Advanced search
    AN Hai-long, LIU Qing-qian, CAO Xue-hui, ZHANG Gang, WANG Hui, LIU Chao, GUO Hui-hong, XIA Xin-li, YIN Wei-lun. Absorption features of PAHs in leaves of common tree species at different PM2.5 polluted places[J]. Journal of Beijing Forestry University, 2016, 38(1): 59-66. DOI: 10.13332/j.1000--1522.20150164
    Citation: AN Hai-long, LIU Qing-qian, CAO Xue-hui, ZHANG Gang, WANG Hui, LIU Chao, GUO Hui-hong, XIA Xin-li, YIN Wei-lun. Absorption features of PAHs in leaves of common tree species at different PM2.5 polluted places[J]. Journal of Beijing Forestry University, 2016, 38(1): 59-66. DOI: 10.13332/j.1000--1522.20150164

    Absorption features of PAHs in leaves of common tree species at different PM2.5 polluted places

    More Information
    • Received Date: May 10, 2015
    • Revised Date: June 18, 2015
    • Published Date: January 30, 2016
    • Leaves of six tree species were collected from two sites with different atmospheric PM2.5 levels in Beijing, i.e., the National Olympic Forest Park and Xizhimen traffic hub. The components and concentrations of PAHs absorbed were measured using high performance liquid chromatography, and were compared among the six tree species. The relationship between leaf PAHs concentration and atmospheric PM2.5 level was preliminarily investigated. The results showed that PAHs contents in the leaves of coniferous trees such as Sabina chinensis and Pinus tabuliformis were higher than those of broadleaf trees. The content of PAHs in Amygdalus persica was the highest, followed by Populus tomentosa. In addition, as the pollution was aggravating, tree species could enhance the ability to absorb PAHs to adapt to the environmental pollution. For all the six tree species, PAHs contents in leaves sampled from the Xizhimen traffic hub with higher PM2.5 level were higher than those from the National Olympic Forest Park. Three-ring compounds were the major component in leaf-absorbed PAHs, followed by two-ring, four-ring and five- or six-ring compounds. The contents of compounds with different ring numbers in the leaf samples from Xizhimen traffic hub were higher than those from National Olympic Forest Park. Both three-ring compounds and contents in the leaf samples from Xizhimen traffic hub were higher than those from National Olympic Forest Park. A principal component analysis based on the contents of different PAHs components suggested that the ability of the species to absorb PAHs followed the order of Sabina chinensisAmygdalus persicaPinus tabuliformisPopulus tomentosaUlmus pumilaPrunus cerasifera.
    • [1]
      MANTIS J, CHALOULAKOU A, SAMARA C. PM10-bound polycyclic aromatic hydrocarbons (PAHs) in the Greater Area of Athens, Greece[J]. Chemosphere, 2005, 59(5): 593- 604.
      [1]
      LI C R, LI Y H, JING L J. Study on polycyclic aromatic hydrocarbons in the atmosphere[J]. Energy and environment, 2005(4): 45- 47.
      [2]
      YAN B Z, BOPP R F, ABRAJANO T A, et al. Source apportionment of polycyclic aromatic hydrocarbons (PAHs) into central park lake, New York city, over a century of deposition[J]. Environmental Toxicology and Chemistry, 2014, 33(5): 985- 992.
      [2]
      ZENG F G, WANG W, LIANG B S, et al. Study on polycyclic aromatic hydrocarbons (PAHs) in particulate matters from vehicle emission[J]. Research of Environmental Sciences, 2001, 14(4): 32- 35.
      [3]
      PENG G, TIAN D L, YAN W D, et al. Relationship between polycyclic aromatic hydrocarbons accumulation and surface structure of leaves in four urban street tree species[J]. Acta Ecologica Sinica, 2010, 30(14): 3700- 3706.
      [3]
      李成日, 李英华, 景丽洁. 大气中多环芳烃的研究进展[J]. 能源与环境, 2005(4): 45- 47.
      [4]
      TIAN X X, ZHOU G Y, PENG P A. Concentrations and influence factors of polycyclic aromatic hydrocarbons in leaves of dominant species in the Pearl River Delta,South China[J]. Environment Science, 2008, 29(4): 849- 854.
      [4]
      曾凡刚, 王玮, 梁宝生, 等. 机动车排放颗粒物中多环芳烃化合物的研究[J]. 环境科学研究, 2001, 14(4): 32- 35.
      [5]
      SHI J, LIU Q Q, AN H L, et al. A comparative study of the stomata and PM2.5 particles on the leaf surface of Chinese white poplar (Populus tomentosa) in different polluted places[J]. Acta Ecologica Sinica, 2015, 35(22): 1- 9.
      [5]
      MENEZES H C, CARDEAL Z L. Study of polycyclic aromatic hydrocarbons in atmospheric particulate matter of an urban area with iron and steel mills[J]. Environmental Toxicology and Chemistry, 2012, 31(7): 1470- 1477.
      [6]
      KIM K H, JAHAN S A, KABIR E, et al. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects[J]. Environment International, 2013, 60: 71- 80.
      [6]
      ZHAO X Y, REN L H, JI Y Q, et al. Source apportionment of polycyclic aromatic hydrocarbons in PM10 and PM2.5 in spring in Chongqing[J]. Research of Environmental Sciences, 2014, 27(12): 1395- 1402.
      [7]
      GOUIN T, THOMAS G O, COUSINS I, et al. Air-surface exchange of polybrominated diphenyl ethers and polychlorinated biphenyls[J]. Environmental Science Technology, 2002, 36(7): 1426- 1434.
      [7]
