Citation: | Tang Xiuli, Yang Jianmin, Feng Jun, Shi Ying, Yan Pingmei. Susceptibility of Coryneum populinum to different fungicides and their compounds[J]. Journal of Beijing Forestry University, 2025, 47(2): 66-78. DOI: 10.12171/j.1000-1522.20230274 |
Poplar gray leaf spot caused by Coryneum populinum is an important fungal disease of poplar. Evaluating the susceptibility of C. populinum to fungicides will provide data support for the screening of high-efficiency fungicides and compounds for the prevention and control of poplar gray leaf spot.
The susceptibility of C. populinum to 5 fungicides (carbendazim, mancozeb, tebuconazole, chlorothalonil and prochloraz) and 3 compounds (tebuconazole ∶ chlorothalonil, carbendazim ∶ chlorothalonil and carbendazim ∶ prochloraz) was determined by mycelium growth rate method and spore germination method, and the microscopic morphology of mycelium and spore germination were observed.
Tebuconazole and carbendazim had the strongest inhibitory effect on mycelial growth with EC50 (median effect concentration) of 0.025 and 0.048 μg/mL, respectively. Chlorothalonil and prochloraz were the strongest inhibitor to spore germination with EC50 of 95.13 and 100.67 μg/mL, respectively. The compounds of carbendazim ∶ prochloraz (4∶1) had a synergistic effect with co-toxicity coefficient (CCT) of 150.75, and the most virulent with EC50 value of 0.038 μg/mL to mycelial growth. The compounds of tebuconazole ∶ chlorothalonil (1∶4) had an additive effect with CCT of 83.72, and the most virulent with EC50 value of 132.31 μg/mL to spore germination. The hyphal surface of C. populinum became rough with enlarged branches after tebuconazole treated. The conidial germination was severely malformed with branching or without germination. Germ tubes were produced from the top, base or middle sites of conidia. The top of germ tubes was slightly swollen or without elongation.
The combination of tebuconazole with chlorothalonil or prochloraz, and carbendazim ∶ prochloraz (4∶1) with chlorothalonil or prochloraz were recommended agents for preventing poplar gray spot. Alternate use of fungicides could delay the development of pathogen resistance.
[1] |
Schmutzenhofer H, Mielke M E, Lou Y Q, et al. Field guide/manual on the identification and management of poplar pests and diseases in the area of the “Three North 009 Project” (North-Eastern China)[M]. Beijing: China Forestry Publishing House, 1996.
|
[2] |
刘雪英. 杨树灰斑病拮抗放线菌的筛选、鉴定及防治效果评价的研究 [D]. 哈尔滨: 东北林业大学, 2015.
Liu X Y. Screening, identification and evaluation of potential biocontrol actinomycetes endophytes against Sporocadus populinus[D]. Harbin: Northeast Forestry University, 2015.
|
[3] |
杨帆, 张林浩, 李红霞, 等. 杨树灰斑病的发生与防治[J]. 吉林农业, 2016(2): 97.
Yang F, Zhang L H, Li H X, et al. Occurrence and control of poplar gray spot disease[J]. Agriculture of Jilin, 2016(2): 97.
|
[4] |
李清华, 邢月红, 董建霞, 等. 浅谈杨树灰斑病的防治[J]. 中国农业信息, 2016, 189(12): 134−135. doi: 10.3969/j.issn.1672-0423.2016.12.086
Li Q H, Xing Y H, Dong J X, et al. Prevention of poplar gray spot disease[J]. China Agricultural Information, 2016, 189(12): 134−135. doi: 10.3969/j.issn.1672-0423.2016.12.086
|
[5] |
施伟, 朱晨华, 丁建领. 杨树育苗常见病害防治技术[J]. 安徽农学通报, 2015, 21(10): 130−131. doi: 10.3969/j.issn.1007-7731.2015.10.059
Shi W, Zhu C H, Ding J L. Poplar seedling common disease prevention and control technology[J]. Anhui Agricultural Science Bulletin, 2015, 21(10): 130−131. doi: 10.3969/j.issn.1007-7731.2015.10.059
|
[6] |
鞠国柱, 徐素琴, 张连寿, 等. 杨树灰斑病的研究[J]. 林业科学, 1965, 10(4): 41−46.
Ju G Z, Xu S Q, Zhang L S, et al. Study on poplar grey spot disease[J]. Scientia Silvae Sinicae, 1965, 10(4): 41−46.
|
[7] |
蔡有柱. 杨树灰斑病的防治试验[J]. 青海农林科技, 2012(3): 67−68. doi: 10.3969/j.issn.1004-9967.2012.03.026
Cai Y Z. Test on control Coryneum populinum[J]. Science and Technology of Qinghai Agriculture and Forestry, 2012(3): 67−68. doi: 10.3969/j.issn.1004-9967.2012.03.026
|
[8] |
程坤. 杨树主要病害及防治技术[J]. 吉林农业, 2017, 408(15): 67.
Cheng K. Poplar main diseases and control technology[J]. Agriculture of Jilin, 2017, 408(15): 67.
|
[9] |
项存悌, 何秉章, 刘萍. 杨树肿茎溃疡病菌有性型的研究[J]. 东北林业大学学报, 1988, 16(4): 8−11.
