• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Luo Ye, Wang Jun, Yang Yuchun, He Huaijiang, Liu Ting. Growth patterns of Juglans mandshurica secondary forest with stand age and stand density in Northeast China[J]. Journal of Beijing Forestry University, 2024, 46(6): 10-19. DOI: 10.12171/j.1000-1522.20230171
Citation: Luo Ye, Wang Jun, Yang Yuchun, He Huaijiang, Liu Ting. Growth patterns of Juglans mandshurica secondary forest with stand age and stand density in Northeast China[J]. Journal of Beijing Forestry University, 2024, 46(6): 10-19. DOI: 10.12171/j.1000-1522.20230171

Growth patterns of Juglans mandshurica secondary forest with stand age and stand density in Northeast China

More Information
  • Received Date: July 04, 2023
  • Revised Date: January 25, 2024
  • Accepted Date: March 04, 2024
  • Available Online: March 07, 2024
  • Objective 

    This paper researches the suitable stand density for the growth of secondary forest of Juglans mandshurica in different age groups by understanding the growth patterns of J. mandshurica with stand age and stand density, in order to provide theoretical support for the subsequent management of secondary forests of J. mandshurica.

    Method 

    Survey plots of different stand ages and stand densities for J. mandshurica were set up in Zhangguangcailing (ZGCL), Laoyeling (LYL), Changbai Mountain (CBS) and Hadaling (HDL) of the eastern part of the three northeastern provinces, to analyze the relationship between DBH, tree height and accumulation with stand age and stand density.

    Result 

    (1) The average DBH, average tree height and accumulation of J. mandshurica were the largest in Changbai Mountain, which were significantly larger than those in other areas (P < 0.05), and the relationship between each index was CBS > LYL > ZGCL > HDL. (2) According to the model fitting, logistic model was the best fitting method for stand age with DBH, tree height and accumulation of J. mandshurica (R2 values of 0.983, 0.962, and 0.973, respectively). The quadratic model was the best fitting method for stand density with DBH, tree height and accumulation of J. mandshurica (R2 values of 0.834, 0.666 and 0.859, respectively). (3) The DBH, tree height and accumulation of J. mandshurica were increasing with age in each region, and the increase rate was faster in the early stage. However, the growth rate slowed down after reaching 50 years. (4) The DBH and tree height of J. mandshurica decreased with increasing stand density in each region, and the decreasing trend was smaller at low density, but the decreasing speed was higher when the density exceeded a certain level. (5) In the four regions, the growth of J. mandshurica in terms of DBH, tree height, and volume showed that for trees less than 40 years old, optimal growth occurred at a medium stand density of 450−550 tree/ha. For trees over 40 years old, optimal growth was found at a lower stand density of 350−450 tree/ha.

    Conclusion 

    The results preliminarily reveal the suitable control density for different ages of J. mandshurica stand in varied regions, which can be controlled through artificial nurturing and thinning to meet the growth space of J. mandshurica trees. These findings can serve as a basis for the management of J. mandshurica secondary forests.

  • [1]
    周以良. 中国东北植被地理[M]. 北京: 科学出版社, 1997.

    Zhou Y L. Vegetation geography of northeast China[M]. Beijing: Science Press, 1997.
    [2]
    罗也, 杨雨春, 王君, 等. 吉林省长白山区胡桃楸天然次生混交林立地指数模型[J]. 应用生态学报, 2019, 30(12): 4049−4058.

    Luo Y, Yang Y C, Wang J, et al. Site index model of Juglans mandshurica natural secondary mixed forest in Changbai Mountain area, Jilin Province, China[J]. Chinese Journal of Applied Ecology, 2019, 30(12): 4049−4058.
    [3]
    陈思羽, 杨辉, 韩姣, 等. 长白山区核桃楸结实性状种源变异分析[J]. 北京林业大学学报, 2015, 35(12): 32−40.

