• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
CHEN Ling, HAO Wen-qian, GAO De-liang. The latest applications of optical image texture in forestry[J]. Journal of Beijing Forestry University, 2015, 37(3): 1-12. DOI: 10.13332/j.1000-1522.20140304
Citation: CHEN Ling, HAO Wen-qian, GAO De-liang. The latest applications of optical image texture in forestry[J]. Journal of Beijing Forestry University, 2015, 37(3): 1-12. DOI: 10.13332/j.1000-1522.20140304

The latest applications of optical image texture in forestry

More Information
  • Received Date: August 26, 2014
  • Revised Date: November 13, 2014
  • Published Date: March 30, 2015
  • Image texture is becoming more and more important with the increasing spatial resolution of optical satellite images. However, it is a very complex spatial attribute that can vary significantly with solar/viewing geometries, topographic conditions, and the object of interest as well as its location. Besides, the selection of texture variables and the set of their corresponding input parameters, for instance, window sizes, inter-pixel distances, directions and quantization levels, determine the efficiency of image texture. How to apply texture variables and optimize their combination is worth further studying. Therefore, we firstly reviewed the latest researches and applications of image texture in forest classification, inversion of stand structure parameters, and estimation of forest biomass and carbon storage, and prospected the potential of image texture in the remote sensing of forestry from different aspects. In addition, we summarized the critical problems in the current research field based on the selection and optimal combination of texture variables and their input parameters. Some suggestions have also been proposed for further effective applications of image texture in the field of forestry.
  • [1]
    TUOMINEN S, PEKKARINEN A. Performance of different spectral and textural aerial photograph features in multi-source forest inventory[J]. Remote Sensing of Environment, 2005, 94(2): 256-268.
    [1]
    CASTILLO-SANTIAGO M A, RICKER M, DE JONG B H J. Estimation of tropical forest structure from SPOT-5 satellite images[J]. International Journal of Remote Sensing, 2010, 31(10): 2767-2782.
    [2]
    DORREN L K A, MAIER B, SEIJMONSBERGEN A C. Improved Landsat-based forest mapping in steep mountainous terrain using object-based classification[J]. Forest Ecology and Management, 2003, 183(1-3): 31-46.
    [2]
    FRANKLIN S E, WULDER M A, GERYLO G R. Texture analysis of IKONOS panchromatic data for Douglas-fir forest age class separability in British Columbia[J]. International Journal of Remote Sensing, 2001, 22(13): 2627-2632.
    [3]
    HALL R J, SKAKUN R S, ARSENAULT E J, et al. Modeling forest stand structure attributes using Landsat ETM+ data: application to mapping of aboveground biomass and stand volume[J]. Forest Ecology and Management, 2006, 225(1-3): 378-390.
    [3]
    COBURN C A, ROBERTS A. A multiscale texture analysis procedure for improved forest stand classification[J]. International Journal of Remote Sensing, 2004, 25(20): 4287-4308.
    [4]
    WOLTER P T, TOWNSEND P A, STURTEVANT B R. Estimation of forest structural parameters using 5 and 10 meter SPOT-5 satellite data[J]. Remote Sensing of Environment, 2009, 113(9): 2019-2036.
    [4]
    PU R, LANDRY S. A comparative analysis of high spatial resolution IKONOS and WorldView-2 imagery for mapping urban tree species[J]. Remote Sensing of Environment, 2012, 124: 516-533.
    [5]
    RODRIGUEZ-GALIANO V F, CHICA-OLMO M, ABARCA-HERNANDEZ F, et al. Random forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture[J]. Remote Sensing of Environment, 2012, 121: 93-107.
    [5]
    TROTTER C M, DYMOND J R, GOULDING C J. Estimation of timber volume in a coniferous plantation forest using Landsat TM[J]. International Journal of Remote Sensing, 1997, 18(10): 2209-2223.
    [6]
    WULDER M A, LEDREW E F, FRANKLIN S E, et al. Aerial image texture information in the estimation of northern deciduous and mixed wood forest leaf area index (LAI)[J]. Remote Sensing of Environment, 1998, 64(1): 64-76.
