Citation: | CHEN Ling, HAO Wen-qian, GAO De-liang. The latest applications of optical image texture in forestry[J]. Journal of Beijing Forestry University, 2015, 37(3): 1-12. DOI: 10.13332/j.1000-1522.20140304 |
[1] |
TUOMINEN S, PEKKARINEN A. Performance of different spectral and textural aerial photograph features in multi-source forest inventory[J]. Remote Sensing of Environment, 2005, 94(2): 256-268.
|
[1] |
CASTILLO-SANTIAGO M A, RICKER M, DE JONG B H J. Estimation of tropical forest structure from SPOT-5 satellite images[J]. International Journal of Remote Sensing, 2010, 31(10): 2767-2782.
|
[2] |
DORREN L K A, MAIER B, SEIJMONSBERGEN A C. Improved Landsat-based forest mapping in steep mountainous terrain using object-based classification[J]. Forest Ecology and Management, 2003, 183(1-3): 31-46.
|
[2] |
FRANKLIN S E, WULDER M A, GERYLO G R. Texture analysis of IKONOS panchromatic data for Douglas-fir forest age class separability in British Columbia[J]. International Journal of Remote Sensing, 2001, 22(13): 2627-2632.
|
[3] |
HALL R J, SKAKUN R S, ARSENAULT E J, et al. Modeling forest stand structure attributes using Landsat ETM+ data: application to mapping of aboveground biomass and stand volume[J]. Forest Ecology and Management, 2006, 225(1-3): 378-390.
|
[3] |
COBURN C A, ROBERTS A. A multiscale texture analysis procedure for improved forest stand classification[J]. International Journal of Remote Sensing, 2004, 25(20): 4287-4308.
|
[4] |
WOLTER P T, TOWNSEND P A, STURTEVANT B R. Estimation of forest structural parameters using 5 and 10 meter SPOT-5 satellite data[J]. Remote Sensing of Environment, 2009, 113(9): 2019-2036.
|
[4] |
PU R, LANDRY S. A comparative analysis of high spatial resolution IKONOS and WorldView-2 imagery for mapping urban tree species[J]. Remote Sensing of Environment, 2012, 124: 516-533.
|
[5] |
RODRIGUEZ-GALIANO V F, CHICA-OLMO M, ABARCA-HERNANDEZ F, et al. Random forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture[J]. Remote Sensing of Environment, 2012, 121: 93-107.
|
[5] |
TROTTER C M, DYMOND J R, GOULDING C J. Estimation of timber volume in a coniferous plantation forest using Landsat TM[J]. International Journal of Remote Sensing, 1997, 18(10): 2209-2223.
|
[6] |
WULDER M A, LEDREW E F, FRANKLIN S E, et al. Aerial image texture information in the estimation of northern deciduous and mixed wood forest leaf area index (LAI)[J]. Remote Sensing of Environment, 1998, 64(1): 64-76.
|
[6] |
FUCHS H, MAGDON P, KLEINN C, et al. Estimating aboveground carbon in a catchment of the Siberian forest tundra: combining satellite imagery and field inventory[J]. Remote Sensing of Environment, 2009, 113(3): 518-531.
|
[7] |
PROISY C, COUTERON P, FROMARD F. Predicting and mapping mangrove biomass from canopy grain analysis using Fourier-based textural ordination of IKONOS images[J]. Remote Sensing of Environment, 2007, 109(3): 379-392.
|
[7] |
LECKIE D G, GOUGEON F A, TINIS S, et al. Automated tree recognition in old growth conifer stands with high resolution digital imagery[J]. Remote Sensing of Environment, 2005, 94(3): 311-326.
|
[8] |
TRELTZ P, HOWARTH P. Integrating spectral, spatial, and terrain variables for forest ecosystem classification[J]. Photogrammetric Engineering and Remote Sensing, 2000, 66(3): 305-317.
|
[8] |
LECKIE D G, TINIS S, NELSON T, et al. Issues in species classification of trees in old growth conifer stands[J]. Canadian Journal of Remote Sensing, 2005, 31(2): 175-190.