    Chen S Y, Yang H, Han J, et al. Provenance variation of seed traits of Juglans mandshurica in Changbai Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2015, 35(12): 32−40.
    [4]
    王斯彤. 辽东地区胡桃楸天然林ISSR分子标记体系的建立和优化[J]. 分子植物育种, 2021, 19(7): 2286−2292.

    Wang S T. Establishment and optimization of ISSR molecular marker system for natural forest of Juglans mandshurica in Eastern Liaoning Area[J]. Molecular Plant Breeding, 2021, 19(7): 2286−2292.
    [5]
    及利, 韩姣, 王芳, 等. 干旱胁迫对不同土壤基质下核桃楸幼苗的生理特性的影响[J]. 植物研究, 2019, 39(5): 722−732. doi: 10.7525/j.issn.1673-5102.2019.05.011

    Ji L, Han J, Wang F, et al. Effects of drought stress on photosynthetic and physiological characteristics of Juglans mandshurica seedlings in different soil substrates[J]. Bulletin of Botanical Research, 2019, 39(5): 722−732. doi: 10.7525/j.issn.1673-5102.2019.05.011
    [6]
    Salahuddin, Boris R, Muhammad R, et al. Root order-based traits of Manchurian walnut & larch and their plasticity under interspecific competition[J]. Scientific Reports, 2018, 8: 9815−9829. doi: 10.1038/s41598-018-27832-0
    [7]
    刘月, 王君, 杨雨春, 等. 不同林分密度胡桃楸胸径、树高、材积与冠幅关系[J]. 森林工程, 2021, 37(3): 28−35. doi: 10.3969/j.issn.1006-8023.2021.03.004

    Liu Y, Wang J, Yang Y C, et al. Relationship between crown width and DBH, tree height or volume of Juglans mandshurica in stands of different densities[J]. Forest Engineering, 2021, 37(3): 28−35. doi: 10.3969/j.issn.1006-8023.2021.03.004
    [8]
    唐丽丽, 张梅, 赵香林, 等. 华北地区胡桃楸林分布规律及群落构建机制分析[J]. 植物生态学报, 2019, 43(10): 1−9. doi: 10.17521/cjpe.2018.0161

    Tang L L, Zhang M, Zhao X L, et al. Species distribution and community assembly rules of Juglans mandshurica in North China[J]. Chinese Journal of Plant Ecology, 2019, 43(10): 1−9. doi: 10.17521/cjpe.2018.0161
    [9]
    Song N Q, Zhang J T, Zhao F G. The PCA index for measuring functional diversity and its appliation to Juglans mandshurica communities in the Beijing Mountains, China[J]. International Journal of Biomathematics, 2017, 10: 127−139.
    [10]
    罗也, 及利, 杨雨春, 等. 东北地区胡桃楸次生混交林乔木物种组成和多样性[J]. 生态学杂志, 2020, 39(9): 2887−2895. doi: 10.13292/j.1000-4890.202009.017

    Luo Y, Ji L, Yang Y C, et al. Tree species composition and diversity of secondary mixed forests of Juglans mandshurica in Northeast China[J]. Chinese Journal of Ecology, 2020, 39(9): 2887−2895. doi: 10.13292/j.1000-4890.202009.017
    [11]
    李晓燕, 段爱国, 张建国, 等. 杉木幼龄林分断面积生长的良种与密度效应研究[J]. 林业科学研究, 2021, 34(1): 65−70.

    Li X Y, Duan A G, Zhang J G, et al. Effects of improved varieties and densities on stand basal area growth of young Chinese fir (Cunninghamia lanceolata) plantation[J]. Forest Research, 2021, 34(1): 65−70.
    [12]
    田新辉, 孙荣喜, 李军, 等. 107杨人工林密度对林木生长的影响[J]. 林业科学, 2011, 47(3): 184−188. doi: 10.11707/j.1001-7488.20110328

    Tian X H, Sun R X, Li J, et al. Effects of stand density on growth of Populus × euramericana ‘Neva’ plantations[J]. Scientia Silvae Sinicae, 2011, 47(3): 184−188. doi: 10.11707/j.1001-7488.20110328
    [13]
    李洁, 列志旸, 许松葵, 等. 不同密度的银合欢林生长分析[J]. 中南林业科技大学学报, 2016, 36(6): 70−74. doi: 10.14067/j.cnki.1673-923x.2016.06.014

