• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
LI Xiang, ZHEN Zhen, ZHAO Ying-hui. Suitable model of detecting the position of individual treetop based on local maximum method[J]. Journal of Beijing Forestry University, 2015, 37(3): 27-33. DOI: 10.13332/j.1000-1522.20140313
Citation: LI Xiang, ZHEN Zhen, ZHAO Ying-hui. Suitable model of detecting the position of individual treetop based on local maximum method[J]. Journal of Beijing Forestry University, 2015, 37(3): 27-33. DOI: 10.13332/j.1000-1522.20140313

Suitable model of detecting the position of individual treetop based on local maximum method

More Information
  • Received Date: September 14, 2014
  • Revised Date: December 14, 2014
  • Published Date: March 30, 2015
  • Based on airborne laser scanning data, we employed local maximum method with variable window size to detect the positions of individual trees in high-density forest of Liangshui Nature Reserve in Heilongjiang Province. Two models, canopy height model (CHM) and canopy maximum model (CMM), were applied to detect the treetop; tree height-crown size regression and its 95% lower predicting limit were used to adjust variable window size, and precisions were assessed by the number of detection percentage, 1∶1 hits, producer’s accuracy and user’s accuracy. The results showed that: CMM could restrain commission error caused by branches within canopies; meanwhile, variable window size defined by 95% lower predicting limit of the regression could avoid omission error caused by small trees with local maximum method. Thus, treetop detection using CMM and 95% lower predicting limit of regression as window size in local maximum method could improve accuracy of measuring the position of individual tree and provide theoretical basis for automatically detecting individual trees in high-density forests.
  • [1]
    付甜,黄庆丰.基于机载激光雷达数据的森林生物量估测研究进展[J].林业勘查设计,2010(4):86-89.
    [1]
    FU T, HUANG Q F. Development of forest biomass estimations using airborne laser scanner data[J]. Forest Investigation Design,2010(4): 86-89.
    [2]
    唐菲,阮志敏,刘星,等.基于机载激光雷达数据识别单株木的新方法[J].遥感技术与应用,2011,26(2):196-201.
    [2]
    TANG F,RUAN Z M,LIU X, et al. Based on the airborne laser radar data to identify individual new methods of wood[J]. Remote Sensing Technology and Application, 2011,26(2):196-201.
    [3]
    JIN K Q,GONG Z H,WANG B, et al. Key step analysis of extraction DEM based on LiDAR[J]. Engineering of Surveying and Mapping,2010,19(6):39-42.
    [3]
    靳克强,龚志辉,王勃,等.机载激光雷达数据提取DEM的关键技术分析[J]. 测绘工程,2010,19(6):39-42.
    [4]
    刘峰,谭畅,张贵,等.长白落叶松单木参数与生物量机载LiDAR估测[J].农业机械学报,2013,44(9):219-224,242.
    [4]
    LIU F,TAN C,ZHANG G,et al. Estimation of forest parameter and biomass for individual pine trees using airborne LiDAR[J]. Transactions of the Chinese Society for Agricultural Machinery,2013,44(9):219-224,242.
    [5]
    ZHANG H,WANG H Q,SUN X. The crown extraction combining color and texture feature[J]. Optical Technique,2008,34(4):613-616.
    [5]
    LECKIC D G, GOUGEON F A. WALSWORTH N, et al. Stand delineation and composition estimation using semi-automated individual tree crown analysis[J]. Remote Sensing of Environment,2003,85:355-369.
    [6]
    SHI M Y,GUO C L,YANG X T, et al. Extraction of Erin canopy based on the Quickbird image[J]. Science and Technology Innovation Herald,2011:13-15.
    [6]
    YU X W, HYYPPÄ J, KAARTINEN H, et al. Automatic detection of harvested trees and determination of forest growth using airborne laser scanning[J].Remote Sens Environ,2004,90:451-462.
