• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wang Kangfeng, Luo Yongzhong, Lu Zhenjia, Ma Lipeng, Zhang Cuntao, Guo Peng, Ma Jing, Zhao Liangsheng. Characteristics and risk assessment of dead fuel in main forest types in Longnan City, Gansu Province of northwestern China[J]. Journal of Beijing Forestry University, 2024, 46(8): 132-138. DOI: 10.12171/j.1000-1522.20230305
Citation: Wang Kangfeng, Luo Yongzhong, Lu Zhenjia, Ma Lipeng, Zhang Cuntao, Guo Peng, Ma Jing, Zhao Liangsheng. Characteristics and risk assessment of dead fuel in main forest types in Longnan City, Gansu Province of northwestern China[J]. Journal of Beijing Forestry University, 2024, 46(8): 132-138. DOI: 10.12171/j.1000-1522.20230305

Characteristics and risk assessment of dead fuel in main forest types in Longnan City, Gansu Province of northwestern China

More Information
  • Received Date: November 02, 2023
  • Revised Date: July 16, 2024
  • Available Online: July 19, 2024
  • Objective 

    This paper explored the characteristics of dead fuel in main forest types in Longnan City, Gansu Province of northwestern China, and assessed the risk of forest fires, to provid theoretical support for regional forest fire prevention.

    Method 

    Taking four main forest types in Longnan City as the research objects, the paper analyzed the difference of dead fuel load, dry to fresh ratio, equilibrium moisture content, ignition point and calorific value, and evaluated the fire risk of different forest types by membership function fuzzy evaluation method.

    Result 

    The total dead fuel load of different forest types was Pinus tabuliformis > Larix gmelinii > Quercus > Pinus armandii. The total dead fuel load of Pinus tabuliformis (16.02 t/ha) was significantly higher than others (P < 0.05), and the dead fuel load of humus layer and litter layer 1 was significantly higher than that of litter layer 2 and 3 (P < 0.05). The dry to fresh ratio of dead fuel in Pinus tabuliformis litter layer 1 was significantly higher than that of Larix gmelinii (P < 0.05). The dry to fresh ratio of dead fuel in litter layer 2 was the highest (58.21%−66.47%) and that in humus layer was the lowest (51.29%−55.56%). The equilibrium moisture content of dead fuel in oak was the largest, while that in larch was the smallest. The equilibrium moisture content of dead fuel in litter layer 3 was the highest (16.78%−20.38%), and that in humus layer was the lowest (12.22%−13.86%). The equilibrium moisture content of dead fuel was directly proportional to the diameter of fuel. The ignition point of humus layer was significantly higher than that of litter layer, while the calorific value was opposite (P < 0.05). The fuzzy evaluation results of membership function showed that the fire risk of Pinus tabuliformis stands was the largest, followed by Quercus sp. and Larix gmelinii, and that of Pinus armandii stands was the lowest.

    Conclusion 

    There are differences in dead fuel load, dry to fresh ratiod, equilibrium moisture content, ignition point and calorific value among different forest types and components. Pinus tabuliformis forest has the highest load, the lowest ignition point and equilibrium moisture content, which leads to the highest fire risk. Therefore, in the forest management and forest fire prevention in Longnan City, the management of Pinus tabuliformis forest fuel should be strengthened.

  • [1]
    Zhu Z, Deng X F, Zhao F, et al. How environmental factors affect forest fire occurrence in Yunnan forest region[J/OL]. Forests, 2022, 13(9): 1392[2023−10−20]. https://doi.org/10.3390/f13091392.
    [2]
    贺涵, 常禹, 刘志华, 等. 不同火控制政策下森林可燃物处理对大兴安岭林火情势的影响[J]. 生态学杂志, 2024, 43(2): 305−313.