    Li J, Lie Z Y, Xu S K, et al. Growth analysis of Leucaena leucocephala plantations with different densities[J]. Journal of Central South University of Forestry & Technology, 2016, 36(6): 70−74. doi: 10.14067/j.cnki.1673-923x.2016.06.014
    [14]
    Cicek E, Cicek N, Bilir N. Effects of seedbed density on oneyear-old Fraxinus angustifolia seedling characteristics and outplanting performance[J]. New Forests, 2007, 33: 81−91. doi: 10.1007/s11056-006-9015-6
    [15]
    Woeste K E, Jacobs D F, McKenna J R. Half-sib seed sourceand nursery sowing density affect black walnut (Juglans nigra) growth after 5 years[J]. New Forests, 2011, 41: 235−244. doi: 10.1007/s11056-010-9224-x
    [16]
    代林利, 周丽丽, 伍丽华, 等. 不同林分密度杉木林生态系统碳密度及其垂直空间分配特征[J]. 生态学报, 2022, 42(2): 710−719. doi: 10.5846/stxb202011172960

    Dai L L, Zhou L L, Wu L H, et al. Carbon density and vertical spatial distribution characteristics of Cunninghamia lanceolata forest ecosystem with different stand densities[J]. Acta Ecologica Sinica, 2022, 42(2): 710−719. doi: 10.5846/stxb202011172960
    [17]
    Jandl R, Lindner M, Vesterdal L, et al. How strongly can forest management influence soil carbon sequestration?[J]. Geoderma, 2007, 137(3−4): 253−268. doi: 10.1016/j.geoderma.2006.09.003
    [18]
    代林利, 陈义堂, 伍丽华, 等. 不同林分密度杉木林养分积累与垂直空间分配[J]. 应用生态学报, 2022, 33(2): 311−320.

    Dai L L, Chen Y T, Wu L H, et al. Characteristics of nutrient accumulation and vertical spatial distribution in Cunninghamia lanceolata plantation with different stand densities[J]. Chinese Journal of Applied Ecology, 2022, 33(2): 311−320.
    [19]
    张程, 欧阳林男, 陈少雄. 3种初植密度桉树林分生长、材种出材量及经济效益动态分析[J]. 林业科学研究, 2021, 34(4): 58−65.

    Zhang C, Ouyang L N, Chen S X. Dynamic analysis on economic benefit, growth and production of eucalypt plantations with different initial densities[J]. Forest Research, 2021, 34(4): 58−65.
    [20]
    Wang C S, Tang C, Hein S, et al. Branch development of five-year old Betula alnoides plantations in response to planting density[J]. Forests, 2018, 9(1): 42−55. doi: 10.3390/f9010042
    [21]
    刘悦, 谢玲芝, 张彦东, 等. 不同密度水曲柳人工林细根生物量对邻近树木胸径和距离的响应[J]. 林业科学, 2021, 57(10): 15−22. doi: 10.11707/j.1001-7488.20211002

    Liu Y, Xie L Z, Zhang Y D, et al. Responses of fine root biomass to diameters of and distances to the neighboring trees of Fraxinus mandschurica plantation with different stocking densities[J]. Scientia Silvae Sinicae, 2021, 57(10): 15−22. doi: 10.11707/j.1001-7488.20211002
    [22]
    Wertz B, Bembenek M, Karaszewski Z, et al. Impact of stand density and tree social status on above ground biomass allocation of Scots pine (Pinus sylvestris L.)[J]. Forests, 2020, 11(7): 765−779. doi: 10.3390/f11070765
    [23]
    郑颖, 冯健, 于世河, 等. 辽东山区不同密度落叶松人工幼龄林林木生长和土壤养分特性[J]. 中南林业科技大学学报, 2022, 42(1): 94−103.