      WANG L, HA S, LIU L Y, et al. Physico-chemical characteristics of ambient particles settling upon leaf surface of six conifers in Beijing[J]. Chinese Journal of Applied Ecolog, 2007, 18(3): 487- 492.
      [8]
      HWANG H M, WADE T L, SERICANO J L. Concentrations and source characterization of polycyclic aromatic hydrocarbons in pine needles from Korea, Mexico, and United States[J]. Atmospheric Environment, 2003, 37(16): 2259- 2267.
      [8]
      WANG Y Q, ZUO Q, JIAO X C, et al. Polycyclic aromatic hydrocarbons in plant leaves from Peking University campus and nearby in summer season[J]. Environment Science, 2004, 25(4): 23- 27.
      [9]
      FAN Z H, JUNG K H, LIOY P J. Development of a passive sampler to measure personal exposure to gaseous PAHs in community settings[J]. Environmental Science Technology, 2006, 40(19): 6051- 6057.
      [9]
      WANG W, YUE X, CHEN J H, et al. Pollution property of particulates in the air at the traffic crossing in Beijing(Ⅲ): pollution property of PAHs in the particulates in the air[J]. Research of Environmental Sciences, 2005, 18(2): 43- 47.
      [10]
      DUAN F K, HE K B, MA Y L. Concentration and sources of atmospheric polycyclic aromatic hydrocarbons (PAHs) in PM2.5 in Beijing[J]. Acta Scientiae Circumstantiae, 2009, 29(7): 1363- 1371.
      [10]
      PRAJAPATI S K, TRIPATHI B D. Biomonitoring seasonal variation of urban air polycyclic aromatic hydrocarbons (PAHs) using Ficus benghalensis leaves[J]. Environmental Pollution, 2008, 151(3): 543- 548.
      [11]
      GUO H W, DING G D, ZHAO Y Y, et al. Diurnal variations in the mass concentration of suspended Particulate Matter 2.5 (PM2.5) of different urban green space[J]. Science of Soil and Water Conservation, 2013, 11(4): 99- 103.
      [11]
      BARBER J L, THOMAS G O, KERSTIENS G, et al. Current issues and uncertainties in the measurement and modelling of air-vegetation exchange and within-plant processing of POPs[J]. Environmental Pollution, 2004, 128(1- 2): 99- 138.
      [12]
      彭钢, 田大伦, 闫文德, 等. 4种城市绿化树种叶片PAHs含量特征与叶面结构的关系[J]. 生态学报, 2010, 30(14): 3700- 3706.
      [12]
      BI X H, SHENG G Y, TAN J H, et al. Phase partitioning of polycyclic aromatic hydrocarbons (PAHs) in the atmosphere[J]. Acta Scientiae Circumstantiae, 2004, 24(1): 101- 106.
      [13]
      田晓雪, 周国逸, 彭平安. 珠江三角洲地区主要树种叶片多环芳烃含量特征及影响因素分析[J]. 环境科学, 2008, 29(4): 849- 854.
      [13]
      LI J H, GUO Y H. Principal component evaluation: a multivariate evaluate method expanded from principal component analysis[J]. Journal of Industrial Engineering and Engineering Management, 2002, 16(1): 39- 43.
      [14]
      HE P. Data statistics and multivariate statistics[M]. Chengdu: Xi’nan Jiaotong University Press, 2004:172- 179.
      [14]
      石婕, 刘庆倩, 安海龙, 等. 不同污染程度下毛白杨叶表面PM2.5颗粒的数量及性质和叶片气孔形态的比较研究[J]. 生态学报, 2015, 35(22): 1- 9.
      [15]
      KUMAR B, VERMA V K, GAUR R, et al. Validation of HPLC method for determination of priority polycyclic aromatic hydrocarbons (PAHs) in waste water and sediments[J]. Advances in Applied Science Research, 2014, 5(1): 201- 209.
      [16]
      HUANG Y J, WEI J, SONG J, et al. Determination of low levels of polycyclic aromatic hydrocarbons in soil by high performance liquid chromatography with tandem fluorescence and diode-array detectors[J]. Chemosphere, 2013, 92(8): 1010- 1016.
      [17]
      赵雪艳, 任丽红, 姬亚芹, 等. 重庆主城区春季大气PM10及PM2.5中多环芳烃来源解析[J]. 环境科学研究, 2014, 27(12): 1395- 1402.
      [18]
      王蕾, 哈斯, 刘连友, 等. 北京市六种针叶树叶面附着颗粒物的理化特征[J]. 应用生态学报, 2007, 18(3): 487- 492.
      [19]
      TALLIS M, TAYLOR G, SINNETT D, et al. Estimating the removal of atmospheric particulate pollution by the urban tree canopy of London, under current and future environments[J]. Landscape and Urban Planning, 2011, 103(2): 129- 138.
      [20]
      王雅琴, 左谦, 焦杏春, 等. 北京大学及周边地区非取暖期植物叶片中的多环芳烃[J]. 环境科学, 2004, 25(4): 23- 27.
      [21]
      王玮, 岳欣, 陈建华, 等. 北京市交通路口大气颗粒物污染特征研究(Ⅲ):大气颗粒物中多环芳烃污染特征[J]. 环境科学研究, 2005, 18(2): 43- 47.
      [22]
      LIU D M, GAO S P, AN X H. Distribution and source apportionment of polycyclic aromatic hydrocarbons from atmospheric particulate matter PM2.5 in Beijing[J]. Advances in Atmospheric Sciences, 2008, 25(2): 297- 305.
      [23]
      段凤魁, 贺克斌, 马永亮. 北京PM2.5中多环芳烃的污染特征及来源研究[J]. 环境科学学报, 2009, 29(7): 1363- 1371.
      [24]
      郭含文, 丁国栋, 赵媛媛, 等. 城市不同绿地 PM2.5 质量浓度日变化规律[J]. 中国水土保持科学, 2013, 11(4): 99- 103.
      [25]
      SIMONICH S L, HITES R A. Vegetation-atmosphere partitioning of polycyclic aromatic hydrocarbons[J]. Environmental Science Technology, 1994, 28(5): 939- 943.
      [26]
      毕新慧, 盛国英, 谭吉华, 等. 多环芳烃(PAHs)在大气中的相分布[J]. 环境科学学报, 2004, 24(1): 101- 106.
      [27]
      SMITH K E C, JONES K C. Particles and vegetation: implications for the transfer of particle-bound organic contaminants to vegetation[J]. The Science of the Total Environment, 2000, 246(2- 3): 207- 236.
      [28]
      FRANZARING J, EERDEN L J M V D. Accumulation of airborne persistent organic pollutants (POPs) in plants[J]. Basic and Applied Ecology, 2000, 1(1): 25- 30.
      [29]
      李靖华, 郭耀煌. 主成分分析用于多指标评价的方法研究:主成分评价[J]. 管理工程学报, 2002, 16(1): 39- 43.
      [30]
      何平. 数理统计与多元统计[M]. 成都: 西南交通大学出版社, 2004: 172- 179.
    • Related Articles

