Citation: | Sun Zhilong, Yang Jianying, Shi Changqing, Li Cheng, Li Ruijie, Yang Chunyan, Wang Xiaozhan, Deng Monan. Moisture characteristics of coal gangue matrix modified by super absorbent polymer[J]. Journal of Beijing Forestry University, 2024, 46(2): 105-113. DOI: 10.12171/j.1000-1522.20230210 |
The improvement of super absorbent polymer (SAP) with various mass fractions on bulk density, porosity, capillary water migration law, and water retention of coal gangue matrix in mines has been investigated, and the water migration law of coal gangue matrix under the optimal usage of SAP has been elucidated. It provides a basis for improving the water condition of coal gangue matrix in soilless mining area, which exploits coal gangue solid waste resource utilization in mines, and provides suitable conditions for vegetation growth.
The effects of SAP with mass fractions of 0%, 0.1%, 0.2%, 0.3% and 0.4% on the water migration law of coal gangue matrix were simulated by indoor soil column test.
(1) There were physical property improvements of coal gangue matrix by containing SAP: the bulk density decreased with higher SAP usage amount, while the total porosity and capillary porosity showed an opposite trend. (2) SAP can significantly inhibit the rising height of coal gangue capillary water, and the mass fraction was in the range of 0%−0.4%. With the increase in SAP dosage, the inhibition effect was gradually enhanced. However, when the mass fraction of SAP was 0.4%, the inhibition degree of coal gangue capillary water was not significantly different from that of 0.3%. (3) It was obtained by (least significant difference, LSD) fitting analysis that the rising height of coal gangue capillary water increased as a power function with the time change (P < 0.01), and the rising rate decreased as a logarithmic function with the time change. (4) The coal gangue matrix water content with different SAP mass fractions was dropping continuously within 72 h in indoor ventilation conditions. The moisture content of pure coal gangue matrix (SAP mass fraction 0%) decreased the most with the moisture loss rate of 15.96%. The SAP mass fraction of 0.3% and 0.4% showed smaller downward trends and the water loss rate was 3.90% and 3.52%, respectively, with insignificant difference. And there will be more prominent water retention performance of SAP with a longer operating time.
SAP can improve the water condition of coal gangue matrix, and within a certain range, the higher the content, the more significant the improvement effect. Therefore, from the perspective of economy and effect, SAP with a mass fraction of 0.3% is preferred to be applied to the coal gangue matrix in the soilless mining area to provide suitable water and gas conditions for vegetation growth.
[1] |
国家发展改革委. 《关于“十四五”大宗固体废弃物综合利用的指导意见》[J]. 黄金科学技术, 2021, 29(2): 286.
National Development and Reform Commission. Guiding Opinions on the Comprehensive Utilization of Bulk Solid Waste during the 14th Five Year Plan[J]. Gold Science and Technology, 2021, 29(2): 286.
|
[2] |
王玉涛. 煤矸石固废无害化处置与资源化综合利用现状与展望[J]. 煤田地质与勘探, 2022, 50(10): 54−56.
Wang Y T. Status and prospect of harmless disposal and resource comprehensive utilization of solid waste of coal gangue[J]. Coal Geology & Exploration, 2022, 50(10): 54−56.
|
[3] |
胡振琪, 肖武, 赵艳玲. 再论煤矿区生态环境“边采边复”[J]. 煤炭学报, 2020, 45(1): 351−359.
Hu Z Q, Xiao W, Zhao Y L. Re-discussion on coal mine eco-environment concurrent mining and reclamation[J]. Journal of China Coal Society, 2020, 45(1): 351−359.
|
[4] |
Shi J G, Ji X Z, Meng L, et al. A preliminary study of solid-waste coal gangue based biomineralization as eco-friendly underground backfill material: material preparation and macro-micro analyses[J/OL]. Science of the Total Environment, 2021, 770[2021−01−20]. https://doi.org/10.1016/j.scitotenv.2021.145241.
|
[5] |
杜韬, 王冬梅, 张泽洲, 等. 煤矸石植生基质保水性能对黑麦草生长的影响[J]. 中国水土保持科学, 2019, 17(4): 75−84.