Xiang C T, He B Z, Liu P. Study on teleomorph of fungus causing cryneum swollen stem canker of poplars[J]. Journal of Northeast Forestry University, 1988, 16(4): 8−11.
|
[10] |
赵金秀. 菏泽平原农区杨树灰斑病发生规律和防控技术研究[J]. 生物灾害科学, 2021, 44(3): 288−293. doi: 10.3969/j.issn.2095-3704.2021.03.49
Zhao J X. Study on the occurrence regularity and control technology of grey leaf-spot of poplar in the plain agricultural area of Heze City[J]. Biological Disaster Science, 2021, 44(3): 288−293. doi: 10.3969/j.issn.2095-3704.2021.03.49
|
[11] |
徐超, 陈宏州, 吴雨琦, 等. 2017年—2021年江苏省小麦赤霉病菌群体对4种杀菌剂的抗药性监测[J]. 植物保护, 2022, 48(6): 341−345, 367.
Xu C, Chen H Z, Wu Y Q, et al. Resistance of Fusarium asiaticum to four fungicides in Jiangsu Province from 2017 to 2021[J]. Plant Protection, 2022, 48(6): 341−345, 367.
|
[12] |
Yin H, Zhou J B, Lü H, et al. Identification, pathogenicity, and fungicide sensitivity of Ascochyta caulina (Teleomorph: Neocamarosporium calvescens) associated with black stem on quinoa in China[J]. Plant Disease, 2020, 104(10): 2585−2597. doi: 10.1094/PDIS-09-19-2042-RE
|
[13] |
吕红, 秦楠, 田淼, 等. 7种杀菌剂对藜麦叶斑病菌的室内毒力测定及其分生孢子萌发形态的影响[J]. 山西农业科学, 2023, 51(10): 1203−1209. doi: 10.3969/j.issn.1002-2481.2023.10.12
Lü H, Qin N, Tian M, et al. Toxicity determination of seven fungicides against quinoa leaf spot pathogen and the effect on conidial germination morphology[J]. Journal of Shanxi Agricultural Sciences, 2023, 51(10): 1203−1209. doi: 10.3969/j.issn.1002-2481.2023.10.12
|
[14] |
王飞, 杨瑾, 李雪梦, 等. 丹参茎基腐病病原鉴定及防治药剂筛选[J]. 植物病理学报, 2022, 52(6): 950−958.
Wang F, Yang J, Li X M, et al. Identification of basal stem rot causal pathogen in Salvia miltiorrhiza and evaluation of fungicides on the inhibition of mycelial growth in laboratory[J]. Acta Phytopathologica Sinica, 2022, 52(6): 950−958.
|
[15] |
窦涛, 范安阳, 崔广林, 等. 佛手叶部褐斑病病原菌鉴定及防治药剂筛选[J]. 植物病理学报, 2023, 53(5): 769−778.
Dou T, Fan A Y, Cui G L, et al. Identification of the pathogen causing leaf brown spot on Citrus medica var. sarcodactylis and screening of fungicides for the control of the disease[J]. Acta Phytopathologica Sinica, 2023, 53(5): 769−778.
|
[16] |
吴皓, 喻婷婷, 袁治春, 等. 陕西省华中五味子根腐病病原鉴定与防治药剂筛选[J]. 植物病理学报, 2023, 53(3): 491−497.
Wu H, Yu T T, Yuan Z C, et al. Pathogen identification and effective fungicides screening of root of Schisandra sphenanthera in Shaanxi Province[J]. Acta Phytopathologica Sinica, 2023, 53(3): 491−497.
|
[17] |
孙广宇, 宗兆峰. 植物病理学实验技术 [M]. 北京: 中国农业出版社, 2002.
Sun G Y, Zong Z F. Experimental techniques of plant pathology[M]. Beijing: China Agriculture Press, 2002.
|
[18] |
Fang Y L, Zhou Y Y, Li X, et al. Histological characterization of the early stage infection events of Setosphaeria turcica in maize[J]. Plant Pathology, 2022, 71(2): 251−261. doi: 10.1111/ppa.13486
|
[19] |
刘程程, 孙海燕, 张雯婷, 等. 叶菌唑与4种杀菌剂复配对小麦赤霉病的毒力及防效[J]. 植物保护, 2020, 46(4): 248−252.
Liu C C, Sun H Y, Zhang W T, et al. Synergistic toxicity and field control effects of metconazole mixed with four fungicides against Fusarium graminearum on wheat[J]. Plant Protection, 2020, 46(4): 248−252.
|
[20] |
苗淑斐, 李路怡, 钱乐, 等. 河南省油菜菌核病菌对氟吡菌酰胺及其复配剂的敏感性[J]. 农药学学报, 2023, 25(3): 748−754.
Miao S F, Li L Y, Qian L, et al. Sensitivity of Sclerotinia sclerotiorum to fluopyram and its mixtures in Henan Province[J]. Chinese Journal of Pesticide Science, 2023, 25(3): 748−754.
|
[21] |
李聪聪, 吴玉星, 王亚娇, 等. 咯菌腈和戊唑醇复配对假禾谷镰孢菌丝生长及所致病害的影响[J]. 植物病理学报, 2023, 53(3): 498−507.