    Zheng Y, Feng J, Yu S H, et al. Study on forest growth and soil nutrient characteristics of Larix spp. plantation with different densities in Liaodong mountainous area[J]. Journal of Central South University of Forestry & Technology, 2022, 42(1): 94−103.
    [24]
    Ali A, Dai D, Akhtar K, et al. Response of understory vegetation, tree regeneration, and soil quality to manipulated stand density in a Pinus massoniana plantation[J]. Global Ecology and Conservation, 2019, 20: 1−15.
    [25]
    Farooq T H, Yan W, Chen X Y, et al. Dynamics of canopy development of Cunninghamia lanceolata mid-age plantation in relation to foliar nitrogen and soil quality influenced by stand density[J]. Global Ecology and Conservation, 2020, 24: 1−11.
    [26]
    Lei J, Du H L, Duan A G, et al. Effect of stand density and soil layeron soil nutrients of a 37-year-old Cunninghamia lanceolate plantation in Naxi, Sichuan Province, China[J]. Sustain Ability, 2019, 11(19): 5410−5439.
    [27]
    那萌, 刘婷岩, 张彦东, 等. 林分密度对水曲柳人工林碳储量的影响[J]. 北京林业大学学报, 2017, 39(1): 20−26.

    Na M, Liu T Y, Zhang Y D, et al. Effects of stock density on carbon storage in Fraxinus mandshurica plantations[J]. Journal of Beijing Forestry University, 2017, 39(1): 20−26.
    [28]
    黄雪蔓, 尤业明, 蓝嘉川, 等. 不同间伐强度对杉木人工林碳储量及其分配的影响[J]. 生态学报, 2016, 36(1): 156−163.

    Huang X M, You Y M, Lan J C, et al. The effect of carbon storage and its allocation in Cunninghamia lanceolata plantations with different thinning intensities[J]. Acta Ecologica Sinica, 2016, 36(1): 156−163.
    [29]
    楚秀丽, 王艺, 金国庆, 等. 不同生境、初植密度及林龄木荷人工林生长、材性变异及林分分化[J]. 林业科学, 2014, 50(6): 152−159.

    Chu X L, Wang Y, Jin G Q, et al. Variation in growth and wood property and the structure differentiation of Schima superba plantation with different sites, stand densities and ages[J]. Scientia Silvae Sinicae, 2014, 50(6): 152−159.
    [30]
    王云霓, 高孝威, 苏雅拉巴雅尔, 等. 林分密度和林龄对华北落叶松人工林生长特征的影响[J]. 内蒙古林业科技, 2018, 44(3): 12−16.

    Wang Y N, Gao X W, Suyalabayaer, et al. Effects of different densities and ages on growth of Larix principis-rurechitii plantation in Daqing Mountains of Inner Mongolia[J]. Journal of Inner Mongolia Forestry Science & Technology, 2018, 44(3): 12−16.
    [31]
    杨桂娟, 胡海帆, 孙洪刚, 等. 林分林龄、造林密度和林分自然稀疏对杉木人工林个体大小分化和生产力关系的影响[J]. 林业科学, 2019, 55(11): 126−136.

    Yang G J, Hu H F, Sun H G, et al. The influences of stand age, planting density and self-thinning on relationship between size inequality and periodic annual increment in Chinese fir (Cunninghamia lanceolata) plantations[J]. Scientia Silvae Sinicae, 2019, 55(11): 126−136.
    [32]
    柏广新, 孙志虎, 高波, 等. 长白山林区天然次生林胡桃楸的适宜生长空间[J]. 林业科学, 2009, 45(12): 8−15. doi: 10.3321/j.issn:1001-7488.2009.12.002

    Bai G X, Sun Z H, Gao B, et al. Optimal growing space for Juglans mandshurica in second growth forests in Changbai Mountains[J]. Scientia Silvae Sinicae, 2009, 45(12): 8−15. doi: 10.3321/j.issn:1001-7488.2009.12.002
    [33]
    张闻博, 费本华, 田根林, 等. 不同地区毛竹生长和表型性状的比较[J]. 东北林业大学学报, 2019, 47(1): 1−5. doi: 10.3969/j.issn.1000-5382.2019.01.001

