2017, 53(6): 67−76.
Lou M H, Zhang H R, Lei X D, et al. Individual diameter-height models for mixed Quercus mongolica broadleaved natural stands based on spatial autocorrelation[J]. Scientia Silvae Sinice, 2017, 53(6): 67−76.
|
[12] |
Sharma M, Parton J. Height-diameter equations for boreal tree species in Ontario using a mixed-effects modeling approach[J]. Forest Ecology and Management, 2007, 249(3): 187−198. doi: 10.1016/j.foreco.2007.05.006
|
[13] |
Felipe C, Margarida T, Paula S, et al. A generalized nonlinear mixed-effects height-diameter model for Eucalyptus globulus L. in northwestern Spain[J]. Forest Ecology and Management, 2009, 259: 943−952.
|
[14] |
Karol B, Lauri M, Paula S. Mixed-effects generalized height-diameter model for young silver birch stands on post-agricultural lands[J]. Forest Ecology and Management, 2020, 460: 117901. doi: 10.1016/j.foreco.2020.117901
|
[15] |
李杰. 基于分级的福建将乐地区栲树树高曲线模型研究[J]. 西北农林科技大学学报, 2019, 47(11): 34−42.
Li J. Classification based height-diameter model for Castanopsis fargesii in Jiangle, Fujian[J]. Journal of Northwest A&F University, 2019, 47(11): 34−42.
|
[16] |
李海奎, 法蕾. 基于分级的全国主要树种树高−胸径曲线模型[J]. 林业科学, 2011, 47(10): 83−90.
Li H K, Fa L. Height-diameter model for major tree species in China using the classified height method[J]. Scientia Silvae Sinicae, 2011, 47(10): 83−90.
|
[17] |
郭嘉, 孙帅超, 田相林, 等. 引入优势木树高建立的秦岭林区松栎林树高−胸径模型[J]. 东北林业大学学报, 2019, 47(11): 66−72.
Guo J, Sun S C, Tian X L, et al. Predicting tree height from tree diameter and dominant height for pine-oak forests in Qinling Mountains[J]. Journal of Northeast Forestry University, 2019, 47(11): 66−72.
|
[18] |
符利勇. 非线性混合效应模型及其在林业上应用[D]. 北京: 中国林业科学研究院, 2012.
Fu L Y. Nonlinear mixed effects model and its application in forestry[D]. Beijing: Chinese Academy of Forestry, 2012.
|
[19] |
董云飞. 福建杉木人工林单木主长模型的研究[D]. 北京: 北京林业大学, 2015.
Dong Y F. Study on individual tree growth model for Chinese fir plantation in Fujian[D]. Beijing: Beijing Forestry University, 2015.
|
[20] |
张海平, 李凤日, 董利虎, 等. 基于气象因子的白桦天然林单木直径生长模型[J]. 应用生态学报, 2017, 28(6): 1851−1859.
Zhang H P, Li F R, Dong L H, et al. Individual tree diameter increment model for natural Betula platyphylla forests based on meteorological factors[J]. Chinese Journal of Applied Ecology, 2017, 28(6): 1851−1859.
|
[21] |
杨鑫, 王建军, 杜志, 等. 基于气候因子的兴安落叶松天然林单木直径生长模型构建[J]. 北京林业大学学报, 2022, 44(8): 1−11.
Yang X, Wang J J, Du Z, et al. Development of individual-tree diameter increment model for natural Larix gmelinii forests based on climatic factors[J]. Journal of Beijing Forestry University, 2022, 44(8): 1−11.
|
[22] |
王淼, 白淑菊, 陶大立, 等. 大气增温对长白山林木直径生长的影响[J]. 应用生态学报, 1995, 6(2): 128−132.
Wang M, Bai S J, Tao D L, et al. Effect of rise in air-temperature on tree ring growth of forest on Changbai Mountain[J]. Chinese Journal of Applied Ecology, 1995, 6(2): 128−132.
|
[23] |
于健, 徐倩倩, 刘文慧, 等. 长白山东坡不同海拔长白落叶松径向生长对气候变化的响应[J]. 植物生态学报, 2016, 40(1): 24−35. doi: 10.17521/cjpe.2015.0216
Yu J, Xu Q Q, Liu W H, et al. Response of radial growth to climate change for Larix olgensis along an altitudinal gradient on the eastern slope of Changbai Mountain, Northeast China[J]. Chinese Journal of Plant Ecology, 2016, 40(1): 24−35. doi: 10.17521/cjpe.2015.0216
|
[24] |
韩艳刚, 周旺明, 齐麟, 等. 长白山树木径向生长对气候因子的响应[J]. 应用生态学报, 2019, 30(5): 1513−1520.