Li C C, Wu Y X, Wang Y J, et al. Effects of fludioxonil and tebuconazole mixtures on mycelial growth and disease of Fusarium crown rot[J]. Acta Phytopathologica Sinica, 2023, 53(3): 498−507.
|
[22] |
Sun Y P, Johnson E R. Analysis of joint action of insecticides against house flies[J]. Journal of Economic Entomology, 1960, 53(5): 887−892. doi: 10.1093/jee/53.5.887
|
[23] |
郑玲, 吴小芹. 植物病原真菌侵染结构研究进展[J]. 南京林业大学学报(自然科学版), 2007, 31(1): 90−94.
Zheng L, Wu X Q. Advances on infection structures of plant pathogenic fungi[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2007, 31(1): 90−94.
|
[24] |
华乃震. 杀菌剂戊唑醇的剂型与应用[J]. 农药, 2013, 52(11): 781−786, 809.
Hua N Z. Formulation and application of fungicide tebuconazole[J]. Agrochemicals, 2013, 52(11): 781−786, 809.
|
[25] |
Bolton M D, Ebert M K, Faino L, et al. RNA-sequencing of Cercospora beticola DMI-sensitive and-resistant isolates after treatment with tetraconazole identifies common and contrasting pathway induction[J]. Fungal Genetics and Biology, 2016, 92: 1−13. doi: 10.1016/j.fgb.2016.04.003
|
[26] |
叶滔, 马志强, 毕秋艳, 等. 植物病原真菌对甾醇生物合成抑制剂类(SBIs)杀菌剂的抗药性研究进展[J]. 农药学学报, 2012, 14(1): 1−16. doi: 10.3969/j.issn.1008-7303.2012.01.01
Ye T, Ma Z Q, Bi Q Y, et al. Research advances on the resistance of plant pathogenic fungi to SBIs fungicides[J]. Chinese Journal of Pesticide Science, 2012, 14(1): 1−16. doi: 10.3969/j.issn.1008-7303.2012.01.01
|
[27] |
任璐, 史晓晶, 姚众, 等. 苹果斑点落叶病菌对戊唑醇敏感基线建立及抗性突变体适合度[J]. 植物病理学报, 2017, 47(3): 380−388.
Ren L, Shi X J, Yao Z, et al. Baseline sensitivity of Alternaria alternata f. sp. mali to tebuconazole and fitness of resistant mutants[J]. Acta Phytopathologica Sinica, 2017, 47(3): 380−388.
|
[28] |
张琳, 占浩鑫, 冯志伟, 等. 人参生炭疽菌(Colletotrichum panacicola)和线列炭疽菌(C. lineola)的生物学特性及其对不同杀菌剂的敏感性研究[J]. 植物病理学报, 2022, 52(4): 648−657.
Zhang L, Zhan H X, Feng Z W, et al. Biological characteristics and fungicide sensitivity of Colletotrichum panacicola and C. lineola causing anthracnose on ginseng[J]. Acta Phytopathologica Sinica, 2022, 52(4): 648−657.
|
[29] |
Siegel M R. Sterol-inhibiting fungicides: effects on sterol biosynthesis and sites of action[J]. Plant Disease, 1981, 65(12): 986−989. doi: 10.1094/PD-65-986
|
[30] |
Schwinn F J, Margot P. Phytophthora infestans, the cause of late blight of potato: control with chemicals[J]. Advances in Plant Pathology, 1991, 7: 225−261.
|
[31] |
Fernandez E N, Navia O, Gandarillas A. Basis of strategies for chemical control of potato late blight developed by PROINP in Bolivia[J]. Fitopatologa, 2000, 35(3): 137−149.
|
[32] |
Cools H J, Hawkins N J, Fraaije B A. Constraints on the evolution of azole resistance in plant pathogenic fungi[J]. Plant Pathology, 2013, 62: 36−42. doi: 10.1111/ppa.12128
|
[33] |
Karaoglanidis G S, Loannidis P M, Thanassoulopoulos C C. Changes in sensitivity of Cercospora beticola populations to sterol-demethylation-inhibiting fungicides during a 4-year period in northern Greece[J]. Plant Pathology, 2002, 51(1): 55−62. doi: 10.1046/j.0032-0862.2001.x-i2
|
[34] |
曾鑫, 郑树仁, 常翠莲, 等. 生物源杀菌剂及其与戊唑醇复配对苹果主要炭疽菌的室内活性评价分析[J]. 中国果树, 2023(1): 72−77.
Zeng X, Zheng S R, Chang C L, et al. Laboratory activity evaluation of biological fungicides and their combination with tebuconazole to major species from Colletotrichum spp. causing apple bitter rot[J]. China Fruits, 2023(1): 72−77.
|
[35] |
冯爱卿, 朱小源, 汪聪颖, 等. 13种杀菌剂对水稻胡麻叶斑病防效研究[J]. 植物保护, 2022, 48(5): 352−360.