    He H, Chang Y, Liu Z H, et al. Effects of fuel treatments on the forest fire regimes under different fire control policies in the Great Xing’an Mountains[J]. Chinese Journal of Ecology, 2024, 43(2): 305−313.
    [3]
    Flannigan M D, Stocks B J, Wotton B M. Climate change and forest fires[J]. Science of the Total Environment, 2000, 262(3): 221−229. doi: 10.1016/S0048-9697(00)00524-6
    [4]
    高亚东. 塞罕坝保护区主要优势树种林分地表可燃物特征及火险等级的研究[D]. 保定: 河北农业大学, 2023.

    Gao Y D. Study on the charactteristics of surface fuel and fire risk grades of main dominant tree species in Saihanba Nature Reeserve[D]. Baoding: Hebei Agricultural University, 2023.
    [5]
    付志高, 王志龙, 肖以华, 等. 粤北地区典型人工林林下森林可燃物的特征研究[J]. 林业资源管理, 2022(4): 61−71.

    Fu Z G, Wang Z L, Xiao Y H, et al. Characteristics of understory forest fuels in typical plantations in northern Guangdong Province[J]. Forest Resources Management, 2022(4): 61−71.
    [6]
    Cruz G M, Alexander M E, Dam J E. Using modeled surface and crown fire behavior characteristics to evaluate fuel treatment effectiveness: a caution[J]. Forest Science, 2014, 60(5): 1000−1004. doi: 10.5849/forsci.13-719
    [7]
    Baranovskiy V N, Kirienko A V. Mathematical simulation of forest fuel pyrolysis and crown forest fire impact for forest fire danger and risk assessment[J]. Processes, 2022, 10(3): 483. doi: 10.3390/pr10030483
    [8]
    Lee H T, Won M, Yoon S, et al. Estimation of 10-hour fuel moisture content using meteorological data: a model inter-comparison study[J/OL]. Forests, 2020, 11(9): 982[2023−12−20]. https://doi.org/10.3390/f11090982.
    [9]
    李建华, 夏虹露, 唐卫平, 等. 亚热带典型森林类型可燃物载量分配特征[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 57−64.

    Li J H, Xia H L, Tang W P, et al. Characteristics of fuel load distribution in typical subtropical forest types[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2023, 47(5): 57−64.
    [10]
    周翔, 王鹏, 布玛丽亚穆·麦麦提, 等. 新疆天山东部森林地表可燃物的热值研究[J]. 干旱区研究, 2023, 40(10): 1670−1677.

    Zhou X, Wang P, Bumaliyamu Mainaiti, et al. Calorific values of forest surface fuels in the eastern Tianshan Mountains of Xinjiang, China[J]. Arid Zone Research, 2023, 40(10): 1670−1677.
    [11]
    宋巧娣. 泰山森林可燃物分布及火险等级的划分[D]. 泰安: 山东农业大学, 2022.

    Song Q D. Distribution of forest fuel and classification of fire risk in Mount Taishan[D]. Taian: Shandong Agricultural University, 2022.
    [12]
    Mina U, Dimri A P, Farswan S. Forest fires and climate attributes interact in central Himalayas: an overview and assessment[J]. Fire Ecology, 2023, 19(1): 1−18. doi: 10.1186/s42408-022-00159-y
    [13]
    李晓兵. 甘肃陇南市生态文明建设及方案研究[D]. 兰州: 兰州大学, 2013.

    Li X B. Study of Gansu ecologiccal civilization construction and solutions in Longnan City[D]. Lanzhou: Lanzhou University, 2013.
    [14]
    杨雪清, 孙志超, 柴政, 等. 全国森林可燃物载量样地调查与预估方法探讨[J]. 林业资源管理, 2022(6): 1−6.

    Yang X Q, Sun Z C, Chai Z, et al. Research on the plot survey and load estimation of national forest fuels[J]. Forest Resources Management, 2022(6): 1−6.
    [15]
    杨清雪, 孙志超, 徐泽鸿, 等. 森林可燃物标准地调查技术规程[Z]. 北京: 国家林业和草原局, 2021.

