Citation: | Huang Can, Wu Haoyu, Xiong Dianguang, Huang Huayi, Tian Chengming. Establishment of RAA-CRISPR/Cas12a-LFD-based visual detection of Pseudocryphonectria elaeocarpicola[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240341 |
Elaeocarpus spp. stem blight is a new branching disease on Elaeocarpus spp. caused by Pseudocryphonectria elaeocarpicola, for which research is still in its infancy and lacks effective prevention and control measures. The aim of this paper is to establish a rapid and visualized method for the detection of P. elaeocarpicola, which provides an important technical support for the early monitoring and early warning of the disease.
In this study, we utilized PsGti1 gene of P. elaeocarpicola as a target, specifically amplified the target gene by recombinase aided amplification (RAA) reaction, and cut the target and fluorescent probe by CRISPR/Cas12a system, and finally visualized the detection of P. elaeocarpicola by using lateral flow dipstick (LFD).
(1) In this study, the optimal primer pairs for the RAA amplification reaction of the PsGti1 gene of P. elaeocarpicola were screened and obtained. (2) The CRISPR/Cas12a reaction system worked best when the Cas12a and CrRNA concentration ratios were 1 μmol/L and 0.125 μmol/L, respectively. (3) A RAA-CRISPR/Cas12a-LFD visualization detection system was established, which can realize the rapid detection of P. elaeocarpicola under the reaction condition of constant temperature at 37 ℃, and the sensitivity of the detection were 50 fg/μL (gDNA as template) and 20 pg/μL (PsGti1_T-vector as template), respectively.
The RAA-CRISPR/Cas12a-LFD detection system for P. elaeocarpicola established in this study has the advantages of easy-to-reach reaction temperature, high specificity, high sensitivity and ease of operation, which makes it suitable for carrying out the detection of P. elaeocarpicola in the field or in scenarios lacking laboratory testing equipment.
[1] |
Huang H Y, Huang H H, Zhao D Y, et al. Pseudocryphonectria elaeocarpicola gen. et sp. nov. (Cryphonectriaceae, Diaporthales) causing stem blight of Elaeocarpus spp. in China[J]. Mycokeys, 2022(91): 67−84.
|
[2] |
Chen S F, Wingfield M J, Li G Q, et al. Corticimorbus sinomyrti gen. et sp nov (Cryphonectriaceae) pathogenic to native Rhodomyrtus tomentosa (Myrtaceae) in South China[J]. Plant Pathology, 2016, 65(8): 1254−1266. doi: 10.1111/ppa.12507
|
[3] |
Gryzenhout M, Myburg H, Wingfield B D, et al. Cryphonectriaceae (Diaporthales), a new family including Cryphonectria, Chrysoporthe, Endothia and allied genera[J]. Mycologia, 2006, 98(2): 239−249. doi: 10.1080/15572536.2006.11832696
|
[4] |
MacDonald W L. Biological control of chestnut blight: use and limitations of transmissible hypovirulence[J]. Plant Disease, 1991, 75(7): 653. doi: 10.1094/PD-75-053
|
[5] |
Yang Y, Xiong D, Zhao D, et al. Genome sequencing of Elaeocarpus spp. stem blight pathogen Pseudocryphonectria elaeocarpicola reveals potential adaptations to colonize woody bark[J/OL]. BMC Genomics, 2024, 25(1): 714. https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-024-10615-5.
|
[6] |
廖芳, 朱林慧, 牛春敬, 等. 柑橘属植物疫霉病菌检测与鉴定的研究进展[J]. 植物检疫, 2015, 29(1): 7−11.
Liao F, Zhu L H, Niu C J, et al. Progress on detection and identification of Phytophthora spp. in citrus plants[J]. Plant Quarantine, 2015, 29(1): 7−11.
|
[7] |
汪蕉. 斑点叉尾鮰源停乳链球菌的生物学特性研究及RAA-LFD检测方法的建立[D]. 雅安: 四川农业大学, 2023.