    Zhang B W, Fei B H, Tian G L, et al. Comparative study on growth and phenotypic traits of Phyllostachys edulis in different areas[J]. Journal of Northeast Forestry University, 2019, 47(1): 1−5. doi: 10.3969/j.issn.1000-5382.2019.01.001
    [34]
    罗也, 何怀江, 张忠辉, 等. 东北地区天然次生林乔木层物种多样性与树木生长的关系[J]. 中南林业科技大学学报, 2021, 41(11): 152−163.

    Luo Y, He H J, Zhang Z H, et al. Relationship between species diversity of arbor layer and tree growth in natural secondary forests in northeast China[J]. Journal of Central South University of Forestry & Technology, 2021, 41(11): 152−163.
    [35]
    田红灯, 申文辉, 谭一波, 等. 不同林龄杉木人工林冠幅与生长因子的关系[J]. 中南林业科技大学学报, 2021, 41(5): 93−101.

    Tian H D, Shen W H, Tan Y B, et al. Relationship between crown width and growth factors in Chinese fir plantation among different stand ages[J]. Journal of Central South University of Forestry & Technology, 2021, 41(5): 93−101.
    [36]
    Luxmoore R J, Tharp M L, Post W M, et al. Simulated biomass and soil carbon of loblolly pine and cottonwood plantations across a thermal gradient in southeastern United States[J]. Forest Ecology & Management, 2008, 254(2): 291−299.
    [37]
    Erasmus J, Wessels C B. The effect of stand density management on Pinus patula lumber properties[J]. European Journal of Forest Research, 2020, 139(2): 1−11.
    [38]
    Boyden S, Dan B. Competition among Eucalyptus trees depends on genetic variation and resource supply[J]. Ecology, 2008, 89(10): 2850−2859. doi: 10.1890/07-1733.1
    [39]
    Pachas A, Shelton H M, Lambrides C J, et al. Effect of tree density on competition between Leucaena leucocephala and Chloris gayana using a Nelder wheel trial(I): aboveground interactions[J]. Crop and Pasture Science, 2018, 69: 419−429. doi: 10.1071/CP17311
    [40]
    Enno U, Peter B, Matthias U, et al. Analysing the effect of stand density and site conditions on structure and growth of oak species using Nelder trials along an environmental gradient: experimental design, evaluation methods, and results[J]. Forest Ecosystems, 2015, 2(1): 243−261.
    [41]
    Xue L, Pan L, Zhang R, et al. Density effects on the growth of self-thinning Eucalyptus urophylla stands[J]. Trees, 2011, 25: 1021−1031. doi: 10.1007/s00468-011-0576-4
    [42]
    朱仕明, 肖玲玲, 薛立, 等. 密度对乐昌含笑幼苗的生长和生物量的影响[J]. 中南林业科技大学学报, 2015, 35(8): 77−80.

    Zhu S M, Xiao L L, Xue L, et al. Effects of planting density on growth and biomass of Michelia chapensis seedlings[J]. Journal of Central South University of Forestry & Technology, 2015, 35(8): 77−80.
    [43]
    Neilsen W A, Gerrand A M. Growth and branching habit of Eucalyptus nitens at different spacing and the effect on final crop selection[J]. Forest Ecology & Management, 1999, 123(2−3): 217−229.
    [44]
    王翰琛, 张雄清, 张建国, 等. 杉木人工林不同密度间伐林分生长优势的变化规律分析[J]. 林业科学研究, 2021, 34(5): 32−38.