Feng A Q, Zhu X Y, Wang C Y, et al. Efficacy of thirteen fungicides for controlling rice brown spot disease[J]. Plant Protection, 2022, 48(5): 352−360.
|
[36] |
Verro R, Finizio A, Otto S, et al. Predicting pesticide environmental risk in intensive agricultural areas (I): screening level risk assessment of individual chemicals in surface waters[J]. Environmental Science & Technology, 2009, 43(2): 522−529.
|
[37] |
魏中华, 徐娟, 郭明霞, 等. 国内多菌灵的研究进展[J]. 安徽农业科学, 2015, 43(3): 125−127, 141. doi: 10.3969/j.issn.0517-6611.2015.03.046
Wei Z H, Xu J, Guo M X, et al. Research progress of carbendazim in China[J]. Journal of Anhui Agricultural Sciences, 2015, 43(3): 125−127, 141. doi: 10.3969/j.issn.0517-6611.2015.03.046
|
[38] |
刘朋飞, 王岩, 王泓力, 等. 6种杀菌剂对梨火疫病菌的室内毒力测定和混配试验[J]. 植物保护, 2022, 48(6): 98−104.
Liu P F, Wang Y, Wang H L, et al. Laboratory toxicity tests and mixture experiments of six fungicides against pear fire blight[J]. Plant Protection, 2022, 48(6): 98−104.
|
[39] |
彭好翌. 常用杀菌剂及其组合剂对辣椒两种炭疽病菌的离体抑制效果研究 [D]. 长沙: 湖南农业大学, 2010.
Peng H Y. Individual and combinative inhibition of 12 fungicides on Colletotrichum acutatum and C. gloeosporioides on pepper[D]. Changsha: Hunan Agricultural University, 2010.
|
[40] |
周明国. 杀菌剂毒力及其生物测定[J]. 农药学学报, 2022, 24(5): 904−920.
Zhou M G. Fungicide toxicity and its bioassy[J]. Chinese Journal of Pesticide Science, 2022, 24(5): 904−920.
|
[41] |
王泓力, 王岩, 吴曰福, 等. 12种杀菌剂对杜梨苗梨火疫病的预防与治疗效果测定[J]. 植物保护, 2022, 48(6): 111−117, 178.
Wang H L, Wang Y, Wu Y F, et al. Prevention and control efficacies of 12 bactericides on fire blight of Pyrus betulifolia seedlings[J]. Plant Protection, 2022, 48(6): 111−117, 178.
|
[42] |
唐秀丽, 杨建敏, 孟志龙, 等. 杨树灰斑病菌(Coryneum populinum Bres.)对5种杀菌剂的敏感性[J]. 林业科学研究, 2023, 36(5): 1−9. doi: 10.12403/j.1001-1498.20230069
Tang X L, Yang J M, Meng Z L, et al. Sensitivity of Coryneum populinum Bres. to five fungicides[J]. Forest Research, 2023, 36(5): 1−9. doi: 10.12403/j.1001-1498.20230069
|
[1] | Xu Wenxu, Bi Huaxing, Wang Yajuan. Effects of watershed landscape pattern on runoff and its components in the loess region of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2023, 45(10): 118-126. DOI: 10.12171/j.1000-1522.20230037 |
[2] | Wang Chuqi, Yan Jinyu, Li Guanheng. Evolution and optimization research on landscape pattern of Yongding River section of Beijing based on ENVI technology[J]. Journal of Beijing Forestry University, 2021, 43(6): 118-129. DOI: 10.12171/j.1000-1522.20200204 |
[3] | Gao Yan, Zhang Yuqing, Qin Shugao, Zhang Jutao, Liu Zhen. Landscape pattern change and its influencing factors of sand-binding vegetation[J]. Journal of Beijing Forestry University, 2020, 42(4): 102-112. DOI: 10.12171/j.1000-1522.20190061 |
[4] | Xu Menglin, Li Guanheng, Ju Limao. Dynamic evaluation and analysis of landscape pattern of Mengshan Scenic Spot based on ENVI technology[J]. Journal of Beijing Forestry University, 2019, 41(10): 107-120. DOI: 10.13332/j.1000-1522.20190240 |
[5] | ZENG Tao, DI Xue-ying, YU Hong-zhou, SHU Zhan, YANG Guang. Changes of landscape patterns in Xingkai Lake Nature Reserve, northeastern China[J]. Journal of Beijing Forestry University, 2010, 32(4): 52-58. |
[6] | XIA Bing, YU Xin-xiao, NING Jin-kui, WANG Xiao-ping, QIN Yong-sheng, CHEN Jun-qi. Landscape pattern evolution of Beijing in recent 20 years.[J]. Journal of Beijing Forestry University, 2008, 30(supp.2): 60-66. |
[7] | XIA Wei-wei, HAN Hai-rong, LIU Hong-wen, LI Xue-mei. Forest landscape pattern of Pangquangou Nature Reserve based on RS and GIS, north China.[J]. Journal of Beijing Forestry University, 2008, 30(增刊1): 116-121. |
[8] | WANG Yuan, WU Ze-min, ZHANG Hao, ZHAO Xia. Landscape pattern analysis and comprehensive assessment of urban forest in the three districts of Maanshan City based on RS and GIS[J]. Journal of Beijing Forestry University, 2008, 30(4): 46-52. |
[9] | JIN Ying-shan, ZHAI Ming-pu, WANG Chao, ZHOU Rong-wu, AN Yu-tao, MA Run-guo, REN Yun-mao. Spatial distribution patterns of scenic forest landscape in Xishan Mountain of Beijing[J]. Journal of Beijing Forestry University, 2007, 29(3): 74-80. DOI: 10.13332/j.1000-1522.2007.03.012 |
[10] | ZHANG Zhi, ZHU Jin-zhao, ZHU Qing-ke, ZHANG Yu-qing, YAO Ai-jing, CAO Gang, WEI Tie. Topographic variation pattern of landscape distribution in Caijiachuan watershed, the Loess Plateau of western Shanxi Province[J]. Journal of Beijing Forestry University, 2005, 27(2): 43-48. |
1. |
许馨元,田刚,唐铭野. 中俄两国森林碳汇合作潜力及绿色效应研究. 商业经济. 2025(01): 80-83 .
