• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
CAI Chang-fu, LIU Gai-xiu, CHENG Fang-yun, WU Jing, ZHONG Yuan, LI Min. Selecting optimal F1 segregation population for genetic linkage mapping in tree peony[J]. Journal of Beijing Forestry University, 2015, 37(3): 139-147. DOI: 10.13332/j.1000-1522.20140134
Citation: CAI Chang-fu, LIU Gai-xiu, CHENG Fang-yun, WU Jing, ZHONG Yuan, LI Min. Selecting optimal F1 segregation population for genetic linkage mapping in tree peony[J]. Journal of Beijing Forestry University, 2015, 37(3): 139-147. DOI: 10.13332/j.1000-1522.20140134

Selecting optimal F1 segregation population for genetic linkage mapping in tree peony

More Information
  • Received Date: April 17, 2014
  • Revised Date: July 18, 2014
  • Published Date: March 30, 2015
  • We established three large F1 segregation populations of tree peony (Paeonia Sect. Moutan) through controlled hybridization, using three seeding individuals of P. ostti ‘Fengdan’ as female parents, labeled as M24, M49 and M68, and using P.×suffruticosa Zhongyuan Group ‘Hongqiao’, P.×suffruticosa Japan Group ‘Huawang’ and ‘Hei Longjin’ as male parents, correspondingly. The number of progeny of the three populations is 366, 233 and 197, respectively. We detected the levels of polymorphism between parents of the three segregation populations by employing 19 pairs of simple sequence repeat (SSR) primers. The results showed that, 19 pairs of SSR primers could produce the most informative polymorphism loci of 27 between the ‘Fengdan’ M24 and ‘Hongqiao’ among the parents of three segregation populations. The genetic distance between ‘Fengdan’ M24 and ‘Hongqiao’ was 0.707 0, the farthest among the parents of three segregation populations. Therefore, the segregation population of ‘Fengdan’ M24 × ‘Hongqiao’ was selected for the construction of genetic linkage map in tree peony. On this basis, segregations of genotype in randomly selected 195 progeny from mapping population were investigated using SSR marker. Of 19 pairs of SSR primers, 15 pairs showed the polymorphisms in mapping population, and 13 pairs (86.7%) of them segregated in an expected Mendelian ratio (P0.01). Furthermore, hereditary variations in plant height, ground diameter, current year branch length, compound leaf length, compound leaf width, and petiole length of those 195 progeny were measured and analyzed. The results indicated that the differences of the 6 phenotypic traits of mapping population were significant, and their variation coefficients were all greater than 15%. All above lead to the conclusion that segregation population of ‘Fengdan’ M24 × ‘Hongqiao’ was optimal for the construction of genetic linkage map in tree peony.
  • [1]
    CHENG F Y, CHEN D Z. Breeding of new varieties in flare tree peony and varieties classification in tree peonies[J]. Journal of Beijing Forestry University, 1998, 20(2): 27-32.
    [1]
    CHENG F Y. Advances in the breeding of tree peonies and a cultivar system for the cultivar group[J]. International Journal for Plant Breeding, 2007, 1(2): 89-104.
    [2]
    XIAO J J. A study on the crossing compatibility and hybrid abortion of Paeonia[D]. Beijing: Beijing Forestry University, 2010.
    [2]
    ANDERSON J A, CHURCHIL G A, AUTRUQUE J E. Optimizing parental selection for genetic linkage maps[J]. Genome, 1993, 36(1): 181-185.
    [3]
    WANG Y L. Cross-breeding in tree peony and fertility research of intersectional hybrids[D]. Beijing: Beijing Forestry University, 2009.
    [3]
    成仿云,陈德忠. 紫斑牡丹新品种选育及牡丹品种分类研究[J]. 北京林业大学学报, 1998, 20(2): 27-32.
    [4]