W J. Study on biological characteristics of Streptococcus dysgalactiae from channel catfish and establishment of RAA-LFD detection method[D]. Yanan: Sichuan Agricultural University, 2023.
|
[8] |
Jiang F, Doudna J A. CRISPR-Cas9 Structures and Mechanisms[M]//Dill K A. Annual review of biophysics: Vol. 46. Palo Alto: Annual reviews, 2017: 505-529.
|
[9] |
Yamano T, Nishimasu H, Zetsche B, et al. Crystal Structure of Cpf1 in Complex with Guide RNA and Target DNA[J]. Cell, 2016, 165(4): 949−962. doi: 10.1016/j.cell.2016.04.003
|
[10] |
Dong D, Ren K, Qiu X, et al. The crystal structure of Cpf1 in complex with CRISPR RNA[J]. Nature, 2016, 532(7600): 522−526. doi: 10.1038/nature17944
|
[11] |
Chen J S, Ma E, Harrington L B, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity[J]. Science, 2018, 360(6387): 436−439. doi: 10.1126/science.aar6245
|
[12] |
董铮, 赵振兴, 范奇璇, 等. 番茄斑驳花叶病毒 RT-RAA-CRISPR/Cas12a的可视化检测方法的建立[J/OL]. 植物病理学报, 1−9 [2024−12−30]. https://doi.org/10.13926/j.cnki.apps.001357.
Dong Z, Zhao Z X, Fan Q X, et al. Establishment of RT-RAA-CRISPR/Cas12a-based visual detection of tomato mottle mosaic[J/OL]. Acta Phytopathologica Sinica, 1−9 [2024−12−30]. https://doi.org/10.13926/j.cnki.apps.001357.
|
[13] |
肖思民, 侯泽玮, 刘方幸妍, 等. 基因Ⅱ型草鱼呼肠孤病毒RAA-CRISPR/Cas12a检测方法的建立[J]. 水生生物学报, 2024, 48(11): 1905−1914. doi: 10.7541/2024.2024.0196
Xiao S M, Hou Z W, Liu F X Y, et al. Establishment of RAA-CRISPR/CAS12a detection for genotype Ⅱ grass carp reovirus[J]. Acta Hydrobiologica Sinica, 2024, 48(11): 1905−1914. doi: 10.7541/2024.2024.0196
|
[14] |
Liu H B, Zang Y X, Du X jun, et al. Development of an isothermal amplification-based assay for the rapid visual detection of Salmonella bacteria[J]. Journal of Dairy Science, 2017, 100(9): 7016−7025. doi: 10.3168/jds.2017-12566
|
[15] |
Zhang H, Tan F, Wang Q, et al. CRISPR-Cas12a based HSV DNA detection method using quantum dot-labeled immunochromatographic strips[J/OL]. Microchemical Journal, 2024, 207: 112117. https://www.sciencedirect.com/science/article/pii/S0026265X2402229X?via%3Dihub.
|
[16] |
Zhao Z, Wang S, Dong Z, et al. One-Step Reverse-Transcription Recombinase-Aided Amplification CRISPR/Cas12a-Based Lateral Flow Assay for Fast Field Screening and Accurate Differentiation of Four Major Tobamoviruses Infecting Tomato and Pepper[J/OL]. Journal of Agricultural and Food Chemistry, 2023, 71(45): 17025-17035.
|
[17] |
Zhu L, Liang Z, Xu Y, et al. Ultrasensitive and Rapid Visual Detection of Escherichia coli O157: H7 Based on RAA-CRISPR/Cas12a System[J/OL]. Biosensors-Basel, 2023, 13(6): 659. https://www.mdpi.com/2079-6374/13/6/659.
|
[18] |
马巧妮. 基于RAA-CRISPR/Cas12a快速检测土壤中弓形虫和犬弓首蛔虫方法的建立及初步应用[D]. 北京: 中国农业科学院, 2022.
Ma Q N. Establishment and preliminary application of RAA CRISPR/Cas12a-based assays for rapid detction of Toxoplasma gondii and Toxocara canis in soil[D]. Beijing: Chinese Academy of Agricultural Sciences, 2022.
|
[19] |
王瑛, 张冲, 蔡一村, 等. 基于ERA-CRISPR/Cas12a-LFD的犀牛特异性检测技术[J]. 野生动物学报, 2023, 44(4): 798−806. doi: 10.12375/ysdwxb.20230409
Wang Y, Zhang C, Cai Y C, et al. ERA-CRISPR/Cas12a-LFD-based Rhinoceros-specific detection technology[J]. Chinese Journal of Wildlife, 2023, 44(4): 798−806. doi: 10.12375/ysdwxb.20230409
|
[20] |
范鑫磊. 中国黄河流域壳囊孢属的分类和系统学研究[D]. 北京: 北京林业大学, 2016.