|
[9] |
ARENAS-CASTRO S, JULIEN Y, JIMNEZ-MUÑOZ J C, et al. Mapping wild pear trees (Pyrus bourgaeana) in Mediterranean forest using high-resolution QuickBird satellite imagery[J]. International Journal of Remote Sensing, 2012, 34(9-10): 3376-3396.
|
[9] |
WANG Z, BOESCH R. Color- and texture-based image segmentation for improved forest delineation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(10): 3055-3062.
|
[10] |
CARLEER A, WOLFF E. Exploitation of very high resolution satellite data for tree species identification[J]. Photogrammetric Engineering and Remote Sensing, 2004, 70(1): 135-140.
|
[10] |
YU Q, GONG P, CLINTON N, et al. Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery[J]. Photogrammetric Engineering and Remote Sensing, 2006, 72(7): 799.
|
[11] |
MALLINIS G, KOUTSIAS N, TSAKIRI-STRATI M, et al. Object-based classification using QuickBird imagery for delineating forest vegetation polygons in a Mediterranean test site[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2008, 63(2): 237-250.
|
[12] |
INGRAM J C, DAWSON T P, WHITTAKER R J. Mapping tropical forest structure in southeastern Madagascar using remote sensing and artificial neural networks[J]. Remote Sensing of Environment, 2005, 94(4): 491-507.
|
[12] |
LAURIN G V, LIESENBERG V, CHEN Q, et al. Optical and SAR sensor synergies for forest and land cover mapping in a tropical site in West Africa[J]. International Journal of Applied Earth Observation and Geoinformation, 2013, 21: 7-16.
|
[13] |
HYYPPÄ J, HYYPPÄ H, INKINEN M, et al. Accuracy comparison of various remote sensing data sources in the retrieval of forest stand attributes[J]. Forest Ecology and Management, 2000, 128(1-2): 109-120.
|
[14] |
HARALICK R M. Statistical and structural approaches to texture[J]. Proceedings of the IEEE, 1979, 67(5): 786-804.
|
[14] |
GEBRESLASIE M T, AHMED F B, VAN AARDT J A N. Extracting structural attributes from IKONOS imagery for Eucalyptus plantation forests in KwaZulu-Natal, South Africa, using image texture analysis and artificial neural networks[J]. International Journal of Remote Sensing, 2011, 32(22): 7677-7701.
|
[15] |
CHEN G, HAY G J, CASTILLA G, et al. A multiscale geographic object-based image analysis to estimate lidar-measured forest canopy height using Quickbird imagery[J]. International Journal of Geographical Information Science, 2010, 25(6): 877-893.
|
[16] |
LU D. The potential and challenge of remote sensing-based biomass estimation[J]. International Journal of Remote Sensing, 2006, 27(7): 1297-1328.
|
[16] |
HARALICK R M, SHANMUGAM K, DINSTEIN I H. Textural features for image classification[J]. IEEE Transactions on Systems, Man and Cybernetics, 1973(6): 610-621.
|
[17] |
ZHENG D, RADEMACHER J, CHEN J, et al. Estimating aboveground biomass using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin, USA[J]. Remote Sensing of Environment, 2004, 93(3): 402-411.
|
[18] |
FRANKLIN S E, HALL R J, MOSKAL L M, et al. Incorporating texture into classification of forest species composition from airborne multispectral images[J]. International Journal of Remote Sensing, 2000, 21(1): 61-79.
|
[18] |
SOLBERG S, ASTRUP R, GOBAKKEN T, et al. Estimating spruce and pine biomass with interferometric X-band SAR[J]. Remote Sensing of Environment, 2010, 114(10): 2353-2360.
|
[19] |
RAUSTE Y. Multi-temporal JERS SAR data in boreal forest biomass mapping[J]. Remote Sensing of Environment, 2005, 97(2): 263-275.
|
[19] |
FRANKLIN S E, MAUDIE A J, LAVLGNE M B. Using spatial co-occurrence texture to increase forest structure and species classification accuracy[J]. Photogrammetric Engineering and Remote Sensing, 2001, 67(7): 849-855.