    [6]
    FUCHS H, MAGDON P, KLEINN C, et al. Estimating aboveground carbon in a catchment of the Siberian forest tundra: combining satellite imagery and field inventory[J]. Remote Sensing of Environment, 2009, 113(3): 518-531.
    [7]
    PROISY C, COUTERON P, FROMARD F. Predicting and mapping mangrove biomass from canopy grain analysis using Fourier-based textural ordination of IKONOS images[J]. Remote Sensing of Environment, 2007, 109(3): 379-392.
    [7]
    LECKIE D G, GOUGEON F A, TINIS S, et al. Automated tree recognition in old growth conifer stands with high resolution digital imagery[J]. Remote Sensing of Environment, 2005, 94(3): 311-326.
    [8]
    TRELTZ P, HOWARTH P. Integrating spectral, spatial, and terrain variables for forest ecosystem classification[J]. Photogrammetric Engineering and Remote Sensing, 2000, 66(3): 305-317.
    [8]
    LECKIE D G, TINIS S, NELSON T, et al. Issues in species classification of trees in old growth conifer stands[J]. Canadian Journal of Remote Sensing, 2005, 31(2): 175-190.
    [9]
    ARENAS-CASTRO S, JULIEN Y, JIMNEZ-MUÑOZ J C, et al. Mapping wild pear trees (Pyrus bourgaeana) in Mediterranean forest using high-resolution QuickBird satellite imagery[J]. International Journal of Remote Sensing, 2012, 34(9-10): 3376-3396.
    [9]
    WANG Z, BOESCH R. Color- and texture-based image segmentation for improved forest delineation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(10): 3055-3062.
    [10]
    CARLEER A, WOLFF E. Exploitation of very high resolution satellite data for tree species identification[J]. Photogrammetric Engineering and Remote Sensing, 2004, 70(1): 135-140.
    [10]
    YU Q, GONG P, CLINTON N, et al. Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery[J]. Photogrammetric Engineering and Remote Sensing, 2006, 72(7): 799.
    [11]
    MALLINIS G, KOUTSIAS N, TSAKIRI-STRATI M, et al. Object-based classification using QuickBird imagery for delineating forest vegetation polygons in a Mediterranean test site[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2008, 63(2): 237-250.
    [12]
    INGRAM J C, DAWSON T P, WHITTAKER R J. Mapping tropical forest structure in southeastern Madagascar using remote sensing and artificial neural networks[J]. Remote Sensing of Environment, 2005, 94(4): 491-507.
    [12]
    LAURIN G V, LIESENBERG V, CHEN Q, et al. Optical and SAR sensor synergies for forest and land cover mapping in a tropical site in West Africa[J]. International Journal of Applied Earth Observation and Geoinformation, 2013, 21: 7-16.
    [13]
    HYYPPÄ J, HYYPPÄ H, INKINEN M, et al. Accuracy comparison of various remote sensing data sources in the retrieval of forest stand attributes[J]. Forest Ecology and Management, 2000, 128(1-2): 109-120.
    [14]
    HARALICK R M. Statistical and structural approaches to texture[J]. Proceedings of the IEEE, 1979, 67(5): 786-804.
    [14]
    GEBRESLASIE M T, AHMED F B, VAN AARDT J A N. Extracting structural attributes from IKONOS imagery for Eucalyptus plantation forests in KwaZulu-Natal, South Africa, using image texture analysis and artificial neural networks[J]. International Journal of Remote Sensing, 2011, 32(22): 7677-7701.
    [15]
    CHEN G, HAY G J, CASTILLA G, et al. A multiscale geographic object-based image analysis to estimate lidar-measured forest canopy height using Quickbird imagery[J]. International Journal of Geographical Information Science, 2010, 25(6): 877-893.
    [16]
    LU D. The potential and challenge of remote sensing-based biomass estimation[J]. International Journal of Remote Sensing, 2006, 27(7): 1297-1328.
    [16]
    HARALICK R M, SHANMUGAM K, DINSTEIN I H. Textural features for image classification[J]. IEEE Transactions on Systems, Man and Cybernetics, 1973(6): 610-621.