      [1]Liu Yuxiang, Wang Lei, Ren Ninghong, You Chongjuan. Community structure of endophytic fungi in asymptomatic and symptomatic Pinus sylvestris var. mongolica infected by diplodia tip blight[J]. Journal of Beijing Forestry University, 2024, 46(9): 119-131. DOI: 10.12171/j.1000-1522.20230350
      [2]Luo Jia, Ma Ruoke, Qiao Mengji, Fu Yunlin. Distribution and identification of phenolic constituents in the sapwood and heartwood of Eucalyptus cloeziana[J]. Journal of Beijing Forestry University, 2023, 45(6): 127-136. DOI: 10.12171/j.1000-1522.20220372
      [3]Song Tingting, Liang Nansong, Lü Yipin, Cui Jinghong, Yu Lei, Zhao Fujiang, Xu Liang, Zhan Yaguang. Identification and expression analysis of FmPLT gene family of Fraxinus mandschurica[J]. Journal of Beijing Forestry University, 2022, 44(2): 11-21. DOI: 10.12171/j.1000-1522.20210105
      [4]Miao Yubo, Fang Pan, Yang Zhiheng, Zhu Xiaomei, Gao Qiong, Liu Yang, Li Wei. Genetic structure analysis of Pinus sylvestris var. mongolica under different geographical environments[J]. Journal of Beijing Forestry University, 2018, 40(10): 43-50. DOI: 10.13332/j.1000-1522.20170438
      [5]ZHAO Yu-hong, ZHAI Ya-nan, XU Yao-peng, ZHANG Li-gang, WANG Zhen-yu. Polymerization and product characteristics of polyphenols of Pinus sylvestris var. mongolica barks and protein.[J]. Journal of Beijing Forestry University, 2016, 38(9): 102-107. DOI: 10.13332/j.1000-1522.20150323
      [6]ZHAO Yu-hong, ZHAI Ya-nan, DANG Yuan, SHI Ji-yi, WANG Zhen-yu. Optimization of purification conditions of polyphenols from Pinus sylvestris var. mongolica using response surface methodology.[J]. Journal of Beijing Forestry University, 2014, 36(1): 138-142.
      [7]WANG Tian-long, LIU Xiu-ying, JIANG En-lai, LI Hua, YU Ru-long. Identification of wood species in wood structures in the main hall of Baoguo Temple at Ningbo, eastern China.[J]. Journal of Beijing Forestry University, 2010, 32(4): 237-241.
      [8]YANG Jian-fang, , HUANG Ming-yong, LU Fu-ping, GAO Wen-yuan. Optimization of fermented wine production from Cornus officinalis.[J]. Journal of Beijing Forestry University, 2009, 31(5): 131-136.
      [9]MAO Lei, , WANG Dong-mei, YANG Xiao-hui, YU Hong. Spatial patterns of young Pinus sylvestris var. mongolica saplings and their regeneration analysis in different stands of Inner Mongolia, northern China.[J]. Journal of Beijing Forestry University, 2008, 30(6): 71-77.
      [10]JI Hong_fang, SONG Rui_qing, , YANG Qian. Isolation, purification and structure identification of an antimicrobial bioactive compound extracted from Lactarius vellereus fermenting liquor[J]. Journal of Beijing Forestry University, 2008, 30(1): 92-95.
    • Cited by