    WU J, CHENG F Y, ZHANG D. Utilizing ‘High Noon’ in the crossing breeding of tree peonies and early identification of some hybrids by AFLP markers[J]. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(8): 1551-1557.
    [4]
    肖佳佳. 芍药属杂交亲和性及杂种败育研究[D]. 北京: 北京林业大学, 2010.
    [5]
    王越岚. 牡丹的杂交育种及组间杂种育性的研究[D]. 北京: 北京林业大学, 2009.
    [5]
    LIU G X, WANG H G, LI M, et al. A study of hybrid seeding of F1 progeny in tree peonies[J]. Modern Agricultural Science and Technology, 2012(22): 155-176.
    [6]
    吴静,成仿云,张栋. ‘正午’牡丹的杂交利用及部分杂种AFLP鉴定[J]. 西北植物学报, 2013, 33(8): 1551-1557.
    [6]
    PANG L Z, CHENG F Y, ZHONG Y, et al. Phenotypic analysis of association population for flare tree peony[J]. Journal of Beijing Forestry University, 2012, 34(6): 115-120.
    [7]
    XU Y B, ZHU L H. Molecular quantitative genetics[M]. Beijing: China Agriculture Press, 1994: 291.
    [7]
    刘改秀,王海歌,李敏,等. 牡丹杂种F1代育苗研究[J]. 现代农业科技, 2012(22): 155-176.
    [8]
    庞利铮,成仿云,钟原,等. 紫斑牡丹关联分析群体的表型分析[J]. 北京林业大学学报, 2012, 34(6): 115-120.
    [8]
    SU M H. Breeding technology of Paeonia suffruticosa and analysis of genetic diversity of F1 progenies of Paeonia suffruticosa[D]. Tai'an: Shandong Agricultural University, 2013.
    [9]
    HOU X G, GUO D L, CHENG S P, et al. Development of thirty new polymorphic microsatellite primers for Paeonia suffruticosa[J]. Biologia Plantarum, 2011, 55(4): 708-710.
    [9]
    HAN X, CHENG F Y, XIAO J J, et al. Crosses of Paeonia ostii ‘Feng Dan Bai’ as maternal parents and an analysis on the potential in tree peony breeding[J]. Journal of Beijing Forestry University, 2014, 36(4): 121-125.
    [10]
    HOMOLKA A, BERENYI M, BURG K, et al. Microsatellite markers in the tree peony,Paeonia suffruticosa (Paeoniaceae)[J]. American Journal of Botany, 2010, 97(6): e42-e44.
    [10]
    MIAO M J, LI C Q, SI J. SSR markers and their application in horticulture plant breeding[J]. Journal of Changjiang Vegetables, 2010(10): 1-5.
    [11]
    ZHANG D Q, ZHANG Z Y, SONG W, et al. Optimizing segregation population selection for genetic linkage maps in Populus tomentosa[J]. Journal of Beijing Forestry University, 2003, 25(4): 21-24.
    [11]
    WANG J X, XIA T, ZHANG J M, et al. Isolation and characterization of fourteen microsatellites from a tree peony (Paeonia suffruticosa)[J]. Conservation Genetics, 2009, 10(4): 1029-1031.
    [12]
    YU H P, CHENG F Y, ZHONG Y, et al. Development of simple sequence repeat (SSR) markers from Paeonia ostii to study the genetic relationships among tree peonies (Paeoniaceae)[J]. Scientia Horticulturae, 2013, 164: 58-64.
    [12]
    LIU Y, CAI M, HE D, et al. Construction of F1 segregation population for genetic linkage maps in Lagerstroemia[J]. Journal of Northeast Forestry University, 2013, 41(9): 72-75.
    [13]
    WANG X Q. Studies on genetic diversity of Paeonia delavayi in Shangri-la[D]. Beijing: Beijing Forestry University, 2009.
    [13]
    LIU K J, MUSE S V. PowerMarker: an integrated analysis environment for genetic marker analysis[J]. Bioinformatics, 2005, 21(9): 2128-2129.
    [14]
    LI Z Y, ZHANG H Y. Morphological variation and diversity in populations of Paeonia lutea[J]. Journal of Northwest Forestry University, 2011, 26(4): 117-122.
    [14]
    VAN OOIJEN J W. JoinMap 4: software for the calculation of genetic linkage maps in experimental populations[DB/CD]. Wageningen: Plant Research International, 2006.
    [15]
    HELENTJARIS T. A genetic linkage map for maize based on RFLPs[J]. Trends in Genetics, 1987, 3: 217-221.
    [15]
    LI Y, WANG D W, LI Z Q, et al. Establishment of mapping population in Eucammia ulmoides[J]. Journal of Northwest Forestry University, 2012, 27(2): 62-65.
    [16]