Du T, Wang D M, Zhang Z Z, et al. Effect of the water-retaining property of coal gangue planting substrate on the growth of Lolium perenne[J]. Science of Soil and Water Conservation, 2019, 17(4): 75−84.
|
[6] |
武琳, 郑永红, 张治国, 等. 粉煤灰用作土壤改良剂的养分和污染风险评价[J]. 环境科学与技术, 2020, 43(9): 219−227.
Wu L, Zheng Y H, Zhang Z G, et al. Assessment of nutrient and pollution risk of fly ash as a soil amendment[J]. Environmental Science & Technology, 2020, 43(9): 219−227.
|
[7] |
范秋运, 张超英, 耿玉清, 等. 添加粉煤灰对煤矸石基质性质和植物生长的影响[J]. 中国水土保持科学(中英文), 2022, 20(5): 85−92.
Fan Q Y, Zhang C Y, Geng Y Q, et al. Effects of fly ash application on the properties of coal gangue matrix and plant growth[J]. Science of Soil and Water Conservation, 2022, 20(5): 85−92.
|
[8] |
董颖, 李娜, 耿玉清, 等. 添加保水剂对煤矸石基质保水性能的影响[J]. 中国水土保持科学, 2020, 18(3): 114−123.
Dong Y, Li N, Geng Y Q, et al. Effect of addition of water-retaining agent on the water-retaining properties of coal gangue matrix[J]. Science of Soil and Water Conservation, 2020, 18(3): 114−123.
|
[9] |
Han X N, Dong Y, Geng Y, et al. Influence of coal gangue mulching with various thicknesses and particle sizes on soil water characteristics[J/OL]. Scientific Reports, 2021, 11(1): 15368[2022−02−21]. https://doi.org/10.1038/s41598-021-94806-0.
|
[10] |
赵陟峰, 王冬梅, 赵廷宁. 保水剂对煤矸石基质上高羊茅生长及营养吸收的影响[J]. 生态学报, 2013, 33(16): 5101−5108. doi: 10.5846/stxb201211261673
Zhao Z F, Wang D M, Zhao T N. The effect of super absorbent polymer on the growth and nutrition absorption of Festuca arundinacea L. on an improved gangue matrix[J]. Acta Ecologica Sinica, 2013, 33(16): 5101−5108. doi: 10.5846/stxb201211261673
|
[11] |
杨永刚, 苏帅, 焦文涛. 煤矿复垦区土壤水动力学特性对下渗过程的影响[J]. 生态学报, 2018, 38(16): 5876−5882.
Yang Y G, Su S, Jiao W T. The influence of hydrodynamic characteristics on the infiltration process of soil water in a coal mine reclamation area[J]. Acta Ecologica Sinica, 2018, 38(16): 5876−5882.
|
[12] |
Islam M R, Hu Y G, Mao S S, et al. Effects of water-saving super absorbent polymer on anti-oxidant enzyme activities and lipid peroxidation in corn ( Zea mays L.) under drought stress[J]. Journal of the Science of Food and Agriculture, 2011, 91(5): 813−819. doi: 10.1002/jsfa.4252
|
[13] |
Huang W, Liu Z, Zhou C, et al. Enhancement of soil ecological self-repair using a polymer composite material[J/OL]. Catena, 2020, 188: 104443−104443[2020−01−08]. https://doi.org/10.1016/j.catena.2019.104443.
|
[14] |
Yang L, Yang Y, Chen Z, et al. Influence of super absorbent polymer on soil water retention, seed germination and plant survivals for rocky slopes eco-engineering[J]. Ecological Engineering, 2014, 62: 27−32. doi: 10.1016/j.ecoleng.2013.10.019
|
[15] |
Sepaskhah A R, Shahabizad V. Effects of water quality and PAM application rate on the control of soil erosion, water infiltration and runoff for different soil textures measured in a rainfall simulator[J]. Biosystems Engineering, 2010, 106(4): 513−520. doi: 10.1016/j.biosystemseng.2010.05.019
|
[16] |
Han Y G, Yang P L, Luo Y P, et al. Porosity change model for watered super absorbent polymer-treated soil[J]. Environmental Earth Sciences, 2010, 61: 1197−1205. doi: 10.1007/s12665-009-0443-4
|
[17] |
刘慧军, 刘景辉, 于健, 等. 聚丙烯酸盐类土壤改良剂对燕麦土壤微生物量氮及酶活性的影响[J]. 中国土壤与肥料, 2013, 243(1): 25−31.