    [17]
    ZHENG D, RADEMACHER J, CHEN J, et al. Estimating aboveground biomass using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin, USA[J]. Remote Sensing of Environment, 2004, 93(3): 402-411.
    [18]
    FRANKLIN S E, HALL R J, MOSKAL L M, et al. Incorporating texture into classification of forest species composition from airborne multispectral images[J]. International Journal of Remote Sensing, 2000, 21(1): 61-79.
    [18]
    SOLBERG S, ASTRUP R, GOBAKKEN T, et al. Estimating spruce and pine biomass with interferometric X-band SAR[J]. Remote Sensing of Environment, 2010, 114(10): 2353-2360.
    [19]
    RAUSTE Y. Multi-temporal JERS SAR data in boreal forest biomass mapping[J]. Remote Sensing of Environment, 2005, 97(2): 263-275.
    [19]
    FRANKLIN S E, MAUDIE A J, LAVLGNE M B. Using spatial co-occurrence texture to increase forest structure and species classification accuracy[J]. Photogrammetric Engineering and Remote Sensing, 2001, 67(7): 849-855.
    [20]
    WANG L, SOUSA W P, GONG P, et al. Comparison of IKONOS and QuickBird images for mapping mangrove species on the Caribbean coast of Panama[J]. Remote Sensing of Environment, 2004, 91(3-4): 432-440.
    [20]
    AHMED R, SIQUEIRA P, HENSLEY S. A study of forest biomass estimates from LiDAR in the northern temperate forests of New England[J]. Remote Sensing of Environment, 2013, 130: 121-135.
    [21]
    IOKI K, TSUYUKI S, HIRATA Y, et al. Estimating above-ground biomass of tropical rainforest of different degradation levels in Northern Borneo using airborne LiDAR[J]. Forest Ecology and Management, 2014, 328: 335-341.
    [22]
    HYDE P, NELSON R, KIMES D, et al. Exploring LiDAR-RaDAR synergy: predicting aboveground biomass in a southwestern ponderosa pine forest using LiDAR, SAR and InSAR[J]. Remote Sensing of Environment, 2007, 106(1): 28-38.
    [23]
    LU D, BATISTELLA M. Exploring TM image texture and its relationships with biomass estimation in Rondnia, Brazilian Amazon[J]. Acta Amazonica, 2005, 35(2): 249-257.
    [23]
    KAYITAKIRE F, HAMEL C, DEFOURNY P. Retrieving forest structure variables based on image texture analysis and IKONOS-2 imagery[J]. Remote Sensing of Environment, 2006, 102(3-4): 390-401.
    [24]
    WU Y, ZHANG D R, ZHANG H K, et al. Remote sensing estimation of forest canopy density combined with texture features[J].Scientia Silvae Sinicae, 2012(2): 48-53.
    [24]
    OZDEMIR I, KARNIELI A. Predicting forest structural parameters using the image texture derived from WorldView-2 multispectral imagery in a dryland forest, Israel[J]. International Journal of Applied Earth Observation and Geoinformation, 2011, 13(5): 701-710.
    [25]
    PASHER J, KING D J. Multivariate forest structure modelling and mapping using high resolution airborne imagery and topographic information[J]. Remote Sensing of Environment, 2010, 114(8): 1718-1732.
    [27]
    NICHOL J E, SARKER M L R. Improved biomass estimation using the texture parameters of two high-resolution optical sensors[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(3): 930-948.
    [29]
    SARKER L R, NICHOL J E. Improved forest biomass estimates using ALOS AVNIR-2 texture indices[J]. Remote Sensing of Environment, 2011, 115(4): 968-977.
    [30]
    SARKER M L R, NICHOL J, AHMAD B, et al. Potential of texture measurements of two-date dual polarization PALSAR data for the improvement of forest biomass estimation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 69: 146-166.
    [31]
    SARKER M L R, NICHOL J, IZ H B, et al. Forest biomass estimation using texture measurements of high-resolution dual-polarization C-band SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(6): 3371-3384.