    Yang Q X, Sun Z C, Xu Z H, et al. Technical specification for investigation of forest combustible standard[Z]. Beijing: National Forestry and Graassland Administration, 2021.
    [16]
    韩岳宏, 王月, 高国平. 5种林型地表细小可燃物组成对平衡含水率和时滞的影响[J]. 东北林业大学学报, 2018, 46(11): 62−65. doi: 10.3969/j.issn.1000-5382.2018.11.012

    Han Y H, Wang Y, Gao G P. Fine fuels, equilibrium moisture content, and time-lag of several forest types[J]. Journal of Northeast Forestry University, 2018, 46(11): 62−65. doi: 10.3969/j.issn.1000-5382.2018.11.012
    [17]
    王园园, 赵明, 张红香, 等. 干旱胁迫对紫花苜蓿幼苗形态和生理特征的影响[J]. 中国草地学报, 2021, 43(9): 78−87.

    Wang Y Y, Zhao M, Zhang H X, et al. Effects of drought stress on morphological and physiological characteristics of alfalfa seedlings[J]. Chinese Journal of Grassland, 2021, 43(9): 78−87.
    [18]
    满子源, 孙龙, 胡海清, 等. 南方8种森林地表死可燃物在平地无风时的燃烧蔓延速率与预测模型[J]. 林业科学, 2019, 55(7): 197−204. doi: 10.11707/j.1001-7488.20190722

    Man Z Y, Sun L, Hu H Q, et al. Prediction model of the spread rate of eight typical surface dead fuel in southern China under windless and flat land[J]. Scientia Silvae Sinicae, 2019, 55(7): 197−204. doi: 10.11707/j.1001-7488.20190722
    [19]
    于海晨, 王薇, 杜建华, 等. 油松和侧柏林地表可燃物负荷量及影响因素[J]. 北京林业大学学报, 2021, 43(6): 33−40. doi: 10.12171/j.1000-1522.20200364

    Yu H C, Wang W, Du J H, et al. Land surface fuel load and influencing factors of Pinus tabuliformis and Platycladus orientalis plantations[J]. Journal of Beijing Forestry University, 2021, 43(6): 33−40. doi: 10.12171/j.1000-1522.20200364
    [20]
    李炳怡, 刘冠宏, 舒立福. 北京门头沟区主要林分类型地表火行为模拟研究[J]. 北京林业大学学报, 2022, 44(6): 96−105. doi: 10.12171/j.1000-1522.20210204

    Li B Y, Liu G H, Shu L F. Simulation study on surface fire behavior of main forest types in Mentougou District, Beijing[J]. Journal of Beijing Forestry University, 2022, 44(6): 96−105. doi: 10.12171/j.1000-1522.20210204
    [21]
    巫清芸, 吴志伟, Keane R E, 等. 赣南地区森林地表死可燃物载量与环境因子的关系[J]. 应用生态学报, 2022, 33(6): 1539−1546.

    Wu Q Y, Wu Z W, Keane R E, et al. Relationship between surface dead fuel loadings and environmental factors in southern Jiangxi, China[J]. Chinese Journal of Applied Ecology, 2022, 33(6): 1539−1546.
    [22]
    赵璇, 游玮, 晁志, 等. 秦岭东段不同密度油松飞播林地表可燃物载量及其影响因素研究[J]. 西北林学院学报, 2022, 37(1): 159−165. doi: 10.3969/j.issn.1001-7461.2022.01.23

    Zhao X, You W, Chao Z, et al. Surface fuel loads and influencing factors on aerial seeding Pinus tabuliformis forests with different densities in the eastern Qinling Mountains[J]. Journal of Northwest Forestry University, 2022, 37(1): 159−165. doi: 10.3969/j.issn.1001-7461.2022.01.23
    [23]
    周红, 何欢, 肖蒙, 等. 云南省森林土壤腐殖质组分特征及影响因素[J]. 土壤学报, 2021, 58(4): 1008−1017.