|
[20] |
WANG L, SOUSA W P, GONG P, et al. Comparison of IKONOS and QuickBird images for mapping mangrove species on the Caribbean coast of Panama[J]. Remote Sensing of Environment, 2004, 91(3-4): 432-440.
|
[20] |
AHMED R, SIQUEIRA P, HENSLEY S. A study of forest biomass estimates from LiDAR in the northern temperate forests of New England[J]. Remote Sensing of Environment, 2013, 130: 121-135.
|
[21] |
IOKI K, TSUYUKI S, HIRATA Y, et al. Estimating above-ground biomass of tropical rainforest of different degradation levels in Northern Borneo using airborne LiDAR[J]. Forest Ecology and Management, 2014, 328: 335-341.
|
[22] |
HYDE P, NELSON R, KIMES D, et al. Exploring LiDAR-RaDAR synergy: predicting aboveground biomass in a southwestern ponderosa pine forest using LiDAR, SAR and InSAR[J]. Remote Sensing of Environment, 2007, 106(1): 28-38.
|
[23] |
LU D, BATISTELLA M. Exploring TM image texture and its relationships with biomass estimation in Rondnia, Brazilian Amazon[J]. Acta Amazonica, 2005, 35(2): 249-257.
|
[23] |
KAYITAKIRE F, HAMEL C, DEFOURNY P. Retrieving forest structure variables based on image texture analysis and IKONOS-2 imagery[J]. Remote Sensing of Environment, 2006, 102(3-4): 390-401.
|
[24] |
WU Y, ZHANG D R, ZHANG H K, et al. Remote sensing estimation of forest canopy density combined with texture features[J].Scientia Silvae Sinicae, 2012(2): 48-53.
|
[24] |
OZDEMIR I, KARNIELI A. Predicting forest structural parameters using the image texture derived from WorldView-2 multispectral imagery in a dryland forest, Israel[J]. International Journal of Applied Earth Observation and Geoinformation, 2011, 13(5): 701-710.
|
[25] |
PASHER J, KING D J. Multivariate forest structure modelling and mapping using high resolution airborne imagery and topographic information[J]. Remote Sensing of Environment, 2010, 114(8): 1718-1732.
|
[27] |
NICHOL J E, SARKER M L R. Improved biomass estimation using the texture parameters of two high-resolution optical sensors[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(3): 930-948.
|
[29] |
SARKER L R, NICHOL J E. Improved forest biomass estimates using ALOS AVNIR-2 texture indices[J]. Remote Sensing of Environment, 2011, 115(4): 968-977.
|
[30] |
SARKER M L R, NICHOL J, AHMAD B, et al. Potential of texture measurements of two-date dual polarization PALSAR data for the improvement of forest biomass estimation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 69: 146-166.
|
[31] |
SARKER M L R, NICHOL J, IZ H B, et al. Forest biomass estimation using texture measurements of high-resolution dual-polarization C-band SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(6): 3371-3384.
|
[32] |
SINGH M, MALHI Y, BHAGWAT S. Evaluating land use and aboveground biomass dynamics in an oil palm-dominated landscape in Borneo using optical remote sensing[J]. Journal of Applied Remote Sensing, 2014, 8(1): 83695.
|
[33] |
HAY G J, NIEMANN K O, MCLEAN G F. An object-specific image-texture analysis of H-resolution forest imagery[J]. Remote Sensing of Environment, 1996, 55(2): 108-122.
|
[34] |
FRANKLIN S E, MCDERMID G J. Empirical relations between digital SPOT HRV and CASI spectral response and lodgepole pine (Pinus contorta) forest stand parameters[J]. International Journal of Remote Sensing, 1993, 14(12): 2331-2348.
|
[36] |
TREITZ P, HOWARTH P. High spatial resolution remote sensing data for forest ecosystem classification: an examination of spatial scale[J]. Remote Sensing of Environment, 2000, 72(3): 268-289.