Fan X L. Phylogeny and Taxonomy of Cytospora in Yellow River Region of China[D]. Beijing: Beijing Forestry University, 2016.
|
[21] |
Kang H, Peng Y, Hua K, et al. Rapid detection of wheat blast pathogen Magnaporthe oryzae Triticum pathotype using genome-specific primers and Cas12a-mediated technology[J]. Engineering, 2021, 7(9): 1326−1335. doi: 10.1016/j.eng.2020.07.016
|
[22] |
Wang Q, Qin M, Coleman J J, et al. Rapid and sensitive detection of Verticillium dahliae from complex samples using CRISPR/Cas12a technology combined with RPA[J]. Plant Disease, 2023, 107(6): 1664−1669. doi: 10.1094/PDIS-08-22-1790-SC
|
[23] |
热则古丽·艾科拜尔, 张亚平, 刘浩然, 等. 基于RAA-CRISPR/Cas12a建立牛病毒性腹泻病毒的可视化快速检测方法及其初步应用[J/OL]. 中国兽医科学, 1−11 [2024−12−31]. https://doi.org/10.16656/j.issn.1673-4696.2025.0032.
Rezeguli A, Zhang Y P, Liu H R, et al. Establishment and preliminary application of visualization detection technology for bovine viral diarrhea virus based on RAA-CRISPR/Cas12a[J/OL]. Chinese Veterinary Science, 1−11 [2024−12−31]. https://doi.org/10.16656/j.issn.1673-4696.2025.0032.
|
[24] |
鞠玉亮, 沈鹏飞, 冯艳娟, 等. 小麦纹枯病菌Rc-RPA-LFD快速检测方法的建立及应用[J]. 植物病理学报, 2020, 50(5): 618−621.
Ju Y L, Shen P F, Feng Y J, et al. Development and application of Rc-RPA-LFD for the rapid detection of Rhizoctonia cerealis[J]. Acta Phytopathologica Sinica, 2020, 50(5): 618−621.
|
[25] |
董晶, 卢鑫, 郭威, 等. 等温扩增技术在食源性致病菌检测中的研究进展[J]. 食品与发酵工业, 2021, 47(8): 256−260.
Dong J, Lu X, Guo W, et al. Research progress on isothermal amplification technology in the detection of foodborne pathogens[J]. Food and Fermentation Industries Editorial Staff, 2021, 47(8): 256−260.
|
[26] |
Clausson C M, Arngarden L, Ishaq O, et al. Compaction of rolling circle amplification products increases signal integrity and signal-to-noise ratio[J/OL]. Scientific Reports, 2015, 5: 12317. https://www.nature.com/articles/srep12317.
|
[27] |
Wang Z, Yang Q, Zhang Y, et al. Saltatory Rolling Circle Amplification (SRCA): a Novel Nucleic Acid Isothermal Amplification Technique Applied for Rapid Detection of Shigella Spp. in Vegetable Salad[J]. Food Analytical Methods, 2018, 11(2): 504−513. doi: 10.1007/s12161-017-1021-0
|
[28] |
孙晓红, 后来旺, 李达容, 等. 重组酶等温扩增技术在分析检测中的应用研究进展[J]. 食品与发酵工业, 2020, 46(24): 265-270.
Sun X H, Hou L W, Li D R, et al. Research progress on the application of isothermal recombinase amplification in analytical detection. Food and Fermentation Industries Editorial Staff, 2020, 46(24): 265-270.
|
[29] |
赖多, 王德林, 邵雪花, 等. 余甘子果实斑点病菌LAMP可视化检测方法的建立[J/OL]. 西北农林科技大学学报(自然科学版), 2025, 53(1): 1−12 [2025−01−03]. http://kns.cnki.net/kcms/detail/61.1390.S.20240704.1129.014.html.