    Zhou H, He H, Xiao M, et al. Composition of humus in forest soils of Yunnan Province, China and its influencing factors[J]. Acta Pedologica Sinica, 2021, 58(4): 1008−1017.
    [24]
    李颖, 严思晓, 张秀芳, 等. 武夷山国家公园内4种森林类型地表可燃物热值特征比较[J]. 应用与环境生物学报, 2020, 26(6): 1385−1391.

    Li Y, Yan S X, Zhang X F, et al. Comparison of surface fuel calorific value characteristics of four forest types in Wuyishan National Park[J]. Chinese Journal of Applied and Environmental Biology, 2020, 26(6): 1385−1391.
    [25]
    王婕, 牛树奎, 陈锋. 滇中地表死可燃物平衡含水率和时滞与温湿度的关系研究[J]. 生态科学, 2019, 38(1): 26−32.

    Wang J, Niu S K, Chen F. The relationship between equilibrium moisture content, time-lag of dead fuel and temperature and humidity in central Yunnan[J]. Ecological Science, 2019, 38(1): 26−32.
    [26]
    梁瀛, 张思玉, 努尔古丽, 等. 天山中部林区主要树种理化性质及燃烧性分析[J]. 林业科学, 2011, 47(12): 101−105. doi: 10.11707/j.1001-7488.20111215

    Liang Y, Zhang S Y, Nuerguli, et al. Physical and chemical properties and combustibility of main wood species in the central part of Tianshan Mountains[J]. Scientia Silvae Sinicae, 2011, 47(12): 101−105. doi: 10.11707/j.1001-7488.20111215
  • Related Articles

    [1]Wei Yunqi, Wang Yang, Yin Hao. A low-density tree digital twin model for refined urban greening management: a case study of tree wind disaster risk management[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240400
    [2]Guo Jian, QiaoHongyong, Yuan Tao, Wang Shubiao, Mou Ningning, JiaJianfei, Xi Fan, Xia Wei. Tree risk assessment in urban parks-taking Beijing Zoo as an example[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20210200
    [3]Li Weiwei, Yang Xueqing, Zhang Yiming, Feng Xin, Wang Bo, Du Jianhua, Chen Feng, Liu Xiaodong. Hazard assessment of forest fire in Miyun District of Beijing based on the subcompartment scale[J]. Journal of Beijing Forestry University, 2024, 46(2): 75-86. DOI: 10.12171/j.1000-1522.20230227
    [4]Zong Xuezheng, Tian Xiaorui, Ma Shuai, Liu Chang. Quantitative assessment for forest fire risk based on fire simulation: taking the Subtropical Forest Experimental Center of Chinese Academy of Forestry as an example[J]. Journal of Beijing Forestry University, 2022, 44(9): 83-90. DOI: 10.12171/j.1000-1522.20210328
    [5]ZHANG Qiang, MA Chao, YANG Hai-long, WANG Zhi-gang, TU Jian.. Characteristics of low frequency debris flow and risk analysis in Beijing mountainous region.[J]. Journal of Beijing Forestry University, 2015, 37(12): 92-99. DOI: 10.13332/j.1000-1522.20150177
    [6]GONG Jun-jie, YANG Hua, DENG Hua-feng. Assessment of ecological risks of landscape along the Ming Great Wall in Beijing[J]. Journal of Beijing Forestry University, 2015, 37(8): 60-68. DOI: 10.13332/j.1000-1522.20140303
    [7]LI Dan, DAI Wei, YAN Zhi-gang, WANG Ni-hong. Habitat evaluation system of larch plantation based on fuzzy analytic hierarchy[J]. Journal of Beijing Forestry University, 2014, 36(4): 75-81. DOI: 10.13332/j.cnki.jbfu.2014.04.015
    [8]ZHENG Ran, YUE Ye, WANG Xiao-hui, WEN Zhi-yong, GUAN Wen-bin. Method of risk assessment and management for ancient trees[J]. Journal of Beijing Forestry University, 2013, 35(6): 144-150.
    [9]XIAO Hua-shun, ZHANG Gui, LIU Da-peng, CAI Xue-li. Selecting forest fire spreading models based on the Fuzzy Data Mining technique[J]. Journal of Beijing Forestry University, 2006, 28(6): 93-97.
    [10]LIU Hai-jun, LUO You-qing, WEN Jun-bao, ZHANG Zhi-ming, FENG Ji-hua, TAO Wan-qiang. Pest risk assessment of Dendroctonus valens,Hyphantria cunea and Apriona swainsoni swainsoni in Beijing area[J]. Journal of Beijing Forestry University, 2005, 27(2): 81-87.
  • Cited by