Han Y G, Zhou W M, Qi L, et al. Tree radial growth-climate relationship in Changbai Mountain, Northeast China[J]. Chinese Journal of Applied Ecology, 2019, 30(5): 1513−1520.
|
[25] |
Wang X, Fang J, Tang Z, et al. Climatic control primary forest structure and DBH-height allometry in northeast China[J]. Forest Ecology and Management, 2006, 234(1): 264−274.
|
[26] |
Leites L P, Robinson A P, Rehfeldt G E, et al. Height-growth response to climatic changes differs among populations of Douglas-fir: a novel analysis of historic data[J]. Ecological Applications, 2012, 22(1): 154−165. doi: 10.1890/11-0150.1
|
[27] |
Yang Y, Huang S. Effects of competition and climate variables on modelling height to live crown for three boreal tree species in Alberta, Canada[J]. European Journal of Forest Research, 2018, 137(2): 153−167. doi: 10.1007/s10342-017-1095-7
|
[28] |
Fortin M, van Couwenberghe R, Perez V, et al. Evidence of climate effects on the height-diameter relationships of tree species [J/OL]. Annals of Forest Science, 2019, 76(1): 1[2022−12−19]. https://link.springer.com/article/10.1007/s13595-018-0784-9.
|
[29] |
国家林业和草原局. 2021中国林草资源及生态状况[M]. 北京: 中国林业出版社, 2022.
National Forestry and Grassland Administration. Forest and grassland resources and ecological status in China in 2021 [M]. Beijing: China Forestry Publishing House, 2022.
|
[30] |
Wang T, Hamann A, Spittlehouse D L, et al. Climatewna-high-resolution spatial climate data for western north America[J]. Journal of Applied Meteorology and Climatology, 2012, 51(1): 16−29. doi: 10.1175/JAMC-D-11-043.1
|
[31] |
Sharma M. Comparing height-diameter relationships of boreal tree species grown in plantations and natural stands[J]. Forest Science, 2016, 62(1): 70−77.
|
[32] |
Han Y G, Lei Z Y, Ciceu A, et al. Determining an accurate and cost-effective individual height-diameter model for Mongolian pine on sandy land [J/OL]. Forests, 2021, 12: 1144[2023−01−19]. https://doi.org/10.3390/f12091144.
|
[33] |
Vonesh E F, Chinchilli V M. Linear and nonlinear models for the analysis of repeated measurements [M]. New York: Marcel Dekker Inc., 1997.
|
[34] |
Neumann M, Mues V, Moreno A, et al. Climate variability drives recent tree mortality in Europe[J]. Global Change Biology, 2017, 23: 4788−4797. doi: 10.1111/gcb.13724
|
[35] |
刘敏, 毛子军, 厉悦, 等. 不同纬度阔叶红松林红松径向生长对气候因子的响应[J]. 应用生态学报, 2016, 27(5): 1341−1352.
Liu M, Mao Z J, Li Y, et al. Response of radial growth of Pinus koraiensis in broad-leaved Korean pine forests with different latitudes to climatical factors[J]. Chinese Journal of Applied Ecology, 2016, 27(5): 1341−1352.
|
[36] |
Wang M, Zhao Y H, Zhen Z, et al. Individual-tree diameter growth model for Korean pine plantations based on optimized interpolation of meteorological variables[J]. Journal of Forestry Research, 2021, 32(4): 1535−1552.
|
[37] |
Franceschini T, Schneider R. Influence of shade tolerance and development stage on the allometry of ten temperate tree species[J]. Physiological Ecology, 2014, 176(3): 739−749.
|
[38] |
Tian D Y, Jiang L C, Shahzad M K, et al. Climate-sensitive tree height-diameter models for mixed forests in Northeastern China[J]. Agricultural and Forest Meteorology, 2022, 326: 1−12.
|
[39] |
Fang Z, Bailey R L. Nonlinear mixed effects modeling for slash pine dominant height growth following intensive silvicultural treatments[J]. Forest Science, 2001, 47(3): 287−300.
|
[40] |
Calama R, Montero G. Interregional nonlinear height-diameter model with random coefficients for stone pine in Spane[J]. Canadian Journal of Forest Research, 2004, 34: 150−163. doi: 10.1139/x03-199
|
[41] |
符利勇, 唐守正, 张会儒, 等. 基于多水平非线性混合效应蒙古栎林单木断面积模型[J]. 林业科学研究, 2015, 28(1): 23−31.
Fu L Y, Tang S Z, Zhang H R, et al. Multilevel nonlinear mixed-effects basal area models for individual trees of Quercus mongolica[J]. Forest Research, 2015, 28(1): 23−31.
|