|
[37] |
CULVENOR D S. TIDA: an algorithm for the delineation of tree crowns in high spatial resolution remotely sensed imagery[J]. Computers and Geosciences, 2002, 28(1): 33-44.
|
[38] |
POULIOT D A, KING D J, BELL F W, et al. Automated tree crown detection and delineation in high-resolution digital camera imagery of coniferous forest regeneration[J]. Remote Sensing of Environment, 2002, 82(2-3): 322-334.
|
[41] |
GHOSH A, JOSHI P K. A comparison of selected classification algorithms for mapping bamboo patches in lower Gangetic plains using very high resolution WorldView 2 imagery[J]. International Journal of Applied Earth Observation and Geoinformation, 2014, 26: 298-311.
|
[42] |
VIEDMA O, TORRES I, PREZ B, et al. Modeling plant species richness using reflectance and texture data derived from QuickBird in a recently burned area of Central Spain[J]. Remote Sensing of Environment, 2012, 119: 208-221.
|
[43] |
GOMEZ C, MANGEAS M, PETIT M, et al. Use of high-resolution satellite imagery in an integrated model to predict the distribution of shade coffee tree hybrid zones[J]. Remote Sensing of Environment, 2010, 114(11): 2731-2744.
|
[44] |
HUANG X, ZHANG L, WANG L. Evaluation of morphological texture features for mangrove forest mapping and species discrimination using multispectral IKONOS imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(3): 393-397.
|
[45] |
KIM M, MADDEN M, WARNER T A. Forest type mapping using object-specific texture measures from multispectral IKONOS imagery: segmentation quality and image classification issues[J]. Photogrammetric Engineering and Remote Sensing, 2009, 75(7): 819-829.
|
[47] |
OUMA Y O, TETUKO J, TATEISHI R. Analysis of co-occurrence and discrete wavelet transform textures for differentiation of forest and non-forest vegetation in very-high-resolution optical-sensor imagery[J]. International Journal of Remote Sensing, 2008, 29(12): 3417-3456.
|
[48] |
JOHANSEN K, COOPS N C, GERGEL S E, et al. Application of high spatial resolution satellite imagery for riparian and forest ecosystem classification[J]. Remote Sensing of Environment, 2007, 110(1): 29-44.
|
[49] |
VAN COILLIE F M B, VERBEKE L P C, DE WULF R R. Feature selection by genetic algorithms in object-based classification of IKONOS imagery for forest mapping in Flanders, Belgium[J]. Remote Sensing of Environment, 2007, 110(4): 476-487.
|
[50] |
CHUBEY M S, FRANKLIN S E, WULDER M A. Object-based analysis of IKONOS-2 imagery for extraction of forest inventory parameters[J]. Photogrammetric Engineering and Remote Sensing, 2006, 72(4): 383-394.
|
[51] |
MARCEAU D J, HOWARTH P J, DUBOIS J M, et al. Evaluation of the grey-level co-occurrence matrix method for land-cover classification using SPOT imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(4): 513-519.
|
[52] |
FRANKLIN S E, PEDDLE D R. Classification of SPOT HRV imagery and texture features[J]. International Journal of Remote Sensing, 1990, 11(3): 551-556.
|
[53] |
PEDDLE D R, FRANKLIN S E. Image texture processing and data integration for surface pattern discrimination[J]. Photogrammetric Engineering and Remote Sensing, 1991, 57(4): 413-420.
|
[54] |
GONG P, MARCEAU D J, HOWARTH P J. A comparison of spatial feature extraction algorithms for land-use classification with SPOT HRV data[J]. Remote Sensing of Environment, 1992, 40(2): 137-151.
|
[55] |
FRANKLIN S E, WULDER M A, LAVIGNE M B. Automated derivation of geographic window sizes for use in remote sensing digital image texture analysis[J]. Computers and Geosciences, 1996, 22(6): 665-673.
|
[56] |
CARR J R, DE MIRANDA F P. The semivariogram in comparison to the co-occurrence matrix for classification of image texture[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(6): 1945-1952.
|
[57] |
CHAN J, LAPORTE N, DEFRIES R S. Texture classification of logged forests in tropical Africa using machine-learning algorithms[J]. International Journal of Remote Sensing, 2003, 24(6): 1401-1407.