    Periodical cited type(15)

    1. 文浩雨,张杰,李慧玉,高彩球,王超,张庆祝,姜静,刘桂丰. 基于BLUP-GGE双标图的白桦子代多地点速生性及稳定性分析. 北京林业大学学报. 2024(10): 53-62 . 本站查看
    2. 韩丽君. 果用皂荚优良无性系选育研究. 中国农学通报. 2023(20): 22-30 .
    3. 董琳琳,张国成,刘立辉,计家宝,白向东,顾宸瑞,姜静,刘桂丰. 白桦四倍体与二倍体杂交的亲本配合力分析. 林业科学. 2023(09): 75-84 .
    4. 牟德生,郭艳兰,金娜,王鑫,张勤德,张涛,何彩. 柽柳不同种苗期生长性状遗传多样性分析. 林业科技通讯. 2022(10): 77-80 .
    5. 王芳,蒋路平,张秦徽,陆志民,杨雨春,张建秋,赵曦阳. 不同地点51个长白落叶松无性系苗期生长变异和遗传稳定性分析. 植物研究. 2021(03): 336-343 .
    6. 卢玉君,王孝先,赵伟进,刘晓凤,付彩青,何建清. 砂生槐根瘤内生菌对青稞种子萌发及幼苗的促生作用. 广西植物. 2021(02): 206-215 .
    7. 李政纶,陈坤,姜静. 基于正交试验的白桦扦插生根影响因素优化. 江西农业学报. 2021(04): 59-63 .
    8. 郝向春,周帅,韩丽君,翟瑜,陈天成. 不同种源辽东栎种子和幼树指标变异及相关分析. 植物资源与环境学报. 2021(04): 1-11 .
    9. 李腾,王楚,王阳,姜静. 帽儿山实验林场7年生转BpGH3.5白桦优良株系选择. 东北林业大学学报. 2020(06): 1-5 .
    10. 卢玉君,王孝先,付彩青,朱雪峰,王建鹏,何建清. 5株西藏豌豆内生细菌的促生作用研究. 高原农业. 2020(04): 344-350 .
    11. 刘晔,徐瑢,韩丽君. 榆树优良无性系苗期选择初步研究. 山西林业科技. 2020(04): 39-41 .
    12. 王贵珍,陈炙,杨汉波,黄振,徐峥静茹. 桤木优良无性系苗期的初步选择. 四川林业科技. 2019(03): 67-70 .
    13. 安佰义,丁晓丽,吴双,汤昊,王嫚,刘晓嘉,闫春成,孙晓刚. EMS诱变白桦种子发芽的条件筛选. 分子植物育种. 2019(18): 6073-6079 .
    14. 王胤,姚瑞玲. 马尾松无性系苗期生长性状遗传多样性分析. 西南林业大学学报(自然科学). 2018(06): 58-62 .
    15. 张宏斌. 我国林木优良无性系选育现状. 辽宁林业科技. 2018(06): 50-53+63 .

    Other cited types(7)

Catalog

    Article views (220) PDF downloads (17) Cited by(22)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return