![]() | |
2. |
段晓梅,章程,李松青,甘晓丽. 岩溶碳汇产品价值实现路径研究. 生态经济. 2025(02): 22-28 .
![]() | |
3. |
刘贤赵,罗政英,王一笛. 长株潭绿心区碳汇能力时空格局及多情景预测. 应用生态学报. 2025(02): 559-568 .
![]() | |
4. |
胡茸茸,郭杨,欧阳勋志,刘军,潘萍. 赣中杉木林碳密度空间分布格局及其影响因素. 生态学杂志. 2025(02): 365-372 .
![]() | |
5. |
辛守英,王晓红,焦琳琳. 基于遥感数据和优化Blending算法的人工林地上生物量估算研究. 西北林学院学报. 2025(02): 207-219 .
![]() | |
6. |
付甜,杨佳伟,王晓荣,胡兴宜,陈明震,漆小兵,胡定邦. 基于森林资源二类调查数据的县域森林碳汇估算及潜力预测. 环境生态学. 2025(03): 43-47+90 .
![]() | |
7. |
聂薇,邓华锋. 使用二类调查数据对森林碳储量评估及多因素预测. 东北林业大学学报. 2024(02): 52-59 .
![]() | |
8. |
裴薇薇,杨喆,王云英,王新,杜岩功. 祁连山区青海云杉林碳汇特征及调控因子. 中国农业科技导报. 2024(01): 226-233 .
![]() | |
9. |
徐思若,成志影,那雪迎,张栩嘉,马大龙,张鹏. 黑龙江省森林碳汇及其经济价值的变化分析与潜力预测. 生态学杂志. 2024(01): 197-205 .
![]() | |
10. |
王立国,朱海,叶炎婷,贺焱,宋薇. 中国省域旅游业碳中和时空分异与模拟. 生态学报. 2024(02): 625-636 .
![]() | |
11. |
高怡凡,杨志衍,彭荣开,孙子芸,高培超,宋长青. 森林蓄积量的碳达峰行动目标与经济发展期望对福建省土地利用/覆被的权衡影响. 北京师范大学学报(自然科学版). 2024(01): 129-137 .
![]() | |
12. |
李郊,王冰,王晨,高鹤,吴辉龙,郑鑫,彭华福. 2005—2020年江西省森林碳储量时空变化趋势及影响因素. 林草资源研究. 2024(01): 17-24 .
![]() | |
13. |
游景晖,欧阳勋志,李坚锋,毛述震,潘萍. 闽楠天然次生林不同林层碳密度变化特征及其影响因素. 东北林业大学学报. 2024(04): 89-94 .
![]() | |
14. |
石铁矛,高杨,王迪. 双碳目标下城市空间碳固存与增汇路径研究. 沈阳建筑大学学报(自然科学版). 2024(02): 193-202 .
![]() | |
15. |
杨俊豪,张皓东,李永昌,刘书敏. 基于可加性模型的云南松和华山松碳储量模型构建. 昆明理工大学学报(自然科学版). 2024(02): 140-150 .
![]() | |
16. |
张自强,周伟,杨重玉. 碳中和背景下森林采伐限额对中国森林碳汇影响的空间效应. 统计与决策. 2024(08): 84-88 .
![]() | |
17. |
陈文汇,李华. 林草生态系统固碳增汇的增长潜力及交易机制. 科技导报. 2024(07): 93-102 .
![]() | |
18. |
刘世荣,王晖,李海奎,余振,栾军伟. 碳中和目标下中国森林碳储量、碳汇变化预估与潜力提升途径. 林业科学. 2024(04): 157-172 .
![]() | |
19. |
蔡为民,王燕秋,林国斌,霍长宝,孙晓兵,王萌萌. 基于“资源-资产-资本-资金”转化路径的森林碳汇价值实现机制. 中国人口·资源与环境. 2024(03): 60-67 .
![]() | |
20. |
吕洁华,杨廷瑜. 基于“脱碳”视角的中国省际低碳效率时空分异研究. 生态经济. 2024(06): 13-20+29 .
![]() | |
21. |
孙晓驰,朱洁,周松. 京津冀城市群碳足迹压力空间关联网络结构及影响因素研究. 统计与管理. 2024(03): 4-17 .
![]() | |
22. |
黄超群,梁波,何英姿,李震,刘春花. 广西国有七坡林场森林碳汇价值评价. 林业调查规划. 2024(03): 71-75 .
![]() | |
23. |
袁天健,霍礼鑫,王芳,过建春,柯佑鹏. “两山”理念下海南省森林固碳量与影响因素分析. 林业经济问题. 2024(01): 51-58 .
![]() | |
24. |
那雪迎. 中国森林碳储量变化及固碳潜力的研究. 现代园艺. 2024(15): 59-63 .
