• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zheng Xin, Liu Yanming, Si Liqing, Shu Lifu, Chen Feng, Wang Qianxue, Wang Shuo, Zhang Jili. Research progress on effects of fire disturbance on stand structure and vegetation regeneration[J]. Journal of Beijing Forestry University, 2025, 47(1): 156-162. DOI: 10.12171/j.1000-1522.20240029
Citation: Zheng Xin, Liu Yanming, Si Liqing, Shu Lifu, Chen Feng, Wang Qianxue, Wang Shuo, Zhang Jili. Research progress on effects of fire disturbance on stand structure and vegetation regeneration[J]. Journal of Beijing Forestry University, 2025, 47(1): 156-162. DOI: 10.12171/j.1000-1522.20240029

Research progress on effects of fire disturbance on stand structure and vegetation regeneration

More Information
  • Received Date: January 27, 2024
  • Revised Date: May 16, 2024
  • Accepted Date: December 04, 2024
  • Available Online: December 05, 2024
  • Forest fire is an important disturbance factor in forest ecosystems. Severe forest fires can disrupt stand structure and impact the stability of ecosystem. Nevertheless, moderate fire disturbances can facilitate vegetation renewal, modify succession dynamics of the community, and enhance species diversity. This article reviews the research advancements in the influence of fire disturbances on stand structure and vegetation renewal, particularly the effects of fire disturbances on tree survival, stand structure, and vegetation renewal. Research indicates that tree mortality induced by forest fires is a key element influencing stand structure and tree species composition. The alterations in vegetation communities following fire disturbances mainly hinge on the fire intensity. Light fire disturbances have limited influence on tree canopy layer, while intense fire disturbances might potentially lead to reverse succession of ecosystem. At present, both domestic and international studies primarily concentrate on the effects of factors such as different forest types, fire intensities, fire severities, seasons, and various types of burned areas on stand structure and vegetation renewal after fire disturbances. There is a deficiency of long-term continuous research on the growth and vegetation renewal mechanisms of trees under fire disturbances. In the future, relevant research should focus on the following aspects: based on the continuous monitoring of permanent sample plots, studying the long-term dynamic changes of stand structure and vegetation renewal and succession under different fire disturbance conditions. We specify and augment a more comprehensive sampling dataset, integrate biophysical and physiological process modeling, and construct a more comprehensive prediction system to precisely predict the post-fire growth of trees in forests composed of different tree species, thoroughly explore the relationship between forest fires and other disturbance factors, and analyze the interactive relationship between forest fires and forest stand structure. The research results will facilitate a better understanding and exploration of the mechanisms of fire disturbance on stand structure and vegetation renewal, thereby advancing the field.

  • [1]
    Hurteau M D, Robards T A, Stevens D, et al. Modeling climate and fuel reduction impacts on mixed-conifer forest carbon stocks in the Sierra Nevada, California[J]. Forest Ecology and Management, 2014, 315: 30−42. doi: 10.1016/j.foreco.2013.12.012
    [2]
    Bond W J, Wilgen B V. Fire and the evolutionary ecology of plants[M]// Fire and plants. Netherlands: Springer, 1996: 123−147.
    [3]
    Eckdahl J A, Kristensen J A, Metcalfe D B. Climatic variation drives loss and restructuring of carbon and nitrogen in boreal forest wildfire[J]. Biogeosciences, 2022, 19(9): 2487−2506. doi: 10.5194/bg-19-2487-2022
    [4]
    Dantas V D L, Hirota M, Oliveira R S, et al. Disturbance maintains alternative biome states[J]. Ecology Letters, 2016, 19: 12−19. doi: 10.1111/ele.12537
    [5]
    Dietze M C, Moorcroft P R. Tree mortality in the eastern and central United States: patterns and drivers[J]. Global Change Biology, 2011, 17(11): 3312−3326. doi: 10.1111/j.1365-2486.2011.02477.x
    [6]
    王烁, 韩大校, 王千雪, 等. 林火对兴安落叶松天然林树木存活与林分结构影响的研究[J]. 温带林业研究, 2022, 5(3): 48−52.