    [32]
    SINGH M, MALHI Y, BHAGWAT S. Evaluating land use and aboveground biomass dynamics in an oil palm-dominated landscape in Borneo using optical remote sensing[J]. Journal of Applied Remote Sensing, 2014, 8(1): 83695.
    [33]
    HAY G J, NIEMANN K O, MCLEAN G F. An object-specific image-texture analysis of H-resolution forest imagery[J]. Remote Sensing of Environment, 1996, 55(2): 108-122.
    [34]
    FRANKLIN S E, MCDERMID G J. Empirical relations between digital SPOT HRV and CASI spectral response and lodgepole pine (Pinus contorta) forest stand parameters[J]. International Journal of Remote Sensing, 1993, 14(12): 2331-2348.
    [36]
    TREITZ P, HOWARTH P. High spatial resolution remote sensing data for forest ecosystem classification: an examination of spatial scale[J]. Remote Sensing of Environment, 2000, 72(3): 268-289.
    [37]
    CULVENOR D S. TIDA: an algorithm for the delineation of tree crowns in high spatial resolution remotely sensed imagery[J]. Computers and Geosciences, 2002, 28(1): 33-44.
    [38]
    POULIOT D A, KING D J, BELL F W, et al. Automated tree crown detection and delineation in high-resolution digital camera imagery of coniferous forest regeneration[J]. Remote Sensing of Environment, 2002, 82(2-3): 322-334.
    [41]
    GHOSH A, JOSHI P K. A comparison of selected classification algorithms for mapping bamboo patches in lower Gangetic plains using very high resolution WorldView 2 imagery[J]. International Journal of Applied Earth Observation and Geoinformation, 2014, 26: 298-311.
    [42]
    VIEDMA O, TORRES I, PREZ B, et al. Modeling plant species richness using reflectance and texture data derived from QuickBird in a recently burned area of Central Spain[J]. Remote Sensing of Environment, 2012, 119: 208-221.
    [43]
    GOMEZ C, MANGEAS M, PETIT M, et al. Use of high-resolution satellite imagery in an integrated model to predict the distribution of shade coffee tree hybrid zones[J]. Remote Sensing of Environment, 2010, 114(11): 2731-2744.
    [44]
    HUANG X, ZHANG L, WANG L. Evaluation of morphological texture features for mangrove forest mapping and species discrimination using multispectral IKONOS imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(3): 393-397.
    [45]
    KIM M, MADDEN M, WARNER T A. Forest type mapping using object-specific texture measures from multispectral IKONOS imagery: segmentation quality and image classification issues[J]. Photogrammetric Engineering and Remote Sensing, 2009, 75(7): 819-829.
    [47]
    OUMA Y O, TETUKO J, TATEISHI R. Analysis of co-occurrence and discrete wavelet transform textures for differentiation of forest and non-forest vegetation in very-high-resolution optical-sensor imagery[J]. International Journal of Remote Sensing, 2008, 29(12): 3417-3456.
    [48]
    JOHANSEN K, COOPS N C, GERGEL S E, et al. Application of high spatial resolution satellite imagery for riparian and forest ecosystem classification[J]. Remote Sensing of Environment, 2007, 110(1): 29-44.
    [49]
    VAN COILLIE F M B, VERBEKE L P C, DE WULF R R. Feature selection by genetic algorithms in object-based classification of IKONOS imagery for forest mapping in Flanders, Belgium[J]. Remote Sensing of Environment, 2007, 110(4): 476-487.
    [50]
    CHUBEY M S, FRANKLIN S E, WULDER M A. Object-based analysis of IKONOS-2 imagery for extraction of forest inventory parameters[J]. Photogrammetric Engineering and Remote Sensing, 2006, 72(4): 383-394.
    [51]
    MARCEAU D J, HOWARTH P J, DUBOIS J M, et al. Evaluation of the grey-level co-occurrence matrix method for land-cover classification using SPOT imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(4): 513-519.
    [52]
    FRANKLIN S E, PEDDLE D R. Classification of SPOT HRV imagery and texture features[J]. International Journal of Remote Sensing, 1990, 11(3): 551-556.