![]() | |
25. |
王春晓,邓孟婷,汪雪飞,洪武扬. 基于PLUS-InVEST模型的碳储量时空演变与预测模拟. 中国园林. 2024(06): 70-76 .
![]() | |
26. |
肖嘉文,刘金福,郑雯,王智苑,方梦凡,洪宇,谭芳林. 1974—2018年福建省森林碳储量特征及动态变化. 植物资源与环境学报. 2024(04): 101-108 .
![]() | |
27. |
朱娘金,钟德君,李海滨,罗攀峰,刘荣杰,吴林芳,张蒙. 莲花山白盆珠省级自然保护区2017年——2023年森林动态变化研究. 热带林业. 2024(02): 77-81 .
![]() | |
28. |
吴伟光,许骞骞,羊凌玉,刘宇. 林业增汇潜力及其对中国碳中和的经济影响分析. 农业技术经济. 2024(08): 128-144 .
![]() | |
29. |
李元会,吴富雨,刘燕云,余海清,文嫱,刘韩. 甘孜州林业碳汇资源分析及开发策略. 现代农业科技. 2024(16): 76-80+95 .
![]() | |
30. |
张启航,张亚连,谭桂菲,黄崇超,袁宝龙. 中国林业碳汇效率时空演化特征——基于三阶段超效率数据包络分析模型. 生态学报. 2024(15): 6769-6782 .
![]() | |
31. |
卫格冉,李明泽,全迎,王斌,刘建阳,明烺. 基于地理加权随机森林的黑龙江省森林碳储量遥感估测. 中南林业科技大学学报. 2024(07): 64-76 .
![]() | |
32. |
游欣,冯晓菁,魏绪英,柯琳琳,蔡军火,陈美玲. 南昌市土地利用碳储量变化及多情景预测. 南方林业科学. 2024(05): 30-38 .
![]() | |
33. |
白念森,吴超,勾啸,崔嘉辰,李炜桢,贾朋,赵志刚. 珠江三角洲城市公益林资源分布差异. 林业与环境科学. 2024(05): 130-136 .
![]() | |
34. |
卢昆,李汉瑾,Hui Yu,王健,吴春明,孙祥科. 中国海洋产业蓝碳源汇识别与碳汇发展潜力初探. 中国海洋经济. 2024(02): 188-215+222-223 .
![]() | |
35. |
张灵蕤,刘辉,邓岚,李群. “双碳”目标下我国农林业碳排放效率的时空演变及影响因素分析. 林业经济. 2024(08): 59-83 .
![]() | |
36. |
张子璇,张颖,孙剑锋,孟娜. 森林碳汇计量研究进展与展望. 北京林业大学学报(社会科学版). 2024(04): 52-61 .
![]() | |
37. |
朱念福,郑晔施,童冉,原文文,刘道平,洪奕丰,吴统贵. 长三角地区乔木林碳汇及其对“双碳”目标贡献预测. 生态学杂志. 2024(12): 3817-3827 .
![]() | |
38. |
陈周光,崔伟伟,龙飞. 交通基础设施能影响森林碳汇增长吗?. 兰州财经大学学报. 2023(01): 81-91 .
![]() | |
39. |
史茂源,杜珊,田乐宇,余雪标,周华,吴金群. 海南屯昌不同林龄槟榔人工林地下部分碳储量的分布特征. 海南大学学报(自然科学版). 2023(01): 38-47 .
![]() | |
40. |
姚永华,赵泽新,熊安华. 基于森林资源二类调查的县域森林碳汇及其价值估算研究——以湖北省当阳市为例. 湖北林业科技. 2023(01): 36-42 .
![]() | |
41. |
朱安明,洪奕丰,张旭峰,于海霞,王洪涛,王雅梅,于文吉. 全生命周期木/竹产品碳足迹研究进展. 林产工业. 2023(02): 83-87 .
![]() | |
42. |
刘雨欣. 间伐保留密度对杉木中龄林碳储量的影响. 福建林业科技. 2023(01): 17-22+30 .
![]() | |
43. |
解瑞丽,田丹宇,刘伯翰,柴麒敏. 生态系统碳汇特征分析及对我国生态系统碳汇发展的启示. 环境保护. 2023(03): 30-34 .
![]() | |
44. |
胡勐鸿,李万峰,吕寻. 日本落叶松自由授粉家系选择和无性繁殖利用. 温带林业研究. 2023(01): 7-16 .
![]() | |
45. |
刘亚,黄安胜. 森林碳汇环境库兹涅茨曲线特征及其影响因素分析. 世界林业研究. 2023(02): 132-137 .
![]() | |
46. |
汤颖颖,吴秀芹. 广西岩溶碳汇对气候变化和石漠化治理措施的响应. 北京大学学报(自然科学版). 2023(02): 189-196 .
![]() | |
47. |
陈治中,昝梅,杨雪峰,董煜. 新疆森林植被碳储量预测研究. 生态环境学报. 2023(02): 226-234 .
![]() | |
48. |
牛晓耕,李莹,屈秋实. 碳达峰碳中和目标下河北省森林碳汇估算与潜力预测. 保定学院学报. 2023(03): 18-25 .