Liu H J, Liu J H, Yu J, et al. Effect of soil amendment of polyacrylate on soil microbial biomass nitrogen and soil enzyme activity[J]. Soil and Fertilizers in China, 2013, 243(1): 25−31.
|
[18] |
Thombare N, Mishra S, Siddiqui M Z, et al. Design and development of guar gum based novel, superabsorbent and moisture retaining hydrogels for agricultural applications[J]. Carbohydrate Polymers, 2018, 185: 169−178. doi: 10.1016/j.carbpol.2018.01.018
|
[19] |
Andry H, Yamamoto T, Irie T, et al. Water retention, hydraulic conductivity of hydrophilic polymers in sandy soil as affected by temperature and water quality[J]. Journal of Hydrology, 2009, 373(1−2): 177−183. doi: 10.1016/j.jhydrol.2009.04.020
|
[20] |
Ma Z, Li Q, Yue Q, et al. Synthesis and characterization of a novel super-absorbent based on wheat straw[J]. Bioresource Technology, 2011, 102(3): 2853−2858. doi: 10.1016/j.biortech.2010.10.072
|
[21] |
Devine D M, Higginbotham C L. Synthesis and characterisation of chemically crosslinked N-vinyl pyrrolidinone (NVP) based hydrogels[J]. European Polymer Journal, 2005, 41(6): 1272−1279. doi: 10.1016/j.eurpolymj.2004.12.022
|
[22] |
Li X, He J Z, Liu Y R, et al. Effects of super absorbent polymers on soil microbial properties and Chinese cabbage ( Brassica chinensis) growth[J]. Journal of Soils and Sediments, 2013, 13: 711−719. doi: 10.1007/s11368-013-0657-7
|
[23] |
刘军, 张宇清, 冯薇, 等. 几种外源添加物对生物土壤结皮培育的影响[J]. 北京林业大学学报, 2016, 38(5): 100−107.
Liu J, Zhang Y Q, Feng W, et al. Influences of exogenous additives on culture of biological soil crusts[J]. Journal of Beijing Forestry University, 2016, 38(5): 100−107.
|
[24] |
郭东权, 饶良懿. 保水剂的发展现状及在农林和荒漠化修复中的应用研究[J]. 应用基础与工程科学学报, 2021, 29(6): 1372−1385.
Guo D Q, Rao L Y. Development situation of superabsorbent polymer and its application in agroforestry and desertification restoration[J]. Journal of Basic Science and Engineering, 2021, 29(6): 1372−1385.
|
[25] |
Karimi A, Noshadi M, Ahmadzadeh M. Effects of super absorbent polymer (igeta) on crop, soil water and irrigation interval[J]. JWSS-Isfahan University of Technology, 2009, 12(46): 403−414.
|
[26] |
Yubang T, Lijun Y U, Lei X U, et al. Effects of combined application of water retaining agents and organic materials on water holding characteristics of yellow brown soils in hilly areas[J]. Agricultural Science & Technology, 2015, 16(9): 1985−1988.
|
[27] |
冉艳玲, 王益权, 张润霞, 等. 保水剂对土壤持水特性的作用机理研究[J]. 干旱地区农业研究, 2015, 33(5): 101−107. doi: 10.7606/j.issn.1000-7601.2015.05.19
Ran Y L, Wang Y Q, Zhang R X, et al. Research on the mechanism of super absorbent polymer to soil water-holding characteristic[J]. Agricultural Research in the Arid Areas, 2015, 33(5): 101−107. doi: 10.7606/j.issn.1000-7601.2015.05.19
|
[28] |
闫永利, 魏占民, 任秀苹, 等. 保水剂对土壤持水性影响及在不同土壤中效果比较[J]. 节水灌溉, 2016(1): 34−38. doi: 10.3969/j.issn.1007-4929.2016.01.009
Yan Y L, Wei Z M, Ren X P, et al. Influence of water retaining agent on soil water holding capacity and its effect comparison in different soils[J]. Water Saving Irrigation, 2016(1): 34−38. doi: 10.3969/j.issn.1007-4929.2016.01.009
|
[29] |
Yousefian M, Jafari M, Tavili A, et al. The effects of superabsorbent polymer on Atriplex lentiformis growth and soil characteristics under drought stress (case study: Desert Research Station, Semnan, Iran)[J]. Journal of Rangeland Science, 2018, 8(1): 65−76.