    [53]
    PEDDLE D R, FRANKLIN S E. Image texture processing and data integration for surface pattern discrimination[J]. Photogrammetric Engineering and Remote Sensing, 1991, 57(4): 413-420.
    [54]
    GONG P, MARCEAU D J, HOWARTH P J. A comparison of spatial feature extraction algorithms for land-use classification with SPOT HRV data[J]. Remote Sensing of Environment, 1992, 40(2): 137-151.
    [55]
    FRANKLIN S E, WULDER M A, LAVIGNE M B. Automated derivation of geographic window sizes for use in remote sensing digital image texture analysis[J]. Computers and Geosciences, 1996, 22(6): 665-673.
    [56]
    CARR J R, DE MIRANDA F P. The semivariogram in comparison to the co-occurrence matrix for classification of image texture[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(6): 1945-1952.
    [57]
    CHAN J, LAPORTE N, DEFRIES R S. Texture classification of logged forests in tropical Africa using machine-learning algorithms[J]. International Journal of Remote Sensing, 2003, 24(6): 1401-1407.
    [58]
    WULDER M. Optical remote-sensing techniques for the assessment of forest inventory and biophysical parameters[J]. Progress in Physical Geography, 1998, 22(4): 449-476.
    [59]
    LVESQUE J, KING D J. Spatial analysis of radiometric fractions from high-resolution multispectral imagery for modelling individual tree crown and forest canopy structure and health[J]. Remote Sensing of Environment, 2003, 84(4): 589-602.
    [62]
    GEBRESLASIE M T, AHMED F B, VAN AARDT J. Estimating plot-level forest structural attributes using high spectral resolution ASTER satellite data in even-aged Eucalyptus plantations in southern KwaZulu-Natal, South Africa[J]. Southern Forests, 2008, 70(3): 227-236.
    [64]
    SHAMSODDINI A, TRINDER J C, TURNER R. Pine plantation structure mapping using WorldView-2 multispectral image[J]. International Journal of Remote Sensing, 2013, 34(11): 3986-4007.
    [65]
    GALLARDO-CRUZ J A, MEAVE J A, GONZÁLEZ E J, et al. Predicting tropical dry forest successional attributes from space: is the key hidden in image texture?[J]. PloS One, 2012, 7(2): e30506.
    [66]
    GÓMEZ C, WULDER M A, MONTES F, et al. Modeling forest structural parameters in the Mediterranean pines of central Spain using QuickBird-2 imagery and classification and regression tree analysis (CART)[J]. Remote Sensing, 2012, 4(1): 135-159.
    [67]
    MORA B, WULDER M A, WHITE J C. Segment-constrained regression tree estimation of forest stand height from very high spatial resolution panchromatic imagery over a boreal environment[J]. Remote Sensing of Environment, 2010, 114(11): 2474-2484.
    [68]
    SONG C, DICKINSON M B, SU L, et al. Estimating average tree crown size using spatial information from Ikonos and QuickBird images: across-sensor and across-site comparisons[J]. Remote Sensing of Environment, 2010, 114(5): 1099-1107.
    [69]
    KLOBUČAR D, PERNAR R, LONČARI? S, et al. Artificial neural networks in the assessment of stand parameters from an IKONOS satellite image[J]. Croatian Journal of Forest Engineering, 2008, 29(2): 201-211.
    [70]
    OZDEMIR I. Estimating stem volume by tree crown area and tree shadow area extracted from pan-sharpened Quickbird imagery in open Crimean juniper forests[J]. International Journal of Remote Sensing, 2008, 29(19): 5643-5655.
    [71]
    GREENBERG J A, DOBROWSKI S Z, USTIN S L. Shadow allometry: estimating tree structural parameters using hyperspatial image analysis[J]. Remote Sensing of Environment, 2005, 97(1): 15-25.
    [72]
    WOOD E M, PIDGEON A M, RADELOFF V C, et al. Image texture as a remotely sensed measure of vegetation structure[J]. Remote Sensing of Environment, 2012, 121: 516-526.