    [7]
    GONG Y X, HE C, FENG Z K, et al. Amended delaunay algorithm for single tree factor extraction using 3-D crown modeling[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013,44(2):192-199.
    [7]
    CHEN Q, BALDOCCHI D, GONG P, et al. Isolating individual trees in a savanna woodland using small footprint Lidardata[J]. Photogrammetric Engineering Remote Sensing,2006,72:923-932.
    [8]
    FENG Y M, LI Z Y, ZHANG X. Estimating forest stand crown based on high spatial resolution image[J]. Scientia Silvae Sinicae,2006,42(5):110-113.
    [8]
    FORZIERI G, GUARNIERI L, VIVONI E R, et al. Multiple attribute decision making for individual tree detection usinghigh-resolution laser scanning[J].Forest Ecology and Management,2009,258:2501-2510.
    [9]
    MA J Z,LIU C Z,ZHANG P. The research of Liangshui Nature Reserve[M]. Harbin: The Northeast Forestry University Press,1993.
    [9]
    ZHEN Z, QUACKENBUSH L J, ZHANG L J. Impact of tree-oriented growth order in marker-controlled region growing for individual tree crown delineation using airborne laser scanner (ALS) data[J].Remote Sensing, 2014,6:555-579.
    [10]
    LIANG X L,ZHANG J X,LI H T, et al. Characteristics of the LiDAR data[J]. Remote Sensing Information,2005(3):71-76.
    [10]
    张慧, 王宏琦, 孙显. 结合颜色和纹理特征的树冠提取方法[J].光学技术,2008,34(4):613-616.
    [11]
    LIU G M,WANG Y J,WANG Y. Impact of inverse distance weighted interpolation factors on interpolation error[J].Sciencepaper Online,2010,5(11):879-883.
    [11]
    施敏燕,郭春雷,杨小婷,等.基于QuickBird影像的额济纳胡杨林树冠提取[J].科技创新导报,2011:13-15.
    [12]
    巩垠熙,何诚,冯仲科,等.基于改进Delaunay 算法的树冠三维重构单木因子提取[J].农业机械学报,2013,44(2):192-199.
    [12]
    ZHANG J M,GUO L P,ZHANG X D. Effects of interpolation parameters in inverse distance weighted method on DEM accuracy[J]. Journal of Geomatics Science and Technology,2012,29(1):51-56.
    [13]
    冯益明,李增元,张旭,等.基于高空间分辩率影像的林分冠幅估计[J].林业科学,2006,42(5):110-113.
    [13]
    LIU X S,HUANG J W,JU H B. Research progress in the method and applications of individual tree crown’s automatic extraction by high spatial resolution remote sensing[J]. Journal of Zhejiang Forestry College,2010,27(1):126-133.
    [14]
    马建章,刘传照,张鹏.凉水自然保护区研究[M].哈尔滨:东北林业大学出版社,1993.
    [14]
    LI X W,WANG J D. Optical remote sensing model and structure parameters of vegetation[M].Beijing: Science Press,1995.
    [15]
    梁欣廉,张继贤,李海涛,等.激光雷达数据特点[J].遥感信息,2005(3):71-76.
    [15]
    TAN X L,LI Z Y,YI H R. Crown information extraction method research based on high spatial resolution satellite remote sensing image [J].Remote Sensing Technology and Application,2005,20(2):228-232.
    [16]
    CHAPLOT V, DARBOUX F, BOURENNANE H, et al. Accuracy of interpolation techniques for the derivation of digital elevation models in relation to landform types and data density [J].Geomorphology,2006,77:126-141.
    [17]
    刘光孟,汪云甲,王允.反距离权重插值因子对插值误差影像分析[J].中国科技论文在线,2010,5(11):879-883.
    [18]
    张锦明,郭丽萍,张小丹.反距离加权插值算法中插值参数对DEM插值误差的影响[J].测绘科学技术学报,2012,29(1):51-56.
    [19]
    刘晓双,黄建文,鞠洪波.高空间分辨率遥感的单木树冠自动提取方法与应用[J].浙江林学院学报,2010,27(1):126-133.
    [20]
    李小文,王锦地.植被光学遥感模型和植被结构参数化[M].北京:科学出版社,1995.
    [21]
    SONG C, BAND L E. MVP: A model to simulate the spatial patterns of photosynthetically active radiation under discrete forest canopies[J].Can J For Res,2004,34:1192-1203.
    [22]
    覃先林,李增元,易浩若.高空间分辨率卫星遥感影像树冠信息提取方法研究[J].遥感技术与应用,2005,20(2):228-232.
  • Cited by