|
[30] |
李杨, 王百田. 高吸水性树脂对沙质土壤物理性质和玉米生长的影响[J]. 农业机械学报, 2012, 43(1): 76−82. doi: 10.6041/j.issn.1000-1298.2012.01.015
Li Y, Wang B T. Influence of superabsorbent polymers on sandy soil physical properties and corn growth[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(1): 76−82. doi: 10.6041/j.issn.1000-1298.2012.01.015
|
[31] |
赵雪晴, 王冬梅, 张泽洲, 等. 干湿交替对添加保水剂的砂土持水性能的影响[J]. 中国水土保持科学, 2020, 18(1): 90−99.
Zhao X Q, Wang D M, Zhang Z Z, et al. Effects of drying-rewetting alternation on water-holding capacity of sandy soil added with super absorbent polymer[J]. Science of Soil and Water Conservation, 2020, 18(1): 90−99.
|
[32] |
Li R, Hou X, Li P, et al. Multifunctional superabsorbent polymer under residue incorporation increased maize productivity through improving sandy soil properties[J/OL]. Advances in Polymer Technology, 2022, 6554918[2022−12−13]. https://doi.org/10.1155/2022/6554918.
|
[33] |
张超英, 陈艳鑫, 耿玉清, 等. 生物炭和保水剂对煤矸石基质水分物理特征的影响[J]. 干旱区资源与环境, 2020, 34(9): 122−128.
Zhang C Y, Chen Y X, Geng Y Q, et al. Effect of biochar and super water absorbents on water physical characteristics of coal gangue matrix[J]. Journal of Arid Land Resources and Environment, 2020, 34(9): 122−128.
|
[34] |
Narayanan A, Kartik R, Sangeetha E, et al. Super water absorbing polymeric gel from chitosan, citric acid and urea: synthesis and mechanism of water absorption[J]. Carbohydrate Polymers, 2018, 191: 152−160. doi: 10.1016/j.carbpol.2018.03.028
|
[35] |
吕春娟, 毕如田, 陈卫国, 等. 土壤结构调理剂PAM对复垦铁尾矿砂物理性状的影响[J]. 农业工程学报, 2017, 33(6): 240−245. doi: 10.11975/j.issn.1002-6819.2017.06.031
Lü C J, Bi R T, Chen W G, et al. Effect of soil structure conditioner PAM on physical properties of iron tailings in reclaiming[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(6): 240−245. doi: 10.11975/j.issn.1002-6819.2017.06.031
|
[36] |
袁普金, 黄兴发, 雷廷武, 等. 波涌灌溉和PAM作用下内蒙古河套灌区水蚀的试验研究[J]. 中国农业大学学报, 2002, 7(2): 36−40. doi: 10.3321/j.issn:1007-4333.2002.02.008
Yuan P J, Huang X F, Lei T W, et al. Experimental study on soil water erosion under surge irrigation and use of PAM in Hetao irrigation region, Inner Mongolia[J]. Journal of China Agricultural University, 2002, 7(2): 36−40. doi: 10.3321/j.issn:1007-4333.2002.02.008
|
[37] |
韩凤朋, 郑纪勇, 李占斌, 等. PAM对土壤物理性状以及水分分布的影响[J]. 农业工程学报, 2010, 26(4): 70−74. doi: 10.3969/j.issn.1002-6819.2010.04.011
Han F P, Zheng J Y, Li Z B, et al. Effect of PAM on soil physical properties and water distribution[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(4): 70−74. doi: 10.3969/j.issn.1002-6819.2010.04.011
|
[38] |
刘辰宇, 马蕊, 罗文静, 等. 保水剂用量对胡杨幼苗生长、光合特性和抗逆生理的影响[J]. 北京林业大学学报, 2022, 44(3): 36−44. doi: 10.12171/j.1000-1522.20210300
Liu C Y, Ma R, Luo W J, et al. Effects of super absorbent polymer dosage on growth, photosynthetic characteristics and stress-resistance physiology of Populus euphratica seedlings[J]. Journal of Beijing Forestry University, 2022, 44(3): 36−44. doi: 10.12171/j.1000-1522.20210300
|
[39] |
李海燕, 张芮, 王福霞. 保水剂对注水播种玉米土壤水分运移及水分生产效率的影响[J]. 农业工程学报, 2011, 27(3): 37−42. doi: 10.3969/j.issn.1002-6819.2011.03.007