|
[58] |
WULDER M. Optical remote-sensing techniques for the assessment of forest inventory and biophysical parameters[J]. Progress in Physical Geography, 1998, 22(4): 449-476.
|
[59] |
LVESQUE J, KING D J. Spatial analysis of radiometric fractions from high-resolution multispectral imagery for modelling individual tree crown and forest canopy structure and health[J]. Remote Sensing of Environment, 2003, 84(4): 589-602.
|
[62] |
GEBRESLASIE M T, AHMED F B, VAN AARDT J. Estimating plot-level forest structural attributes using high spectral resolution ASTER satellite data in even-aged Eucalyptus plantations in southern KwaZulu-Natal, South Africa[J]. Southern Forests, 2008, 70(3): 227-236.
|
[64] |
SHAMSODDINI A, TRINDER J C, TURNER R. Pine plantation structure mapping using WorldView-2 multispectral image[J]. International Journal of Remote Sensing, 2013, 34(11): 3986-4007.
|
[65] |
GALLARDO-CRUZ J A, MEAVE J A, GONZÁLEZ E J, et al. Predicting tropical dry forest successional attributes from space: is the key hidden in image texture?[J]. PloS One, 2012, 7(2): e30506.
|
[66] |
GÓMEZ C, WULDER M A, MONTES F, et al. Modeling forest structural parameters in the Mediterranean pines of central Spain using QuickBird-2 imagery and classification and regression tree analysis (CART)[J]. Remote Sensing, 2012, 4(1): 135-159.
|
[67] |
MORA B, WULDER M A, WHITE J C. Segment-constrained regression tree estimation of forest stand height from very high spatial resolution panchromatic imagery over a boreal environment[J]. Remote Sensing of Environment, 2010, 114(11): 2474-2484.
|
[68] |
SONG C, DICKINSON M B, SU L, et al. Estimating average tree crown size using spatial information from Ikonos and QuickBird images: across-sensor and across-site comparisons[J]. Remote Sensing of Environment, 2010, 114(5): 1099-1107.
|
[69] |
KLOBUČAR D, PERNAR R, LONČARI? S, et al. Artificial neural networks in the assessment of stand parameters from an IKONOS satellite image[J]. Croatian Journal of Forest Engineering, 2008, 29(2): 201-211.
|
[70] |
OZDEMIR I. Estimating stem volume by tree crown area and tree shadow area extracted from pan-sharpened Quickbird imagery in open Crimean juniper forests[J]. International Journal of Remote Sensing, 2008, 29(19): 5643-5655.
|
[71] |
GREENBERG J A, DOBROWSKI S Z, USTIN S L. Shadow allometry: estimating tree structural parameters using hyperspatial image analysis[J]. Remote Sensing of Environment, 2005, 97(1): 15-25.
|
[72] |
WOOD E M, PIDGEON A M, RADELOFF V C, et al. Image texture as a remotely sensed measure of vegetation structure[J]. Remote Sensing of Environment, 2012, 121: 516-526.
|
[74] |
CROW T R. Biomass and production in three contiguous forests in northern Wisconsin[J]. Ecology, 1978, 59(2): 265-273.
|
[75] |
FOODY G M. Remote sensing of tropical forest environments: towards the monitoring of environmental resources for sustainable development[J]. International Journal of Remote Sensing, 2003, 24(20): 4035-4046.
|
[77] |
FOODY G M, BOYD D S, CUTLER M E. Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions[J]. Remote Sensing of Environment, 2003, 85(4): 463-474.
|
[78] |
LU D. Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon[J]. International Journal of Remote Sensing, 2005, 26(12): 2509-2525.
|
[79] |
MUUKKONEN P, HEISKANEN J. Biomass estimation over a large area based on standwise forest inventory data and ASTER and MODIS satellite data: a possibility to verify carbon inventories[J]. Remote Sensing of Environment, 2007, 107(4): 617-624.