    [74]
    CROW T R. Biomass and production in three contiguous forests in northern Wisconsin[J]. Ecology, 1978, 59(2): 265-273.
    [75]
    FOODY G M. Remote sensing of tropical forest environments: towards the monitoring of environmental resources for sustainable development[J]. International Journal of Remote Sensing, 2003, 24(20): 4035-4046.
    [77]
    FOODY G M, BOYD D S, CUTLER M E. Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions[J]. Remote Sensing of Environment, 2003, 85(4): 463-474.
    [78]
    LU D. Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon[J]. International Journal of Remote Sensing, 2005, 26(12): 2509-2525.
    [79]
    MUUKKONEN P, HEISKANEN J. Biomass estimation over a large area based on standwise forest inventory data and ASTER and MODIS satellite data: a possibility to verify carbon inventories[J]. Remote Sensing of Environment, 2007, 107(4): 617-624.
    [81]
    KUPLICH T M, CURRAN P J, ATKINSON P M. Relating SAR image texture to the biomass of regenerating tropical forests[J]. International Journal of Remote Sensing, 2005, 26(21): 4829-4854.
    [83]
    ENGLHART S, KEUCK V, SIEGERT F. Aboveground biomass retrieval in tropical forests: the potential of combined X- and L-band SAR data use[J]. Remote Sensing of Environment, 2011, 115(5): 1260-1271.
    [84]
    TANASE M A, PANCIERA R, LOWELL K, et al. Airborne multi-temporal L-band polarimetric SAR data for biomass estimation in semi-arid forests[J]. Remote Sensing of Environment, 2014, 145: 93-104.
    [86]
    LUCKMAN A, BAKER J, HONZÁK M, et al. Tropical forest biomass density estimation using JERS-1 SAR: seasonal variation, confidence limits, and application to image mosaics[J]. Remote Sensing of Environment, 1998, 63(2): 126-139.
    [87]
    BORTOLOT Z J, WYNNE R H. Estimating forest biomass using small footprint LiDAR data: an individual tree-based approach that incorporates training data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2005, 59(6): 342-360.
    [88]
    PATENAUDE G, HILL R A, MILNE R, et al. Quantifying forest above ground carbon content using LiDAR remote sensing[J]. Remote Sensing of Environment, 2004, 93(3): 368-380.
    [90]
    GLEASON C J, IM J. Forest biomass estimation from airborne LiDAR data using machine learning approaches[J]. Remote Sensing of Environment, 2012, 125: 80-91.
    [91]
    LAURIN G V, CHEN Q, LINDSELL J A, et al. Above ground biomass estimation in an African tropical forest with LiDAR and hyperspectral data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 89: 49-58.
    [94]
    CUTLER M, BOYD D S, FOODY G M, et al. Estimating tropical forest biomass with a combination of SAR image texture and Landsat TM data: an assessment of predictions between regions[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 70: 66-77.
    [96]
    NELSON R F, KIMES D S, SALAS W A, et al. Secondary forest age and tropical forest biomass estimation using Thematic Mapper imagery[J]. Bioscience, 2000, 50(5): 419-431.
    [97]
    STEININGER M K. Satellite estimation of tropical secondary forest above-ground biomass: data from Brazil and Bolivia[J]. International Journal of Remote Sensing, 2000, 21(6-7): 1139-1157.
    [98]
    MUUKKONEN P, HEISKANEN J. Estimating biomass for boreal forests using ASTER satellite data combined with standwise forest inventory data[J]. Remote Sensing of Environment, 2005, 99(4): 434-447.
    [99]
    HYDE P, DUBAYAH R, WALKER W, et al. Mapping forest structure for wildlife habitat analysis using multi-sensor (LiDAR, SAR/InSAR, ETM+, Quickbird) synergy[J]. Remote Sensing of Environment. 2006, 102(1-2): 63-73.
    [100]
    KALACSKA M, SANCHEZ-AZOFEIFA G A, RIVARD B, et al. Ecological fingerprinting of ecosystem succession: estimating secondary tropical dry forest structure and diversity using imaging spectroscopy[J]. Remote Sensing of Environment. 2007, 108(1): 82-96.