Li H Y, Zhang R, Wang F X. Effects of water-retaining agent on soil water moverment and water use efficiency of maize sowed with absolved water-storing irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(3): 37−42. doi: 10.3969/j.issn.1002-6819.2011.03.007
|
[40] |
黄占斌, 孙朋成, 钟建, 等. 高分子保水剂在土壤水肥保持和污染治理中的应用进展[J]. 农业工程学报, 2016, 32(1): 125−131. doi: 10.11975/j.issn.1002-6819.2016.01.017
Huang Z B, Sun P C, Zhong J, et al. Application of super absorbent polymer in water and fertilizer conversation of soil and pollution management[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(1): 125−131. doi: 10.11975/j.issn.1002-6819.2016.01.017
|
[1] | Ma Erni, Wang Yuyao, Li Jingyu, Zhong Xiang. Research progress on the effect of water on pore structure of wood cell wall[J]. Journal of Beijing Forestry University, 2024, 46(2): 1-8. DOI: 10.12171/j.1000-1522.20230243 |
[2] | Wang Kaiqing, Zhou Ziyi, Ma Erni. Effects of cell wall pore changes on water of wood modified by furfuryl alcohol[J]. Journal of Beijing Forestry University, 2023, 45(9): 127-136. DOI: 10.12171/j.1000-1522.20230156 |
[3] | Wu Haiyan, Zhao Yuanyuan, Du Linfang, Chi Wenfeng, Ding Guodong, Gao Guanglei. Effects of land use/cover changes on water retention services in the Beijing-Tianjin Sandstorm Source Control Project Area[J]. Journal of Beijing Forestry University, 2023, 45(4): 88-100. DOI: 10.12171/j.1000-1522.20220245 |
[4] | Meng Chen, Niu Jianzhi, Yu Hailong, Du Lingtong, Yin Zhengcong. Research progress in influencing factors and measuring methods of three-dimensional characteristics of soil macropores[J]. Journal of Beijing Forestry University, 2020, 42(11): 9-16. DOI: 10.12171/j.1000-1522.20190158 |
[5] | Lü Jiao, Mustaq Shah, Cui Yi, Xu Chengyang. Effects of soil compactness and litter covering on soil water holding capacity and water infiltration ability in urban forest[J]. Journal of Beijing Forestry University, 2020, 42(8): 102-111. DOI: 10.12171/j.1000-1522.20190476 |
[6] | Liu Junting, Zhang Jianjun, Sun Ruoxiu, Li Liang. Effects of the conversion time of cropland into forestry on soil physical properties in loess area of western Shanxi Province of northern China[J]. Journal of Beijing Forestry University, 2020, 42(1): 94-103. DOI: 10.12171/j.1000-1522.20180376 |
[7] | Ma Yuan-yuan, Dai Xian-qing, Peng Shao-hao, Yang Guang, Ji Xiao-dong. Effects of natural zeolite on physical and chemical properties and water retention capacity of chernozem in Songnen Plain of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(2): 51-57. DOI: 10.13332/j.1000-1522.20170218 |
[8] | XIA Xiang-you, WANG En-heng, YANG Xiao-yan, CHEN Xiang-wei. Pore characteristics of mollisol argillic horizon under simulated freeze-thaw cycles[J]. Journal of Beijing Forestry University, 2015, 37(6): 70-76. DOI: 10.13332/j.1000-1522.20140474 |
[9] | CHEN Shi-chao, LIN Jian-hui, SUN Yu-rui, Peter Schulze Lammers. Predicting topsoil porosity using soil surface roughness under rainfall influence.[J]. Journal of Beijing Forestry University, 2013, 35(2): 69-74. |
[10] | FANG Wei-dong, KANG Xin-gang, ZHAO Hao-yan, HUANG Xin-feng, GONG Zhi-wen, GAO Yan, FENG Qi-xiang. Soil characteristics and water conservation of different forest types in Changbai Mountain[J]. Journal of Beijing Forestry University, 2011, 33(4): 40-47. |