    Wang S, Hang D X, Wang Q X, et al. Study on the effect of forest fire on tree survival and stand structure in Larch natural forest[J]. Journal of Temperate Forestry Research, 2022, 5(3): 48−52.
    [7]
    Hood S, Bentz B. Predicting postfire douglas-fir beetle attacks and tree mortality in the northern rocky mountains[J]. Canadian Journal of Forest Research, 2007, 37(6): 1058−1069. doi: 10.1139/X06-313
    [8]
    van Mantgem P J, Stephenson N L, Knapp E, et al. Long-term effects of prescribed fire on mixed conifer forest structure in the Sierra Nevada, California[J]. Forest Ecology and Management, 2011, 261: 989−994. doi: 10.1016/j.foreco.2010.12.013
    [9]
    Slack A W, Zeibig-Kichas N E, Kane J M, et al. Contingent resistance in longleaf pine (Pinus palustris) growth and defense 10 years following smoldering fires[J]. Forest Ecology and Management, 2016, 364: 130–138.
    [10]
    Kane J M, Varner J M, Metz M R, et al. Characterizing interactions between fire and other disturbances and their impacts on tree mortality in western US Forests[J]. Forest Ecology and Management, 2017, 405: 188−199. doi: 10.1016/j.foreco.2017.09.037
    [11]
    韩大校, 韦睿, 王晓红, 等. 林火导致树木死亡的作用机制和影响因素的研究进展[J]. 林业科学, 2020, 56(7): 151−162. doi: 10.11707/j.1001-7488.20200716

    Han D X, Wei R, Wang X H, et al. Progress on the mechanisms and influencing factors of tree mortality caused by forest fire: a review[J]. Scientia Silvae Sincae, 2020, 56(7): 151−162. doi: 10.11707/j.1001-7488.20200716
    [12]
    Grayson L M, Progar R A, Hood S M. Predicting post-fire tree mortality for 14 conifers in the Pacific Northwest, USA: model evaluation, development, and thresholds[J]. Forest Ecology and Management, 2017, 399: 213−226. doi: 10.1016/j.foreco.2017.05.038
    [13]
    Nesmith J, Das A, O’hara K, et al. The influence of pre-fire tree growth and crown condition on post-fire mortality of sugar pine following prescribed fire in Sequoia National Park[J]. Canadian Journal of Forest Research, 2015, 45(7): 910−919. doi: 10.1139/cjfr-2014-0449
    [14]
    Alfaro-Sánchez R, Camarero J J, Sánchez-Salguero R, et al. Post-fire aleppo pine growth, C and N isotope composition depend on site dryness[J]. Trees, 2016, 30: 581−595. doi: 10.1007/s00468-015-1342-9
    [15]
    SparkS A M, Smith A M, Talhelm A F, et al. Impacts of fire radiative flux on mature Pinus ponderosa growth and vulnerability to secondary mortality agents[J]. International Journal of Wildland Fire, 2017, 26: 95−106. doi: 10.1071/WF16139
    [16]
    Miller J D, Safford H D, Crimmins M, et al. Quantitative evidence for increasing forest fire severity in the Sierra Nevada and southern Cascade Mountains, California and Nevada, USA[J]. Ecosystems, 2009, 12(1): 16−32. doi: 10.1007/s10021-008-9201-9
    [17]
    Keyser T L, Mcdaniel V L, Klein R N, et al. Short-term stem mortality of 10 deciduous broadleaved species following prescribed burning in upland forests of the Southern US[J]. International Journal of Wildland Fire, 2017, 27(1): 42−51.
    [18]
    Millar C I, Stephenson N L. Temperate forest health in an era of emerging megadisturbance[J]. Science, 2015, 349: 823−826. doi: 10.1126/science.aaa9933
    [19]
    Ganio L M, Progar R A. Mortality predictions of fire-injured large Douglas-fir and ponderosa pine in Oregon and Washington, USA[J]. Forest Ecology and Management, 2017, 390: 47−67. doi: 10.1016/j.foreco.2017.01.008
    [20]
    陈宝麟, 戴安然. 大兴安岭森林火灾树木死亡率建模与预测[J]. 现代经济信息, 2017(8): 339−340. doi: 10.3969/j.issn.1001-828X.2017.12.287