    Periodical cited type(19)

    1. 易静,马开森,向建平,唐杰,蒋馥根,陈松,孙华. 点云切片结合聚类算法的TLS单木探测方法研究. 南京林业大学学报(自然科学版). 2024(04): 113-122 .
    2. 胡中洋,陕亮,陈翔宇,余坤勇,刘健. CHM与DSM相结合的无人机激光雷达单木分割. 林业科学. 2024(08): 14-24 .
    3. 武晓康,王良松. 基于改进标记控制分水岭方法的树冠分割. 测绘标准化. 2024(04): 49-55 .
    4. 张翔,刘洋,玉山,苏日娜,阿茹汗. 基于无人机激光雷达和多光谱数据的森林树高提取方法研究. 森林工程. 2023(01): 29-36 .
    5. 廖孟光,李猛,褚楠,李少宁. 基于GIS邻域分析的无人机倾斜影像阔叶林树高提取方法研究. 遥感技术与应用. 2023(05): 1203-1214 .
    6. 陈国强,彭诗怡,曾宪明,王长委,张荣胜,王伟峰,欧正蜂,武晓天. 不同森林覆盖类型对LiDAR生成DEM的精度影响分析. 北京测绘. 2023(12): 1662-1667 .
    7. 周辰琴,余拥军,方陆明,刘雨真,胡建锦. 飞行高度与郁闭度对水杉冠幅提取影响的研究. 林业资源管理. 2022(01): 150-156 .
    8. 陈思宇,刘宪钊,王懿祥,梁丹. 基于机载LiDAR的高郁闭度华北落叶松林单木识别. 浙江农林大学学报. 2022(04): 800-806 .
    9. 周烨,刘云波,郑丽波,龙泱君. 多平台点云数据的单木参数提取精度分析. 测绘通报. 2022(07): 168-172 .
    10. 李苏春,林露花,夏磊,胡璐璐,徐小军. 基于改进的局部最大值法提取杉木单木位置. 林业资源管理. 2022(05): 60-68 .
    11. 张怡卓,吕阿康,蒋大鹏,陈金浩,王克奇. 应用高斯聚类的单木分割及树高和冠幅的提取. 东北林业大学学报. 2021(02): 54-59 .
    12. 杨雪峰,昝梅,木尼热·买买提. 基于无人机的胡杨(Populus euphratica)结构参数获取技术研究. 干旱区地理. 2021(02): 441-449 .
    13. 解宇阳,王彬,姚扬,杨琅,高媛,张志明,林露湘. 基于无人机激光雷达遥感的亚热带常绿阔叶林群落垂直结构分析. 生态学报. 2020(03): 940-951 .
    14. 梁晓军,庞勇,陈博伟. 基于地基激光雷达胸径提取的单木位置精确测量. 林业科学研究. 2020(04): 67-74 .
    15. 王濮,邢艳秋,王成,习晓环. 一种基于图割的机载LiDAR单木识别方法. 中国科学院大学学报. 2019(03): 385-391 .
    16. 刘江俊,高海力,方陆明,郑辛煜,姜广宇. 基于无人机影像的树顶点和树高提取及其影响因素分析. 林业资源管理. 2019(04): 107-116 .
    17. 李岩,史泽林,程坤,甄贞. 运用激光雷达数据的单木树冠提取算法对帽儿山林场单木参数估测的影响. 东北林业大学学报. 2019(11): 59-65 .
    18. 耿林,李明泽,范文义,王斌. 基于机载LiDAR的单木结构参数及林分有效冠的提取. 林业科学. 2018(07): 62-72 .
    19. 甄贞,李响,修思玉,赵颖慧,魏庆彬. 基于标记控制区域生长法的单木树冠提取. 东北林业大学学报. 2016(10): 22-29 .

    Other cited types(29)

Catalog

    Article views PDF downloads Cited by(48)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return