    [101]
    ECKERT S. Improved forest biomass and carbon estimations using texture measures from WorldView-2 satellite data[J]. Remote Sensing, 2012, 4(4): 810-829.
    [102]
    WIJAYA A, KUSNADI S, GLOAGUEN R, et al. Improved strategy for estimating stem volume and forest biomass using moderate resolution remote sensing data and GIS[J]. Journal of Forestry Research. 2010, 21(1): 1-12.
    [103]
    CULBERT P D, PIDGEON A M, ST-LOUIS V, et al. The impact of phenological variation on texture measures of remotely sensed imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2009, 2(4): 299-309.
    [104]
    JOHANSEN K, PHINN S. Mapping structural parameters and species composition of riparian vegetation using IKONOS and Landsat ETM+ data in Australian tropical savannahs[J]. Photogrammetric Engineering and Remote Sensing, 2006, 72(1): 71-80.
    [105]
    BUDDENBAUM H, SCHLERF M, HILL J. Classification of coniferous tree species and age classes using hyperspectral data and geostatistical methods[J]. International Journal of Remote Sensing, 2005, 26(24): 5453-5465.
    [106]
    RAO P N, SAI M S, SREENIVAS K, et al. Textural analysis of IRS-1D panchromatic data for land cover classification[J]. International Journal of Remote Sensing, 2002, 23(17): 3327-3345.
    [107]
    BARALDI A, PARMIGGIANI F. An investigation of the textural characteristics associated with gray level cooccurrence matrix statistical parameters[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(2): 293-304.
    [108]
    GONG P, MARCEAU D J, HOWARTH P J. A comparison of spatial feature extraction algorithms for land-use classification with SPOT HRV data[J]. Remote Sensing of Environment, 1992, 40(2): 137-151.
    [109]
    CLAUSI D A. An analysis of co-occurrence texture statistics as a function of grey level quantization[J]. Canadian Journal of Remote Sensing, 2002, 28(1): 45-62.
    [110]
    PUISSANT A, HIRSCH J, WEBER C. The utility of texture analysis to improve per-pixel classification for high to very high spatial resolution imagery[J]. International Journal of Remote Sensing, 2005, 26(4): 733-745.
    [111]
    VEGA-GARCÍA C, CHUVIECO E. Applying local measures of spatial heterogeneity to Landsat-TM images for predicting wildfire occurrence in Mediterranean landscapes[J]. Landscape Ecology, 2006, 21(4): 595-605.
    [112]
    DRONOVA I, GONG P, CLINTON N E, et al. Landscape analysis of wetland plant functional types: the effects of image segmentation scale, vegetation classes and classification methods[J]. Remote Sensing of Environment, 2012, 127: 357-369.
    [113]
    ZHANG C, XIE Z. Combining object-based texture measures with a neural network for vegetation mapping in the Everglades from hyperspectral imagery[J]. Remote Sensing of Environment, 2012, 124: 310-320.
    [114]
    吴飏,张登荣,张汉奎,等. 结合图像纹理特征的森林郁闭度遥感估测[J]. 林业科学, 2012(2): 48-53.
    [115]
    GRAY J, SONG C. Mapping leaf area index using spatial, spectral, and temporal information from multiple sensors[J]. Remote Sensing of Environment, 2012, 119: 173-183.
    [116]
    SOH L, TSATSOULIS C. Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(2): 780-795.
    [117]
    BARBIER N, COUTERON P, PROISY C, et al. The variation of apparent crown size and canopy heterogeneity across lowland Amazonian forests[J]. Global Ecology and Biogeography, 2010, 19(1): 72-84.
    [118]
    CHAMPION I, GERMAIN C, DA COSTA J P, et al. Retrieval of forest stand age from SAR image texture for varying distance and orientation values of the gray level co-occurrence matrix[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(1): 5-9.
    [119]
    FRANKLIN S E, PEDDLE D R. Spectral texture for improved class discrimination in complex terrain[J]. International Journal of Remote Sensing, 1989, 10(8): 1437-1443.