    Chen B L, Dai A R. Modeling and prediction of tree mortality rate in forest fires in the Greater Khingan Mountains[J]. Modern Economic Information, 2017(8): 339−340. doi: 10.3969/j.issn.1001-828X.2017.12.287
    [21]
    Pimont F, Dupuy J L, Linn R R, et al. Impacts of tree canopy structure on wind flows and fire propagation simulated with FIRETEC[J]. Annals of Forest Science, 2011, 68: 523–530.
    [22]
    Stephens S L, Mciver J D, Boerner R E J, et al. The effects of forest fuel-reduction treatments in the United States[J]. Bioscience, 2012, 62(6): 549−560. doi: 10.1525/bio.2012.62.6.6
    [23]
    McElhinny C, Gibbons P, Brack C, et al. Forest and woodland stand structural complexity: its definition and measurement[J]. Forest Ecology & Managment, 2005, 218: 1–24.
    [24]
    Amoroso M M, Daniels L D, Bataineh M, et al. Evidence of mixed-severity fires in the foothills of the Rocky Mountains of west-central Alberta Canada[J]. Forest Ecology & Management, 2011, 262: 2240−2249.
    [25]
    孙家宝. 火干扰后大兴安岭兴安落叶松林群落动态研究[D]. 哈尔滨: 东北林业大学, 2010.

    Sun J B. The dynamic study on plant community of Larix gmelinii in Daxing’an Mountain after fire disturbance[D]. Harbin: Northeast Forestry University, 2010.
    [26]
    王鼎, 王梓璇, 冯倩倩, 等. 兴安落叶松林植物物种组成及多样性对轻度火干扰的响应[J]. 林业资源管理, 2017(3): 80−85, 103.

    Wang D, Wang Z X, Feng Q Q, et al. Study on species composition and diversity of mild burned phytocoenosium after different regeneration years[J]. Forest and Grassland Resources Research, 2017(3): 80−85, 103.
    [27]
    喻泓, 杨晓晖, 慈龙骏. 内蒙古呼伦贝尔沙地不同樟子松林竞争强度的比较[J]. 应用生态学报, 2009, 20(2): 250−255.

    Yu H, Yang X H, Ci L J. Comparison of competition intensity between different camphor pine forests in Hulunbuir Sandy Land, Inner Mongolia[J]. Chinese Journal of Applied Ecology, 2009, 20(2): 250−255.
    [28]
    杨一, 王懿祥, 白尚斌, 等. 临安次生灌丛植物多样性对林火烈度空间异质性的响应[J]. 生态学报, 2016, 36(14): 4438−4446.

    Yang Y, Wang Y X, Bai S B, et al. Effects of spatial heterogeneity of forest fire severity on plant diversity in a secondary shrub community in Linan[J]. Acta Ecologica Sinica, 2016, 36(14): 4438−4446.
    [29]
    Stoddard M T, Huffman D W, Fulé P Z, et al. Forest structure and regeneration responses 15 years after wildfire in a ponderosa pine and mixed-conifer ecotone, Arizona, USA[J]. Fire Ecology, 2018, 14(2): 1−12. doi: 10.1186/s42408-018-0002-z
    [30]
    王千雪, 刘晏铭, 王烁,等. 过火林分树木死亡率及对林分空间结构的影响预测[J]. 陆地生态系统与保护学报, 2023, 3(5): 41−47. doi: 10.12356/j.2096-8884.2023-0055

    Wang Q X, Liu Y M, Wang S, et al. Prediction of post-fre tree mortality and lts effects on forest spatial structure[J]. Terrestrial Ecosystem and Conservation, 2023, 3(5): 41−47. doi: 10.12356/j.2096-8884.2023-0055
    [31]
    Mitchell R J, Hiers K. J, O’brien J, et al. Ecological forestry in the Southeast: understanding the ecology of fuels[J]. Journal of Forestry, 2009, 107: 391−397.
    [32]
    张运生, 舒立福, 赵凤君, 等. 森林抚育对滇中地区潜在树冠火的影响[J]. 森林工程, 2023, 39(5): 1−10. doi: 10.3969/j.issn.1006-8023.2023.05.001

    Zhang Y S, Shu L F, Zhao F J, et al. Effects of forest tending on potential crown fires in central Yunnan[J]. Forest Engineering, 2023, 39(5): 1−10. doi: 10.3969/j.issn.1006-8023.2023.05.001
    [33]
    高敏, 任云卯, 周晓东, 等. 抚育间伐对西山林场侧柏林冠层可燃物特征及潜在火行为的影响[J]. 北京林业大学学报, 2022, 44(8): 56−65.

