• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
ZHANG Xiao-teng, XUE Lei, ZHANG Yu, CHU De-miao, MU Jun. Pyrolysis characteristics and kinetics of poplar treated by compound N-P flame retardant[J]. Journal of Beijing Forestry University, 2016, 38(1): 112-117. DOI: 10.13332/j.1000--1522.20150173
Citation: ZHANG Xiao-teng, XUE Lei, ZHANG Yu, CHU De-miao, MU Jun. Pyrolysis characteristics and kinetics of poplar treated by compound N-P flame retardant[J]. Journal of Beijing Forestry University, 2016, 38(1): 112-117. DOI: 10.13332/j.1000--1522.20150173

Pyrolysis characteristics and kinetics of poplar treated by compound N-P flame retardant

More Information
  • Received Date: May 10, 2015
  • Revised Date: June 09, 2015
  • Published Date: January 30, 2016
  • In order to study the flame retardant mechanism and pyrolysis characteristics of poplar treated by compound N-P flame retardant, we applied thermal analysis method to analyze the combustion performance of poplar treated by distilled water, Al-Si, N-P and N-P-Al-Si, numbered as A, B, C and D, respectively. Ozawa-Flynn-Wall and Coats-Redfern (modified) were used to calculate activation energy of flame retardant poplar. The results showed that A had only one pyrolysis process, with the activation energy value of this phase 65-- 70 kJ/mol. The pyrolysis process of flame retardant treated poplar could be divided into two stages. The main pyrolysis stage of D was between that of B and C. D had the lowest weight loss rate and least weight loss, and heat release rate of this treatment was also slow. There was a similar trend of weight loss of TG curves of D at different heating rates, and weight loss curves shifted to higher temperature section with the increasing heating rate. The activation energies of the first and second phase of D (120 and 240 kJ/mol) were higher than that of C (115 kJ/mol), indicating that the flame retardant efficiency was improved when Al-Si and N-P were blended.
  • [1]
    TANG H. A review on the combustion performance evaluation methods of China flame retardant products[J]. Fire Technique and Products Information, 2008, 11(5): 14- 16.
    [1]
    唐皓.我国阻燃制品燃烧性能评价方法进展[J].消防技术与产品信息,2008,11(5):14- 16.
    [2]
    徐晓楠.新一代评估方法——锥形量热仪(CONE)法在材料阻燃研究中的应用[J].中国安全科学学报,2003, 13(1):19- 22.
    [2]
    XU X N.Application of the new evaluation method in the research of flame-retardant [J].China Safety Science Journal,2003, 13(1): 19- 22.
    [3]
    高亚萍,周霞.阻燃与未阻燃装饰装修木材在不同氧浓度下的热分析[J].火灾科学,2007,16(4):214- 216.
    [3]
    GAO Y P, ZHOU X. Thermal analysis of flame-retardant and non-flame-retardant decorative woods under different oxygen concentration [J]. Fire Safety Science, 2007, 16(4):214- 216.
    [4]
    LUO J Y, CHEN Y H, ZHANG X C, et al. Flammability and chemical component of green forest fuels[J]. Journal of Northeast Forestry University, 1992, 20(6): 35- 42.
    [4]
    ROSTAM M A, DEBARR J A, CHEN W T. Combustion studies of coal derived solid fuels by thermogravimetric analysis III: correlation between burnout temperature and carbon combustion efficiency[J]. Thermochimica Acta, 1990, 166(15): 351- 356.
    [5]
    SHU L F, TIAN X R, LI H, et al. Studies onfire resistance forest species [J]. Fire Safety Science, 2000, 9(2): 1- 7.
    [5]
    NORTON G A. A review of the derivative thermogravimetric technique (burning profile) for fuel combustion studies[J]. Thermochimica Acta, 1993, 214(93):171- 182.
    [6]
    TANG H Y, WANG J H, XIAO Y D, et al. Study on curing mechanism of new inorganic ablative-resistant composites[J]. Aerospace Materials Technology, 2006, 35(4): 25- 28.
    [6]
    骆介禹,陈英海,张秀成,等.森林可燃物的燃烧性与化学组成[J].东北林业大学学报,1992, 20(6):35- 42.
    [7]
    ZHANG L L, LIU A H. Synergistic effect and application of phosphorus/silicon flame retardant [J]. China Plastics Industry, 2005, 33(5): 203- 205.