    Wang H C, Zhang X Q, Zhang J G, et al. Variation of growth dominance in thinned Chinese Fir stands with different planting densities[J]. Forest Research, 2021, 34(5): 32−38.
  • Related Articles

    [1]Yang Zhou, Zhang Jianjun, Zhao Jiongchang, Hu Yawei, Li Yang, Wang Bo. Response of soil carbon, nitrogen and phosphorus stoichiometric characteristics of Pinus tabuliformis forests to stand age and density in the Loess Plateau region of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2024, 46(12): 30-40. DOI: 10.12171/j.1000-1522.20240188
    [2]Jiang Jun, Chen Changqi, Chen Beibei, Wang Hao, Hu Dongyang, Zhang Yong, Zhang Yongfu, Li Jie, Zheng Junpeng. Effects of stand density on carbon, nitrogen, and phosphorus stoichiometry and nutrient resorption of Platycladus orientalis plantations in rocky mountainous area of Beijing[J]. Journal of Beijing Forestry University, 2024, 46(10): 33-41. DOI: 10.12171/j.1000-1522.20240011
    [3]Lu Dongxu, Geng Xueqi, Cui Ziyi, Wang Shiyu, Wang Lina, Yu Yongqiang, Tang Yakun. Nutrient utilization characteristics and stand quality of Robinia pseudoacacia at different stand ages in the loess hilly region of northwestern China[J]. Journal of Beijing Forestry University, 2023, 45(12): 90-99. DOI: 10.12171/j.1000-1522.20230058
    [4]Wang Ziming, Zhao Mingming, Ren Yunmao, Zhan Jiping, Li Zhiyao, Yu Lixin, Yu Qingjun, Jia Zhongkui. Response of growth and soil properties of Chinese pine building timber forest at felling age to stand density[J]. Journal of Beijing Forestry University, 2022, 44(12): 88-101. DOI: 10.12171/j.1000-1522.20210442
    [5]Wang Shanshan, Bi Huaxing, Cui Yanhong, Yun Huiya, Ma Xiaozhi, Zhao Danyang, Hou Guirong. Key indexes and characteristics of soil anti-erodibility of Robinia pseudoacacia with different densities in loess region of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2022, 44(5): 94-104. DOI: 10.12171/j.1000-1522.20200226
    [6]He Xiao, Zhou Chaofan, Lei Xiangdong, Li Haikui. Stand carbon stock growth model system for Larix olgensis plantation[J]. Journal of Beijing Forestry University, 2021, 43(11): 1-10. DOI: 10.12171/j.1000-1522.20210040
    [7]Wang Yansong, Ma Baoming, Gao Haiping, Wang Baitian, Li Sha, Dong Xiuqun. Response of soil nutrients and their stoichiometric ratios to stand density in Pinus tabuliformis and Robinia pseudoacacia plantations in the loess region of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2020, 42(8): 81-93. DOI: 10.12171/j.1000-1522.20190287
    [8]Jin Suo, Bi Haojie, Liu Jia, Liu Yuhang, Wang Yu, Qi Jinqiu, Hao Jianfeng. Effects of stand density on community structure and species diversity of Cupressus funebris plantation in Yunding Mountain, southwestern China[J]. Journal of Beijing Forestry University, 2020, 42(1): 10-17. DOI: 10.12171/j.1000-1522.20190202
    [9]ZHOU Dan-hui, HE Hong-shi, LI Xiu-zhen, ZHOU Chun-hua, WANG Xu-gao, CHEN Hong-wei. Potential responses of different stand age classes to climate changes in the Xiaoxinganling Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2007, 29(4): 110-117. DOI: 10.13332/j.1000-1522.2007.04.024
    [10]XU Cheng-yang, ZHANG Hua, JIA Zhong-kui, XUE Kang, DU Peng-zhi, WANG Jing-guo. Effects of stand density and site types on root characteristics of Platycladus orientalis plantations in Beijing mountainous area[J]. Journal of Beijing Forestry University, 2007, 29(4): 95-99. DOI: 10.13332/j.1000-1522.2007.04.022
  • Cited by

    Periodical cited type(1)

    1. 杨周,张建军,赵炯昌,胡亚伟,李阳,王勃. 晋西黄土区油松林土壤碳氮磷计量特征对林龄和密度的响应. 北京林业大学学报. 2024(12): 30-40 . 本站查看

    Other cited types(0)

Catalog

    Article views (509) PDF downloads (78) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return