    Gao M, Ren Y M, Zhou X D, et al. Effects of thinning on canopy characteristics and potential crown fire behavior of Platycladus orientalis in Xishan Forest Farm of Beijing[J]. Journal of Beijing Forestry University, 2022, 44(8): 56−65.
    [34]
    朱敏. 北京西山林场主要林分疏伐前后潜在火行为及碳储量研究[D]. 北京: 北京林业大学, 2015.

    Zhu M. Research on potential surface fire behavior and carbon storage of major forest types in Beijing Xishan Forest Farm[D]. Beijing: Beijing Forestry University, 2015.
    [35]
    Forrestel E J, Donoghue M J, Smith M D. Convergent phylogenetic and functional responses to altered fire regimes in mesic savanna grasslands of North America and South Africa[J]. New Phytologist, 2014, 203: 1000−1011. doi: 10.1111/nph.12846
    [36]
    Balch J K, Massad T J, Brando P M, et al. Effects of high frequency under storey fires on woody plant regeneration in southeastern Amazonian forests[J]. Philosophical Transactions of the Royal Society B-biological Sciences, 2013, 368: 20120157. doi: 10.1098/rstb.2012.0157
    [37]
    陈峰. 林火干扰对落叶松林物种多样性和地上生物量的影响研究[D]. 北京: 北京林业大学, 2020.

    Chen F. Study on forest fire on understory vegetation diversity and biomassof Larix gmelinii burned area[D]. Beijing: Beijing Forestry University, 2020.
    [38]
    Svátek M, Rejžek M, Kvasnica J, et al. Frequent fires control tree spatial pattern, mortality and regeneration in Argentine open woodlands[J]. Forest Ecology and Management, 2018, 408: 129−136. doi: 10.1016/j.foreco.2017.10.048
    [39]
    李安定, 彭熙, 张建利. 喀斯特山区森林火灾后火烧迹地植物更新库研究[J]. 贵州科学, 2014, 32(1): 40−46, 57.

    Li A D, Peng X, Zhang J L. Study on plant regeneration bank in burned land after forest fire in karst areas[J]. Guizhou Science, 2014, 32(1): 40−46, 57.
    [40]
    Andres S E, Powell J R, Rymer P D, et al. Fire severity and the post-fire soil environment affect seedling regeneration success of the threatened Persoonia hirsuta (Proteaceae)[J]. Austral Ecology, 2022, 47(6): 1248−1259.
    [41]
    焦小梅, 张秋良, 魏玉龙, 等. 大兴安岭火烧迹地幼苗更新及空间分布格局[J]. 内蒙古农业大学学报(自然科学版), 2021, 42(1): 38−44.

    Jiao X M, Zhang Q L, Wei Y L, et al. Seedling regeneration and spatial distribution pattern in the burning land of Greater Khingan Range[J]. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2021, 42(1): 38−44.
    [42]
    张帆, 潘存德, 李贵华, 等. 火后喀纳斯泰加林乔木更新数量与质量变化[J]. 生态环境学报, 2019, 28(3): 455−462.

    Zhang F, Pan C D, Li G H, et al. Quantity and quality change of edifcators regeneration in Kanas Taiga after fire disturbance[J]. Ecology and Environmental Sciences, 2019, 28(3): 455−462.
    [43]
    郭秋菊. 择伐和火干扰对长叶松幼苗更新的影响[D]. 咸阳: 西北农林科技大学, 2014.

    Guo Q J. Effects of selection and prescribed fire disturbances on longleaf pine seedling regeneration[D]. Xianyang: Northwest A&F University, 2014.
    [44]
    孟勐. 大兴安岭火烧迹地植被–土壤协同恢复机制[D]. 呼和浩特: 内蒙古农业大学, 2021.

    Meng M. The collaborative mechanism of vegetation-soil restoration in burned are of Daxing’anling[D]. Hohhot: Inner Mongolia Agricultural University, 2021.
    [45]
    Aguiar F C, Rodrigues C, Pin A J P, et al. Regeneration of riparian and maritime pine forests after a large wildfire on the largest public forest of Portugal[J]. Forests, 2021, 12: 477. doi: 10.3390/f12040477
    [46]
    司宏敏, 余娇娥, 吴雪涛, 等. 两种过火类型对云南松林损伤及火后自然更新的研究[J]. 西部林业科学, 2019, 48(1): 7−11, 17.