      Periodical cited type(12)

      1. 杨文卓,杨琳瑄,王远,陈辉,苏锦,刘燕. 水利工程生态产品价值核算体系研究——以福建山美水库为例. 海峡科学. 2024(06): 84-91 .
      2. 任万杰,司振江,李铁男,郭微微,杨阿龙. 水生态产品价值核算研究综述. 黑龙江水利科技. 2024(09): 34-39 .
      3. 陈默,林育青,张建云,陈求稳,李沁园. 水生态系统生产总值核算体系及应用. 水资源保护. 2023(01): 234-242 .
      4. 张先起,路晓斌. 南水北调中线工程沿线水库生态系统服务价值演变解析. 海河水利. 2023(01): 43-47+54 .
      5. 张然. 河流生态系统文化服务研究现状及发展建议. 环境与发展. 2023(02): 32-38+56 .
      6. 张宪宇,郄晗彤,杨文杰. 基于模糊综合评价法的北京永定河水源地生态脆弱性评价. 环境保护科学. 2021(03): 159-163 .
      7. 孟翠婷,郎琪,雷坤,程全国,李秀. 永定河京津冀段底栖动物群落结构特征及水生态健康评价. 沈阳大学学报(自然科学版). 2021(04): 307-313 .
      8. 昝欣,张玉玲,贾晓宇,熊广森. 永定河上游流域水生态系统服务价值评估. 自然资源学报. 2020(06): 1326-1337 .
      9. 熊文,孙晓玉,彭开达,黄羽. 汉江下游平原典型区域水生态系统服务价值评价. 人民长江. 2020(08): 71-77 .
      10. 刘璐,刘志成,杨瑞莹,张任菲,李豪,许晓明. 永定河干涸段(卢梁段)河流廊道植物群落数量分类及多样性特征. 生态学报. 2020(24): 9129-9137 .
      11. 万超,王迎春,李雨璇,吕斐,孙美. 永定河综合治理市场化运作模式探讨. 北京水务. 2018(03): 50-52 .
      12. 慕林青,张海萍,赵树旗,刘培斌,高晓薇,李玉臣,渠晓东. 永定河底栖动物生物完整性指数构建与健康评价. 环境科学研究. 2018(04): 697-707 .

      Other cited types(13)

    Catalog

      Article views (1653) PDF downloads (25) Cited by(25)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return