|
[81] |
KUPLICH T M, CURRAN P J, ATKINSON P M. Relating SAR image texture to the biomass of regenerating tropical forests[J]. International Journal of Remote Sensing, 2005, 26(21): 4829-4854.
|
[83] |
ENGLHART S, KEUCK V, SIEGERT F. Aboveground biomass retrieval in tropical forests: the potential of combined X- and L-band SAR data use[J]. Remote Sensing of Environment, 2011, 115(5): 1260-1271.
|
[84] |
TANASE M A, PANCIERA R, LOWELL K, et al. Airborne multi-temporal L-band polarimetric SAR data for biomass estimation in semi-arid forests[J]. Remote Sensing of Environment, 2014, 145: 93-104.
|
[86] |
LUCKMAN A, BAKER J, HONZÁK M, et al. Tropical forest biomass density estimation using JERS-1 SAR: seasonal variation, confidence limits, and application to image mosaics[J]. Remote Sensing of Environment, 1998, 63(2): 126-139.
|
[87] |
BORTOLOT Z J, WYNNE R H. Estimating forest biomass using small footprint LiDAR data: an individual tree-based approach that incorporates training data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2005, 59(6): 342-360.
|
[88] |
PATENAUDE G, HILL R A, MILNE R, et al. Quantifying forest above ground carbon content using LiDAR remote sensing[J]. Remote Sensing of Environment, 2004, 93(3): 368-380.
|
[90] |
GLEASON C J, IM J. Forest biomass estimation from airborne LiDAR data using machine learning approaches[J]. Remote Sensing of Environment, 2012, 125: 80-91.
|
[91] |
LAURIN G V, CHEN Q, LINDSELL J A, et al. Above ground biomass estimation in an African tropical forest with LiDAR and hyperspectral data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 89: 49-58.
|
[94] |
CUTLER M, BOYD D S, FOODY G M, et al. Estimating tropical forest biomass with a combination of SAR image texture and Landsat TM data: an assessment of predictions between regions[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 70: 66-77.
|
[96] |
NELSON R F, KIMES D S, SALAS W A, et al. Secondary forest age and tropical forest biomass estimation using Thematic Mapper imagery[J]. Bioscience, 2000, 50(5): 419-431.
|
[97] |
STEININGER M K. Satellite estimation of tropical secondary forest above-ground biomass: data from Brazil and Bolivia[J]. International Journal of Remote Sensing, 2000, 21(6-7): 1139-1157.
|
[98] |
MUUKKONEN P, HEISKANEN J. Estimating biomass for boreal forests using ASTER satellite data combined with standwise forest inventory data[J]. Remote Sensing of Environment, 2005, 99(4): 434-447.
|
[99] |
HYDE P, DUBAYAH R, WALKER W, et al. Mapping forest structure for wildlife habitat analysis using multi-sensor (LiDAR, SAR/InSAR, ETM+, Quickbird) synergy[J]. Remote Sensing of Environment. 2006, 102(1-2): 63-73.
|
[100] |
KALACSKA M, SANCHEZ-AZOFEIFA G A, RIVARD B, et al. Ecological fingerprinting of ecosystem succession: estimating secondary tropical dry forest structure and diversity using imaging spectroscopy[J]. Remote Sensing of Environment. 2007, 108(1): 82-96.
|
[101] |
ECKERT S. Improved forest biomass and carbon estimations using texture measures from WorldView-2 satellite data[J]. Remote Sensing, 2012, 4(4): 810-829.
|
[102] |
WIJAYA A, KUSNADI S, GLOAGUEN R, et al. Improved strategy for estimating stem volume and forest biomass using moderate resolution remote sensing data and GIS[J]. Journal of Forestry Research. 2010, 21(1): 1-12.
|
[103] |
CULBERT P D, PIDGEON A M, ST-LOUIS V, et al. The impact of phenological variation on texture measures of remotely sensed imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2009, 2(4): 299-309.
|
[104] |
JOHANSEN K, PHINN S. Mapping structural parameters and species composition of riparian vegetation using IKONOS and Landsat ETM+ data in Australian tropical savannahs[J]. Photogrammetric Engineering and Remote Sensing, 2006, 72(1): 71-80.