    Si H M, Yu J E, Wu X T, et al. The damage and post-fre regeneration of Pinus yunnanensis under two different fire intensity[J]. Journal of West China Forestry Science, 2019, 48(1): 7−11, 17.
    [47]
    Arthur M A, Blankenship B A, Schörgendorfer A, et al. Changes in stand structure and tree vigor with repeated prescribed fire in an Appalachian hardwood forest[J]. Forest Ecology and Management, 2015, 340: 46−61. doi: 10.1016/j.foreco.2014.12.025
    [48]
    Malone S L, Fornwalt P J, Battaglia M A, et al. Mixed-severity fire fosters heterogeneous spatial patterns of conifer regeneration in a dry conifer forest[J]. Forests, 2018, 9(1): 45. doi: 10.3390/f9010045
    [49]
    Lingua E, Marques G, Marchi N, et al. Post-fire restoration and deadwood management: microsite dynamics and their impact on natural regeneration[J]. Forests, 2023, 14: 1820. doi: 10.3390/f14091820
  • Related Articles

    [1]Zhou Yufei, Luo Chao, Li Sheng, Chen Zixi, Shao Weizhong. Effects of broadleaved transformation on stand structure of Pinus massoniana forest in subtropical area[J]. Journal of Beijing Forestry University, 2025, 47(1): 11-21. DOI: 10.12171/j.1000-1522.20240292
    [2]Sheng Qi, Dong Lingbo, Liu Zhaogang. Stand spatial structure optimization combined with habitat suitability of great spotted woodpecker[J]. Journal of Beijing Forestry University, 2021, 43(5): 24-32. DOI: 10.12171/j.1000-1522.20200141
    [3]He Jingyuan, Wang Xinjie, Wang Kai, Guo Weiwei, Liu Li, Wang Fuzeng. Multivariate distribution of spatial structure parameters of Populus davidiana-Betula platyphylla secondary forest[J]. Journal of Beijing Forestry University, 2021, 43(2): 22-33. DOI: 10.12171/j.1000-1522.20200076
    [4]Bai Yu, Yang Hua, Wen Jing, Wang Quanjun. Study on forest structure diversity based on the neighbourhood trees[J]. Journal of Beijing Forestry University, 2020, 42(6): 52-58. DOI: 10.12171/j.1000-1522.20190120
    [5]Wei Anran, Zhang Yuqiu, Tan Lingzhao, He Huaijiang, Zhang Chunyu, Zhao Xiuhai. Effects of tending felling on stand structure and species diversity of mixed coniferous and broadleaved forest[J]. Journal of Beijing Forestry University, 2019, 41(5): 148-158. DOI: 10.13332/j.1000-1522.20190018
    [6]Zhao Kai, Li Jinhang, Xu Chengyang. Coupling relationship between stand structure and color patch of Platycladus orientalis plantations[J]. Journal of Beijing Forestry University, 2019, 41(1): 82-91. DOI: 10.13332/j.1000-1522.20180316
    [7]Li Lianqiang, Niu Shukui, Tao Changsen, Chen Ling, Chen Feng. Correlations between stand structure and surface potential fire behavior of Pinus tabuliformis forests in Miaofeng Mountain of Beijing[J]. Journal of Beijing Forestry University, 2019, 41(1): 73-81. DOI: 10.13332/j.1000-1522.20180304
    [8]ZHOU Jian-ping, WANG Shu-li.. Coupling relationship of structure and tree diversity between upper and lower canopy layer based on structural equation model.[J]. Journal of Beijing Forestry University, 2015, 37(9): 9-16. DOI: 10.13332/j.1000-1522.20140400
    [9]ZHAO Ming-yao, LIU Hui-yun, ZHANG Xiao-li, JIAO Zhi-min, YAO Zhi, YANG Ming. Estimation of forest structural parameters based on stand structure response and PALSAR data[J]. Journal of Beijing Forestry University, 2015, 37(6): 61-69. DOI: 10.13332/j.1000-1522.20140402
    [10]WU Jia-sheng, ZENG Yan-ru, LI Zhang-ju.. Soil fertility and stand structure of highyield Camellia oleiferastands.[J]. Journal of Beijing Forestry University, 2009, 31(6): 203-208.

Catalog

    Article views (206) PDF downloads (65) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return