    [120]
    BARBER D G, LEDREW E F. SAR sea ice discrimination using texture statistics: a multivariate approach[J]. Photogrammetric Engineering and Remote Sensing, 1991, 57(4): 385-395.
    [121]
    HUGHES G. On the mean accuracy of statistical pattern recognizers[J]. IEEE Transactions on Information Theory, 1968, 14(1): 55-63.
    [122]
    LI G, LU D, MORAN E, et al. A comparative analysis of ALOS PALSAR L-band and RADARSAT-2 C-band data for land-cover classification in a tropical moist region[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 70: 26-38.
    [123]
    OZDEMIR I, NORTON D A, OZKAN U Y, et al. Estimation of tree size diversity using object oriented texture analysis and aster imagery[J]. Sensors, 2008, 8(8): 4709-4724.
  • Cited by

    Periodical cited type(15)

    1. 冯旭环,周璐,熊伟,宗桦. 大渡河干热河谷区本土优势灌草植物根系的抗拉力学特性及其影响因素研究. 干旱区资源与环境. 2023(07): 159-169 .
    2. 李宏斌,张旭,姚晨,杜峰. 陕北黄土区不同植物根系抗拉力学特性研究. 水土保持研究. 2023(04): 122-129 .
    3. 李金波,伍红燕,赵斌,陈济丁,宋桂龙. 模拟边坡条件下常见护坡植物苗期根系构型特征. 生态学报. 2023(24): 10131-10141 .
    4. 赵佳愉,伍红燕,史蔚林,宋桂龙. 聚丙烯酰胺添加浓度对种基盘特性的影响. 草原与草坪. 2021(05): 16-21 .
    5. 黄炎和,李思诗,岳辉,彭绍云,谢炎敏,林根根,周曼,吴俣,蔡学智. 崩岗区四种草本植物根系抗拉特性及其与化学成分的关系. 亚热带水土保持. 2021(04): 9-15 .
    6. 李义强,伍红燕,宋桂龙,赵斌,李一为,夏宇,孙盛年,梁燕宁. 岩石边坡坡度对胡枝子和紫穗槐根系形态特征影响. 草原与草坪. 2020(02): 23-29 .
    7. 曹磊,马海天才. 不同草本植物根系力动力学及抗压力特征研究. 干旱区资源与环境. 2019(01): 164-170 .
    8. 李淑霞,刘亚斌,余冬梅,胡夏嵩,祁兆鑫. 寒旱环境盐胁迫条件下两种草本植物的根系力学特性研究. 盐湖研究. 2019(01): 116-131 .
    9. 李瑞燊,刘静,王博,张欣,胡晶华,苏慧敏,白潞翼,王多民. 反复施加拉剪组合力对小叶锦鸡儿直根材料力学特性的影响. 水土保持学报. 2019(05): 121-125 .
    10. 马海天才. 不同草本植物根系的抗压动力学特征. 北方园艺. 2018(19): 71-77 .
    11. 王博,刘静,王晨嘉,张欣,刘嘉伟,李强,张强. 半干旱矿区3种灌木侧根分支处折力损伤后的自修复特性. 应用生态学报. 2018(11): 3541-3549 .
    12. 韦杰,李进林,史炳林. 紫色土耕地埂坎2种典型根——土复合体抗剪强度特征. 应用基础与工程科学学报. 2018(03): 483-492 .
    13. 刘昌义,胡夏嵩,赵玉娇,窦增宁. 寒旱环境草本与灌木植物单根拉伸试验强度特征研究. 工程地质学报. 2017(01): 1-10 .
    14. 谷利茶,王国梁. 氮添加对油松幼苗不同径级细根碳水化合物含量的影响. 生态学杂志. 2017(08): 2184-2190 .
    15. 杨闻达,王桂尧,常婧美,张永杰. 主直根系拉拔力的室内试验研究. 中国水土保持科学. 2017(04): 111-116 .

    Other cited types(25)

Catalog

    Article views (1698) PDF downloads (40) Cited by(40)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return