|
[105] |
BUDDENBAUM H, SCHLERF M, HILL J. Classification of coniferous tree species and age classes using hyperspectral data and geostatistical methods[J]. International Journal of Remote Sensing, 2005, 26(24): 5453-5465.
|
[106] |
RAO P N, SAI M S, SREENIVAS K, et al. Textural analysis of IRS-1D panchromatic data for land cover classification[J]. International Journal of Remote Sensing, 2002, 23(17): 3327-3345.
|
[107] |
BARALDI A, PARMIGGIANI F. An investigation of the textural characteristics associated with gray level cooccurrence matrix statistical parameters[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(2): 293-304.
|
[108] |
GONG P, MARCEAU D J, HOWARTH P J. A comparison of spatial feature extraction algorithms for land-use classification with SPOT HRV data[J]. Remote Sensing of Environment, 1992, 40(2): 137-151.
|
[109] |
CLAUSI D A. An analysis of co-occurrence texture statistics as a function of grey level quantization[J]. Canadian Journal of Remote Sensing, 2002, 28(1): 45-62.
|
[110] |
PUISSANT A, HIRSCH J, WEBER C. The utility of texture analysis to improve per-pixel classification for high to very high spatial resolution imagery[J]. International Journal of Remote Sensing, 2005, 26(4): 733-745.
|
[111] |
VEGA-GARCÍA C, CHUVIECO E. Applying local measures of spatial heterogeneity to Landsat-TM images for predicting wildfire occurrence in Mediterranean landscapes[J]. Landscape Ecology, 2006, 21(4): 595-605.
|
[112] |
DRONOVA I, GONG P, CLINTON N E, et al. Landscape analysis of wetland plant functional types: the effects of image segmentation scale, vegetation classes and classification methods[J]. Remote Sensing of Environment, 2012, 127: 357-369.
|
[113] |
ZHANG C, XIE Z. Combining object-based texture measures with a neural network for vegetation mapping in the Everglades from hyperspectral imagery[J]. Remote Sensing of Environment, 2012, 124: 310-320.
|
[114] |
吴飏,张登荣,张汉奎,等. 结合图像纹理特征的森林郁闭度遥感估测[J]. 林业科学, 2012(2): 48-53.
|
[115] |
GRAY J, SONG C. Mapping leaf area index using spatial, spectral, and temporal information from multiple sensors[J]. Remote Sensing of Environment, 2012, 119: 173-183.
|
[116] |
SOH L, TSATSOULIS C. Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(2): 780-795.
|
[117] |
BARBIER N, COUTERON P, PROISY C, et al. The variation of apparent crown size and canopy heterogeneity across lowland Amazonian forests[J]. Global Ecology and Biogeography, 2010, 19(1): 72-84.
|
[118] |
CHAMPION I, GERMAIN C, DA COSTA J P, et al. Retrieval of forest stand age from SAR image texture for varying distance and orientation values of the gray level co-occurrence matrix[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(1): 5-9.
|
[119] |
FRANKLIN S E, PEDDLE D R. Spectral texture for improved class discrimination in complex terrain[J]. International Journal of Remote Sensing, 1989, 10(8): 1437-1443.
|
[120] |
BARBER D G, LEDREW E F. SAR sea ice discrimination using texture statistics: a multivariate approach[J]. Photogrammetric Engineering and Remote Sensing, 1991, 57(4): 385-395.
|
[121] |
HUGHES G. On the mean accuracy of statistical pattern recognizers[J]. IEEE Transactions on Information Theory, 1968, 14(1): 55-63.
|
[122] |
LI G, LU D, MORAN E, et al. A comparative analysis of ALOS PALSAR L-band and RADARSAT-2 C-band data for land-cover classification in a tropical moist region[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 70: 26-38.
|
[123] |
OZDEMIR I, NORTON D A, OZKAN U Y, et al. Estimation of tree size diversity using object oriented texture analysis and aster imagery[J]. Sensors, 2008, 8(8): 4709-4724.
|