![]() | |
49. |
魏玺,邵亚,蔡湘文,林珍铭,肖连刚,刘泽昊. 漓江流域陆地生态系统碳储量时空特征与预测. 环境工程技术学报. 2023(03): 1223-1233 .
![]() | |
50. |
董瑞林,侯艳闯,丁宇婷. 基于饱和发生率、人工防治时滞等非线性变化特征的松材线虫病生态侵染模型构建研究. 南开大学学报(自然科学版). 2023(03): 92-102 .
![]() | |
51. |
徐彩瑶,任燕,孔凡斌. 浙江省土地利用变化对生态系统固碳服务的影响及其预测. 应用生态学报. 2023(06): 1610-1620 .
![]() | |
52. |
肖君. 福州市主要森林类型林下灌木层生物量和碳密度研究. 林业勘察设计. 2023(01): 1-4 .
![]() | |
53. |
刘晓曼,王超,高吉喜,袁静芳,黄艳,王斌,彭阳. 服务双碳目标的中国人工林生态系统碳增汇途径. 生态学报. 2023(14): 5662-5673 .
![]() | |
54. |
曾霞,张勰,廖德志,唐洁,杨艳,黎蕾,李永进,曾梦雪,吉悦娜,刘珉,赵文,易平英,阳涛,徐建军. 不同经营模式杉木人工林乔木层碳储量研究. 湖南林业科技. 2023(04): 45-50 .
![]() | |
55. |
陈科屹,林田苗,王建军,何友均,张立文. 天保工程20年对黑龙江大兴安岭国有林区森林碳库的影响. 生态环境学报. 2023(06): 1016-1025 .
![]() | |
56. |
刘建霞,杨文静,肖宇胜,徐舟,张利,邹胜,刘千里. 阿坝州实现碳达峰碳中和现状分析及发展建议. 四川农业科技. 2023(09): 95-97 .
![]() | |
57. |
王韦韦,吕茂奎,胥超,陈光水. 亚热带常绿阔叶林和杉木人工林有机碳流失动态特征对降雨的响应. 生态学报. 2023(18): 7474-7484 .
![]() | |
58. |
佘生斌,李小华,李海俊,张义伟. 双碳经济下林业发展探讨. 现代农业科技. 2023(20): 90-93 .
![]() | |
59. |
黄占兵. 做好“四篇文章”提升内蒙古林业碳汇能力. 北方经济. 2023(09): 14-16 .
![]() | |
60. |
王岩,管子隆,李菲,刘园. 秦岭北麓(西安段)碳排放和碳汇分析与预测研究. 西北水电. 2023(05): 15-20+25 .
![]() | |
61. |
韩雪莲,张加龙,刘灵,廖易,唐金灏,韩东阳. 基于遥感特征变量的高山松碳储量抽样估算. 西南林业大学学报(自然科学). 2023(06): 117-124 .
![]() | |
62. |
韩艺,张峰. 北京市不同功能分区的乔木林储碳功能对比研究. 林业调查规划. 2023(05): 26-31 .
![]() | |
63. |
马浩然. 公益林生态效益补偿单位采用蓄积及其增量的探索. 浙江农林大学学报. 2023(06): 1273-1281 .
![]() | |
64. |
胡景心,沙青娥,刘慧琳,张雪驰,郑君瑜. 珠江三角洲二氧化碳源汇演变特征及驱动因素. 环境科学. 2023(12): 6643-6652 .
![]() | |
65. |
田晓霞,包庆丰. 森林碳汇发展潜力时空演变与障碍因子诊断——基于31个省份. 中国林业经济. 2023(06): 111-117 .
![]() | |
66. |
张雅薇,王允磊,韩启峰,石晓龙. 碳达峰碳中和背景下提升新疆森林碳汇功能的思考. 温带林业研究. 2023(04): 78-80 .
![]() | |
67. |
曹先磊,许骞骞,吴伟光. 碳交易框架下我国林业增汇潜力及对区域碳减排成本的影响研究. 农业技术经济. 2023(12): 96-110 .
![]() | |
68. |
赵桐,蒙吉军. 基于土地利用变化的成都平原经济区碳储量时空演变与情景模拟. 山地学报. 2023(05): 648-661 .
![]() | |
69. |
蔡宇泽. 林业碳汇服务信托应用于林业企业融资的研究. 林业经济问题. 2023(06): 578-585 .
![]() | |
70. |
易昌民,付伟,赵春艳. 基于CiteSpace的中国林业碳汇研究进展与趋势分析. 林草政策研究. 2023(03): 89-96 .
![]() | |
71. |
Zheng-Meng Hou,Ying Xiong,Jia-Shun Luo,Yan-Li Fang,Muhammad Haris,Qian-Jun Chen,Ye Yue,Lin Wu,Qi-Chen Wang,Liang-Chao Huang,Yi-Lin Guo,Ya-Chen Xie. International experience of carbon neutrality and prospects of key technologies: Lessons for China. Petroleum Science. 2023(02): 893-909 .
![]() |
|
72. |
杨礼旦. 适应气候变化的人工林多目标经营与管理对策. 温带林业研究. 2022(01): 12-17 .
![]() | |
73. |
洪李斌,卿蕴贤,田佳赫,康洁敏,卢伟. 基于混合效应模型的塞罕坝华北落叶松人工林单木去皮胸径生长预测. 林业与生态科学. 2022(02): 127-133 .