    HE D, TANG W, LIU Y, et al. Linkage analysis of phonotypic traits of Lagerstroemia caudata and L. indica F1 population uing SSR markers[J]. Journal of Beijing Forestry University, 2012, 34(6): 121-125.
    [16]
    徐云碧,朱立煌. 分子数量遗传学[M]. 北京: 中国农业出版社, 1994: 291.
    [17]
    YUAN J H, CORNILLE A, GIRAUD T, et al. Independent domestications of cultivated tree peonies from different wild peony species[J]. Molecular Ecology, 2014, 23(1): 82-95.
    [18]
    苏美和. 牡丹育种技术及杂交一代遗传多样性的研究[D]. 泰安: 山东农业大学, 2013.
    [19]
    韩欣,成仿云,肖佳佳,等. 以‘凤丹白’为母本的杂交及其育种潜力分析[J]. 北京林业大学学报, 2014, 36(4): 121-125.
    [20]
    苗明军,李成琼,司军. SSR标记及其在园艺植物育种中的应用[J]. 长江蔬菜, 2010(10): 1-5.
    [21]
    MOGHADDAMH H, LEUS L, DE RIEK J, et al. Construction of a genetic linkage map with SSR, AFLP and morphological markers to locate QTLs controlling pathotype-specific powdery mildew resistance in diploid roses[J]. Euphytica, 2012, 184(3): 413-427.
    [22]
    SUN L D, YANG W R, ZHANG Q X, et al. Genome-wide characterization and linkage mapping of simple sequence repeats in mei (Prunus mume Sieb. et Zucc.)[J]. PLoS ONE, 2013, 8(3): e59562.
    [23]
    YAGI M, YAMAMOTO T, ISOBE S, et al. Identification of tightly linked SSR markers for flower type in carnation (Dianthus caryophyllus L.)[J]. Euphytica, 2014, 198(2): 175-183.
    [24]
    YAGI M, YAMAMOTO T, ISOBE S, et al. Construction of a reference genetic linkage map for carnation (Dianthus caryophyllus L.)[J]. BMC Genomics, 2013, 14(1): 734.
    [25]
    GAI S P, ZHANG Y X, MU P, et al. Transcriptome analysis of tree peony during chilling requirement fulfillment:assembling, annotation and markers discovering[J]. Gene, 2012, 497(2): 256-262.
    [26]
    ZHANG J J, SHU Q Y, LIU Z A, et al. Two EST-derived marker systems for cultivar identification in tree peony[J]. Plant Cell Reports, 2012, 31(2): 299-310.
    [27]
    张德强,张志毅,宋婉,等. 毛白杨遗传作图最适分离群体的选择[J]. 北京林业大学学报, 2003, 25(4): 21-24.
    [28]
    ZHANG D Q, ZHANG Z Y, YANG K, et al. Genetic mapping in (Populus tomentosa× Populus bolleana) and P. tomentosa Carr. using AFLP markers[J]. Theoretical and Applied Genetics, 2004, 108(4): 657-662.
    [29]
    ZHANG F, CHEN S, CHEN F, et al. SRAP-based mapping and QTL detection for inflorescence-related traits in chrysanthemum (Dendranthema morifolium)[J]. Molecular Breeding, 2011, 27(1): 11-23.
    [30]
    HIBRAND-SAINT OYANT L, CRESPEL L, RAJAPAKSE S, et al. Genetic linkage maps of rose constructed with new microsatellite markers and locating QTL controlling flowering traits[J]. Tree Genetics Genomes, 2007, 4(1): 11-23.
    [31]
    HE D, LIU Y, CAI M, et al. The first genetic linkage map of crape myrtle (Lagerstroemia) based on amplification fragment length polymorphisms and simple sequence repeats markers[J]. Plant Breeding, 2014, 133(1): 138-144.
    [32]
    刘阳,蔡明,贺丹,等. 紫薇遗传作图F1分离群体的选择[J]. 东北林业大学学报, 2013, 41(9): 72-75.
    [33]
    王晓琴. 香格里拉滇牡丹遗传多样性研究[D]. 北京: 北京林业大学, 2009.
    [34]
    李宗艳,张海燕. 黄牡丹表型变异及多样性研究[J]. 西北林学院学报, 2011, 26(4): 117-122.
    [35]
    李煜,王大玮,李周岐,等. 杜仲遗传作图群体的建立[J]. 西北林学院学报, 2012, 27(2): 62-65.
    [36]
    贺丹,唐婉,刘阳,等. 尾叶紫薇与紫薇F1代群体主要表型性状与SSR标记的连锁分析[J]. 北京林业大学学报, 2012, 34(6): 121-125.
  • Cited by

    Periodical cited type(6)

    1. 蒋开彬,何紫迪,孔凡启,郝静,周晓煦,黄少伟. 基于SSR对火炬松×加勒比松杂种形质性状的QLT定位分析. 安徽农业大学学报. 2019(03): 448-453 .
    2. 蒲小剑,田久胜,田新会,杜文华. 红三叶遗传图谱构建及抗白粉病基因QTL定位. 草业学报. 2018(04): 79-88 .
    3. 王大玮,唐红燕,段安安,周军,汪元超,蔡年辉,许玉兰,李思广. 思茅松遗传作图群体选择. 西北林学院学报. 2018(05): 82-86 .
    4. 张琳,郭丽丽,郭大龙,侯小改. 牡丹杂交F_1代性状分离规律及混合遗传分析. 南京林业大学学报(自然科学版). 2018(06): 51-60 .
    5. 罗清,於艳萍,卢业飞,梁春. 基于SSR标记的杜鹃品种亲缘关系分析. 北方园艺. 2017(19): 111-117 .
    6. 于玲,左利娟. 油用牡丹开发利用研究进展. 北京农业职业学院学报. 2017(01): 23-31 .

    Other cited types(6)

Catalog

    Article views (2186) PDF downloads (33) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return