    [7]
    舒立福,田晓瑞,李红,等.我国亚热带若干树种的抗火性研究[J].火灾科学,2000,9(2):1- 7.
    [8]
    ARORA S, KUMAR M. Catalytic effect of bases in impregnation of guanidine nitrate onpoplar wood[J]. Journal of Thermal Analysis and Calorimetry, 2012, 107(3): 1277- 1286.
    [8]
    HE J H, ZHAO J Q. Synergistic flame retardancy and mechanism of silicon-containing flame retardant and intumescent flame retardant [J]. Polymer Materials Science and Engineering, 2010, 26(3): 31- 34.
    [9]
    TANG J, TANG A, HUANG J. Application and research progress of phosphorus-nitrogen synergistic flame retardants[J]. Materials Review, 2008, 22(8): 73- 77.
    [9]
    QU W W, XIA H Y, PENG J H, et al. Pyrolysis characteristics and kinetic analysis of walnut shell [J].Transactions of the CSAE, 2009, 25(2): 194- 198.
    [10]
    FENG Y S, HUANG Z Y, MU J. Pyrolysis characteristics of poplar particleboards containing UF resins[J]. Journal of Beijing Forestry University, 2012, 34(1): 119- 122.
    [10]
    GLICK F J. Thermal uses and properties of carbohydrates and lignins by Fred Shafizadeh, Kyosti V Sarkanen, David A Tillman[J]. American Scientist,1977(6): 770- 771.
    [11]
    唐红艳,王继辉,肖永栋,等.一种新型无机耐烧蚀复合材料固化机理的研究[J].宇航材料工艺,2006, 35(4): 25- 28.
    [12]
    BRAUN U, BAHR H, SCHARTEL B. Fire retardancy effect of aluminium phosphinate and melamine polyphosphate in glass fibre reinforced polyamide 6[J].E-Polymers, 2010, 10(1): 443- 456.
    [13]
    XU Y, LIU Y, WANG Q. Melamine polyphosphate/silicon-modified phenolic resin flame retardant glass fiber reinforced polyamide-6[J]. Journal of Applied Polymer Science, 2013, 129(4): 2171- 2176.
    [14]
    张利利,刘安华.磷硅阻燃剂协同效应及其应用[J].塑料工业,2005,33(5):203- 205.
    [15]
    何继辉,赵建青.含硅阻燃剂与膨胀型阻燃剂的协同阻燃性[J].高分子材料科学与工程,2010,26(3): 31- 34.
    [16]
    曲雯雯,夏洪应,彭金辉,等.核桃壳热解特性动力学分析[J].农业工程学报,2009,25(2):194- 198.
    [17]
    FLYNN J H, WALL L A. General treatment of the thermogravimetry of polymers[J]. J Res Nat Bur Stand, 1966, 70(6): 487- 523.
    [18]
    OZAWA T.A new method of analyzing thermogravimetric data[J]. Bulletin of the Chemical Society of Japan, 1965, 38(11): 1881- 1886.
    [19]
    BROWN M E, MACIEJEWSKI M, VYAZOVKIN S, et al. Computational aspects of kinetic analysis(A): the ICTAC kinetics project-data, methods and results[J]. Thermochimica Acta, 2000, 355(1): 125- 143.
    [20]
    YAO F, WU Q, LEI Y, et al. Thermal decomposition kinetics of natural fibers:activation energy with dynamic thermogravimetric analysis[J]. Polymer Degradation and Stability, 2008, 93(1): 90- 98.
    [21]
    LUNEVA N K, PETROVSKAYA L I. Performance of intumescent fire retardant for wood[J]. Russian Journal of Applied Chemistry, 2008, 81(4): 704- 707.
    [22]
    冯永顺,黄志义,母军.含脲醛树脂胶黏剂的杨木刨花板的热解特性[J].北京林业大学学报,2012, 34(1): 119- 122.
    [23]
    CAVALLARO G, DONATO D I, LAZZARA G, et al. A comparative thermogravimetric study of waterlogged archaeological and sound woods[J]. Journal of Thermal Analysis and Calorimetry, 2011, 104(2): 451- 457.
    [24]
    GAO M, SUN C, ZHU K. Thermal degradation of wood treated with guanidine compounds in air:flammability study [J]. Journal of Thermal Analysis and Calorimetry, 2004, 75(1): 221- 232.
  • Cited by

    Periodical cited type(5)

    1. 李利君. 高压浸渍阻燃木材热稳定性及燃烧性能分析——以杉木为例. 中国消防. 2024(06): 61-64 .
    2. 邓军,宋佳佳,赵婧昱,刘同双,卢世平,赵彦丽. 自然老化木材燃烧过程热行为特性研究. 中国安全科学学报. 2022(02): 83-89 .
    3. 韩望,白崇彪,燕文静,裴志永,刘文静. 木质材料热解与阻燃技术研究进展. 西部林业科学. 2022(04): 154-160 .
    4. 吴袁泊,袁利萍,黄自知,胡云楚,汤连东,李慧,胡进波. 杂多酸对杨木燃烧过程中热/烟释放行为的影响. 功能材料. 2018(10): 10108-10116 .
    5. 李智,颜述,李静. 大理传统木构建筑构件热解特性研究. 消防科学与技术. 2018(08): 1044-1046 .

    Other cited types(1)

Catalog

    Article views (1580) PDF downloads (20) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return