![]() | |
74. |
张桂莲,仲启铖,张浪. 面向碳中和的城市园林绿化碳汇能力建设研究. 风景园林. 2022(05): 12-16 .
![]() | |
75. |
杨鑫,高雯雯,李莎,李冠衡. 基于遥感影像估算的北京中心城区碳储量与气候环境关联性研究. 风景园林. 2022(05): 31-37 .
![]() | |
76. |
张颖,易爱军. 承德市森林碳汇价值核算及其相关问题研究. 创新科技. 2022(05): 83-92 .
![]() | |
77. |
Menghong HU,Jiying LI,Man SUN. Strong Seedlings of Improved Varieties and High-efficiency Cultivation of Artificial Forests Promotes the Early Realization of "Carbon Neutrality". Agricultural Biotechnology. 2022(04): 136-141 .
![]() |
|
78. |
曾丽,吕寻,胡勐鸿. 良种是加速实现“碳中和”的有效保障措施——以甘肃省地方良种为例. 林业科技通讯. 2022(08): 35-39 .
![]() | |
79. |
林荣华. 森林经营管理对碳汇的影响及提高对策. 乡村科技. 2022(14): 120-123 .
![]() | |
80. |
沈德才,刘婷,莫罗坚,周海琪. 东莞市森林生态系统土壤有机碳含量的地统计学分析. 热带林业. 2022(03): 45-49 .
![]() | |
81. |
张俊飚,何可. “双碳”目标下的农业低碳发展研究:现状、误区与前瞻. 农业经济问题. 2022(09): 35-46 .
![]() | |
82. |
朱海,王立国. 江西省旅游业碳达峰与碳中和研究. 中国生态旅游. 2022(04): 617-631 .
![]() | |
83. |
薛春泉,陈振雄,杨加志,曾伟生,林丽平,刘紫薇,张红爱,苏志尧. 省市县一体化森林碳储量估测技术体系——以广东省为例. 林业资源管理. 2022(04): 157-163 .
![]() | |
84. |
曾莹,王雪萌,唐昊,廖笳妤,田蒙奎. 碳达峰碳中和战略科学内涵、实现路径及挑战. 现代化工. 2022(10): 1-4+10 .
![]() | |
85. |
张吉统,麦强盛. 云南省森林碳汇经济价值评估研究. 绿色科技. 2022(17): 264-268 .
![]() | |
86. |
原作强,王星,毛子昆,蔺菲,叶吉,房帅,王绪高,郝占庆. 典型温带树种固碳速率研究. 北京林业大学学报. 2022(10): 43-51 .
![]() | |
87. |
范春楠,刘强,郑金萍,郭忠玲,张文涛,刘英龙,谢遵俊,任增君. 采伐强度对阔叶红松林生态系统碳密度恢复的影响. 北京林业大学学报. 2022(10): 33-42 .
![]() | |
88. |
张颖,孟娜,姜逸菲. 中国森林碳汇与林业经济发展耦合及长期变化特征分析. 北京林业大学学报. 2022(10): 129-141 .
![]() | |
89. |
王志恒,李仲堃,王融,孔杉,陈晓峰. 基于双重耦合模型的森林固碳综合价值评估. 广西林业科学. 2022(05): 617-625 .
![]() | |
90. |
陈科屹,王建军,何友均,张立文. 黑龙江大兴安岭重点国有林区森林碳储量及固碳潜力评估. 生态环境学报. 2022(09): 1725-1734 .
![]() | |
91. |
廖杨文科,张佩瑶,张清越,李孝刚. 盐碱地林木耐盐机制及造林技术研究进展. 南京林业大学学报(自然科学版). 2022(06): 96-104 .
![]() | |
92. |
荀文会. “碳中和”视角下的沈阳市国土空间规划路径. 规划师. 2022(10): 88-92 .
![]() | |
93. |
许骞骞,曹先磊,孙婷,朱颖,吴伟光. 中国森林碳汇潜力与增汇成本评估——基于Meta分析方法. 自然资源学报. 2022(12): 3217-3233 .
![]() | |
94. |
董战峰,毕粉粉,冀云卿. 中国陆地生态系统碳汇发展的现状、问题及建议. 科技导报. 2022(19): 15-24 .
![]() | |
95. |
肖军,雷蕾,曾立雄,李肇晨,马成功,肖文发. 不同经营模式对华北油松人工林碳储量的影响. 生态环境学报. 2022(11): 2134-2142 .
![]() | |
96. |
向晋含,余彬,陶志先,张利,刘顺. “碳中和”背景下国家储备林培育的优化路径. 林业科技通讯. 2022(12): 3-9 .
![]() | |
97. |
章敏,王健,韩天一,欧阳勋志,潘萍,刘冬冬. 基于CBM-CFS3模型的马尾松林碳密度特征及其影响因素. 林业资源管理. 2022(06): 44-53 .
![]() | |
98. |
赵哲,冯星,王佳音. 辽宁省林下产业富民的实践探索及发展策略. 中南林业科技大学学报(社会科学版). 2022(06): 64-70 .
![]() | |
99. |
刘海. 闽北典型森林类型植被层碳储量及分配特征. 林业勘察设计. 2022(03): 84-88 .
![]() |