Lai D, Wang D L, Shao X H, et al. Establishment of loop-mediated isothermal amplification (LAMP) for visual rapid detection of Diaporthe phoenicicola of fruit spot disease on Phyllanthus emblica[J/OL]. Journal of Northwest A&F University (Natural Science Edition), 2025, 53(1): 1−12 [2025−01−03]. http://kns.cnki.net/kcms/detail/61.1390.S.20240704.1129.014.html.
|
[30] |
尹新颖, 曹际娟, 李鑫, 等. 基于免核酸提取可视化RT-LAMP快速检测黄瓜绿斑驳花叶病毒[J]. 植物保护, 2023, 49(2): 264−271.
Yin X Y, Cao J J, Li X, et al. Rapid detection of cucumber green mottle mosaic virus based on visual RT-LAMP without nucleic acid extraction[J]. Plant Protection, 2023, 49(2): 264−271.
|
[31] |
Wang X, Rao Q, Lu Z, et al. Rapid and sensitive Cas13a/Cas12a-based one-pot dual-target strategy to detect monkeypox virus and its co-infected viruses[J]. Science Bulletin, 2023, 68(24): 3142−3148. doi: 10.1016/j.scib.2023.11.023
|
[1] | Yang Fan, Guo Xiaoping, Feng Changdong, Lin Yachao. Using soil seed bank in summer and previous autumn to restore vegetation in arid mining area[J]. Journal of Beijing Forestry University, 2024, 46(5): 93-102. DOI: 10.12171/j.1000-1522.20230228 |
[2] | Ha Wenxiu, Zhou Jinxing, Pang Danbo, Guan Yinghui, Cui Ming. Soil organic carbon fraction and enzyme activities under different restoration methods in karst area[J]. Journal of Beijing Forestry University, 2019, 41(2): 1-11. DOI: 10.13332/j.1000-1522.20180184 |
[3] | MU Jia-wei, ZHA Tian-shan, JIA Xin, GUO Xiao-nan, WANG Zi-qi, YANG Qiang. Influence of typical sandy shrubs on soil evaporation in Mu Us Sandland, northwestern China.[J]. Journal of Beijing Forestry University, 2016, 38(12): 39-45. DOI: 10.13332/j.1000-1522.20160192 |
[4] | WANG Li-hong, XIN Ying, ZOU Meng-ling, ZHAO Yu-sen, LIU Shuang-jiang, REN Qing-sheng.. Plants diversity and biomass distribution of vegetation restoration in burned area of Great Xing’an Mountains.[J]. Journal of Beijing Forestry University, 2015, 37(12): 41-47. DOI: 10.13332/j.1000-1522.20150025 |
[5] | DUAN Ai-guo, ZHANG Jian-guo, ZHANG Jun-pei, HE Cai-yun. Dynamics of water-use efficiency of tree species for vegetation restoration in dry-hot river valleys[J]. Journal of Beijing Forestry University, 2010, 32(6): 13-19. |
[6] | REN Xiao-xu, CAI Ti-jiu, WANG Xiao-feng. Effects of vegetation restoration models on soil nutrients in an abandoned quarry[J]. Journal of Beijing Forestry University, 2010, 32(4): 151-154. |
[7] | XIN Zhong-bao, YU Xin-xiao, GAN Jing, WANG Xiao-ping, LI Jin-hai. Vegetation restoration and its effects on runoff and sediment yield in Hekouzhen Longmen Section of the middle reaches of Yellow River[J]. Journal of Beijing Forestry University, 2009, 31(5): 1-8. |
[8] | WANG Li, , ZHANG Qing-feng, WEI San-ping, WANG Quan-jiu. Vegetation restoration model in a watershed of a coal mining area in the water and wind erosion crossing zone of the Loess Plateau.[J]. Journal of Beijing Forestry University, 2009, 31(2): 36-43. |
[9] | ZHAO Yong, FAN Wei, FAN Guo-qiang. Vegetation restoration process in Xiaolangdi Reservoir Region of Henan Province[J]. Journal of Beijing Forestry University, 2008, 30(2): 33-38. |
[10] | LI Quan-fa, LIU Wen-yao, SHEN You-xin, LIU Lun-hui. Storage and distribution of soil seed banks in degraded mountainous area of dry-hot valley in Nanjian, Southwest China[J]. Journal of Beijing Forestry University, 2005, 27(5): 26-31. |